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Abstract: Low-cost depth-sensing devices can provide real-time depth maps to many applications, such as robotics and
augmented reality. However, due to physical limitations in the acquisition process, the depth map obtained
can present missing areas corresponding to irregular, transparent, or reflective surfaces. Therefore, when there
is more computing power than just the embedded processor in low-cost depth sensors, models developed to
complete depth maps can boost the system’s performance. To exploit the generalization capability of deep
learning models, we propose a method composed of a U-Net followed by a refinement module to complete
depth maps provided by Microsoft Kinect. We applied the Euclidean distance transform in the loss function to
increase the influence of missing pixels when adjusting our network filters and reduce blur in predictions. We
outperform state-of-the-art methods for completed depth maps in a benchmark dataset. Our novel loss function
combining the distance transform, gradient and structural similarity measure presents promising results in
guiding the model to reduce unnecessary blurring of final depth maps predicted by a convolutional network.

1 INTRODUCTION

Light Detection And Ranging sensors (LiDAR),
stereo cameras, and time-of-flight sensor-based sys-
tems (like Microsoft Kinect) are technologies that en-
able depth measurement. The combination of depth
information captured by those resources and RGB im-
ages is commonly used in visual odometry, skeleton
tracking, path planning, and object 3D reconstruction.
The referred Microsoft Kinect sensor and the Intel
RealSense cameras can provide RGB and depth in-
formation (so-called RGB-D) at a high frame rate for
a low cost (Xian et al., 2020; Senushkin et al., 2020;
Atapour-Abarghouei and Breckon, 2018) and became
popular for depth acquisition as they allowed applica-
tions of 3D data in tasks where only 2D cameras were
previously applied.

However, the depth information provided by low-
cost real-time sensors usually presents missing data
in the form of holes caused by absent measures in
reflective, transparent, or irregular surfaces (Bapat
et al., 2015; Zhang and Funkhouser, 2018; Xian et al.,
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2020; Huang et al., 2019; Atapour-Abarghouei and
Breckon, 2018). Also, those devices have a restricted
range that only allows measuring depth information
within an interval of minimum and maximum dis-
tances and often present noisy estimates for larger dis-
tances. As many applications have more computing
power than just the sensor processor, it is natural to
use methods to enhance the depth map by filling the
missing data and sharpening measures based on the
RGB data to boost the final system results.

However, depth prediction and completing can be
addressed in different ways and may be referred to as
Single Image Depth Estimation, LiDAR Depth Com-
pletion, or Image Inpainting. In Single Image Depth
Estimation, the aim is to produce accurate depth maps
from RGB images. Recent studies applied geometric
cues provided by sparse and noisy LiDAR data, se-
mantic segmentation, or surface normal vectors to im-
prove the final depth prediction (de Queiroz Mendes
et al., 2021; Qi et al., 2020), however the main focus
still relies on the RGB input. Nevertheless, the ability
to infer depth from RGB data may help to fill large
missing areas.

LiDAR-oriented methods rely on semi-dense
depth maps obtained by uniformly sampling a
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filled depth map completed using interpolation
methods and filtering (Senushkin et al., 2020;
de Queiroz Mendes et al., 2021). When compared to
semi-dense depth maps provided by Kinect sensors,
depth maps obtained by uniformly sampling LiDAR
interpolation measurements do not present the same
kind of missing areas observed in our work. The uni-
formly sampling step may reproduce the same density
of valid pixels but fails in concentrating them on ob-
ject edges or reflective, transparent, or irregular sur-
faces (Senushkin et al., 2020). Furthermore, while
outside environments are the ordinary case of LiDAR
sensors application, low-cost depth sensing devices
are preferred for indoor tasks.

Finally, image inpainting consists of methods for
repairing missing areas in an image, usually tackling
small and thin regions or large flat areas (Xian et al.,
2020). The focus is obtaining feasible results based
on the scene rather than generating accurate pixel val-
ues, as required by depth completion (Huang et al.,
2019). Nevertheless, (Huang et al., 2019) used an im-
age inpainting method for depth completion using a
self-attention mechanism and gated convolutions.

In this paper, we assume the input is a RGB-D
image provided by a low-cost sensor for an indoor
scene containing missing regions, while the output
is the complete depth map of the view. Our method
aims to fill in all missing areas in the depth map using
cues provided by the full RGB image. Therefore, the
ground truth depth maps provided by the dataset must
be composed of fully completed depth maps. LiDAR
data would not be appropriate in our context since
the scale difference might not provide the same spa-
tial distribution of holes. For example, while miss-
ing areas across object edges reduce as the distance
to the sensor increases, outdoor scenes may present
large holes at the top of the depth map correspond-
ing to the sky. We investigate the use of an Encoder-
Decoder Convolutional Neural Network (CNN) using
a novel loss function that combines the depth estima-
tion with an inverted Euclidean Distance Transform
(EDT). Our contribution is to show the EDT can guide
the training to better complete large missing regions
that represent the most difficult part of such a prob-
lem, and to enhance it with a edge-aware refinement
module for smaller error rates.

The proposed method has two modules: a depth
completion step from RGB-D input and a refinement
module using GeoNet++ (Qi et al., 2020) to enhance
the full depth obtained from the depth completion
module. Figure 1 provides an overview of both mod-
ules and shows where the RGB image is used to guide
the depth completion of a raw depth map.

1.1 Related Works

Although previous studies on depth map completion
have addressed the task using traditional image pro-
cessing techniques, such as bilateral filtering (Chen
et al., 2012; Bapat et al., 2015) and Fourier trans-
form (Raviya et al., 2019), deep neural networks can
be particularly useful to learn from existing data in
an attempt to generalize to unseen maps (Ponti et al.,
2021).

In terms of deep learning-based depth comple-
tion of semi-dense indoor depth maps, the method
described by (Zhang and Funkhouser, 2018) was the
first to define the problem of filling large missing ar-
eas in depth maps acquired using commodity-grade
depth cameras. The solution presented predicts local
properties of the visible surface at each pixel (occlu-
sion boundaries and surface normals) and then apply a
global optimization step to solve them back to depth.

Another problem addressed by (Zhang and
Funkhouser, 2018) is creating a dataset containing
RGB-D images paired with their respective com-
pleted depth images. The solution adopted consisted
in utilizing existing surface meshes reconstructed
from existing multi-view RGB-D datasets. The pro-
jection of different meshes from the image viewpoint
fills the missing areas providing accurate ground truth
images.

Using the same approach to calculate local prop-
erties of the visible surface shown by (Zhang and
Funkhouser, 2018), the work presented by (Huang
et al., 2019) replaces the global optimization step with
a U-Net with self-attention blocks projected for im-
age inpainting. To preserve object edges along the
depth reconstruction process, a boundary consistency
module was applied after the attention module. Both
methods, however, still exploit external data to train a
surface normal estimation network.

Later, an adaptive convolution operator was pro-
posed to fill in the depth map progressively (Xian
et al., 2020). The depth completion module, whose
inputs were only the raw depth maps, was used along
with a refinement network considering patches of the
RGB component and the completed depth map. Fur-
thermore, a subset of the NYU-v2 dataset (Silberman
et al., 2012) containing RGB-D images captured us-
ing Microsoft Kinect and their respective ground truth
depth maps was provided.

As (Xian et al., 2020), (Senushkin et al., 2020)
only exploited the 4D input provided by RGB-D data.
Their method uses Spatially-Adaptive Denormaliza-
tion blocks to control the decoding of a dense depth
map by dealing with the statistical differences of re-
gions corresponding to data acquired or to a hole.
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Figure 1: Overview of both modules implemented illustrating the information flow. First, the RGB-D image is used as input
of a U-Net to perform an initial depth completion. The RGB image and the U-Net output are the inputs of the GeoNet++
refinement module (Qi et al., 2020). The RGB component is used to learn a weight map relating the probability of each
pixel to be in the boundaries considering its neighbors. Those weight maps and the intermediary depth images are inputs to a
non-neural module that enhances the final prediction.

Our approach relates to (Zhang and Funkhouser,
2018) and (Xian et al., 2020) as we also propose to use
deep neural networks to learn a model and fill in large
missing areas in depth maps provided by low-cost
RGB-D sensors. We also adopted the same dataset
introduced by (Xian et al., 2020) to train our method
and evaluate our results since it contains completed
ground truth depth maps and has statistics reported
for the methods by (Xian et al., 2020) and (Zhang and
Funkhouser, 2018). However, we neither rely on any
external data other than the RGB-D input as done by
(Zhang and Funkhouser, 2018), nor propose an adap-
tive convolution operator to fill in the depth map. In-
stead, we present a simple depth completion architec-
ture that, when guided by a novel loss function de-
signed to stimulate the completion of large missing
areas, could beat the statistics reported by (Zhang and
Funkhouser, 2018).

2 METHOD

2.1 Neural Network Architecture

The depth completion step in Figure 1 is carried out
by the U-Net shown in Figure 2. During the en-
coding phase, the architecture propagates an RGB-D
input tensor through dense convolutional blocks us-
ing LeakyReLU as activation function (with negative
slope equals to 0.01) with batch normalization (BN)
to reduce the internal covariance shift. For an arbi-
trary tensor tw×h×c, where w×h× c represents its di-
mension, each dense convolutional block yields a new
tensor t ′

w
2×

h
2×2c by applying 2c 3x3 filters and using

average pooling to reduce the spatial dimensions. A
diagram of those components is shown in Figure 3.

Figure 2: Diagram representing the input, the output, and
the blocks used by the U-Net architecture proposed for
depth completion. The number below each blue blocks rep-
resents the multiplicity N of dense blocks allocated before
each transition layer.

Figure 3: Representation of all operations corresponding to
both one dense convolutional block and its following tran-
sition block shown in Figure 2. For all convolutional layers,
we adopted padding equal to one, stride equal to one and 2c
filters.
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Figure 4: Representation of all operations corresponding to
one decoder block in the U-Net architecture presented in
Figure 2. For all convolutional layers, we adopted padding
equal to one and stride equal to one. Both 1× 1 convolu-
tional layers have c/2 filters while the other convolutional
layer has c filters.

To recover the depth map from the features ex-
tracted in the encoding phase, each decoder block per-
forms a bilinear interpolation on the input tensor and
concatenates the result with another tensor received
by the skipping connection. A diagram of a decoding
block is shown in Figure 4.

Finally, the last block in Figure 2 is composed
of a bilinear interpolation followed by a 3× 3 con-
volutional layer (eight filters), a concatenation with
the RGB-D input, another 3× 3 convolutional layer
(twelve filters), and then a 1× 1 convolutional layer
(one filter) to recover the depth map. Each convolu-
tional layer uses LeakyReLU as the activation func-
tion and considers both padding and stride equal to
one pixel.

The U-Net receives inputs of 544×384×4, corre-
sponding to a centered crop of a 640×480×4 RGB-
D image from a Microsoft Kinect sensor. We cropped
the input RGB-D data as the depth map has a lower
resolution than the RGB component, which causes
unfilled areas at the borders of the depth map. Ta-
ble 1 summarizes the output size for each layer in the
depth completion module.

Once a full depth map is recovered by the U-Net,
we apply the edge-aware refinement module for depth
presented in (Qi et al., 2020). It inputs the RGB com-
ponent to extract its edges using Canny edge detector
and outputs learned weight maps where higher values
correspond to higher probability to be in the bound-
aries considering each one of four possible directions
(top to bottom, bottom to top, left to right, and right
to left).

Then, those weight maps are used to weigh the
depth value for each pixel in the completed depth

Table 1: Output Size for Each Layer in Depth Completion
Network.

Layer Output Size
Input 544×384×4

Dense + transition block 1 272×192×8
Dense + transition block 2 136×96×16
Dense + transition block 3 68×48×32
Dense + transition block 4 34×24×64
Dense + transition block 5 17×12×128

Decoder block 1 34×24×64
Decoder block 2 68×48×32
Decoder block 3 136×96×16
Decoder block 4 272×192×8

Output convolution + unpooling 544×384×4

map considering its 4-neighbors. Those maps tend
to have small values in non-boundary regions, which
removes eventual noisy predictions. For boundary ar-
eas, the weight maps present high values that avoid
blurring and preserve sharp predictions. The com-
plete model has approximately 3.8 million parame-
ters, from which only 0.047 million are related to the
refinement module, and the remaining to the depth
completion model.

2.2 EDT Training Loss: Error,
Gradient and SS

We seek to optimize a loss function that combines
three terms to obtain a complete depth representation
using a raw depth map and the RGB image. Our loss
function is similar to the one presented by (Alhashim
and Wonka, 2018), as we adopted the Error, Gradi-
ent and Structural Similarity (SS) terms. Those com-
ponents are not novel and were previously applied in
previous work (Godard et al., 2017; Park et al., 2020;
Ocal and Mustafa, 2020; Shen et al., 2021; Irie et al.,
2019). Our method, however, is the first one to use a
distance-transform-based weighing term in each com-
ponent to highlight the contribution of missing areas
during training and improve the final results.

2.2.1 Distance Transform Weights

The EDT is applied in binary images to calculate
the distance of all background points to nearest ob-
ject boundaries (Strutz, 2021). We propose to use
the inverted distance transform to weigh the predicted
depth map giving more relevance to pixels located in-
side large missing areas when computing the loss.

Figure 5 shows an example of the EDT calcu-
lated from a raw depth map. By multiplying by ten
and summing one to all values in the obtained dis-
tance transform, we create a weight map (wedt ) that
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Figure 5: Example of a raw depth map (top) and its re-
spective inverted Euclidean distance transform (EDT) from
missing area pixels to the nearest boundary pixel (bottom).

increases the contribution of errors at missing areas,
especially for pixels inside large holes, when comput-
ing the loss functions.

2.2.2 L1 Loss

Considering N predicted depth values (dpred) and
their respective completed ground truth depth values
(dgt ), we calculate the mean absolute error (MAE)
over all samples to compose the first term in our
loss function. We adopted the MAE rather than the
root mean squared error during the training phase as
the former is less sensitive to outliers than the latter.
Equation (1) presents the definition of `L1, which cor-
responds to the MAE.

`L1 =
1
N

N

∑
i=1

wedt
i · (|d

pred
i −dgt

i |) (1)

2.2.3 Gradient Loss

To encourage the preservation of accurate object
boundaries in the final depth map, we added to our
final loss the term `grad defined in (2). It averages
the gradient differences in both directions, leading to
small values if the prediction presents edges consis-
tent with the ground truth. To obtain the gradient

components in each direction, we applied the Sobel
Filter.

`grad =
1
N

N

∑
i=1

wedt
i (|gpred

x,i −ggt
x,i|+ |g

pred
y,i −ggt

y,i|) (2)

2.2.4 Structural Similarity Loss

The Structural Similarity Index Measure (SSIM)
is another metric for comparing images, especially
when dealing with image degradation (Wang et al.,
2004). To calculate the SSIM, we considered a dy-
namic range of the pixel-values equals to 7500 as
Microsoft Kinect depth maps have pixel values from
500 mm to 8000 mm.

We define the `SSIM as in (3) to adjust its domain
from [−1,1] to [0,1]. As the SSIM is equal to one
when both images are equal, the equation in (3) also
guarantees that minimizing the loss function leads to
higher SSIM.

`SSIM =
1−SSIM(wedtdpred ,wedtdgt)

2
(3)

2.2.5 Training Loss Function

The equation in (4) describes the loss function
adopted in this work. To balance the contribution of
each term, we set α1 = 0.5 and α2 = 1000.

`training = `L1 +α1 · `grad +α2 · `SSIM (4)

2.3 Training Parameters

We adopted the same parameters described in (Xian
et al., 2020) in order to provide a fair comparison with
our work. We implemented our code using PyTorch
and we trained the model for 100 epochs, using Adam
to optimize our loss function. The batch size was set
as 4 and learning rate was equal to 10−4.

3 RESULTS

The experiments were conducted using an Ubuntu
server equipped with an Intel Core i7-7700K CPU
at 4.20 GHz and two NVIDIA Titan X GPUs, even
though only one GPU was used for both training and
inference. In our experiments, the average inference
time in the test set resulted in approximately 89 FPS.

3.1 Dataset

We adopted the depth completion dataset provided by
(Xian et al., 2020) to conduct our work as it contains
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Table 2: Comparison of the Mean Average Error (MAE) over the test set.

Method Average Error Max Err. Min Err.
(Zhang and Funkhouser, 2018) (CVPR)* 0.170 0.329 0.085

(Xian et al., 2020) (IEEE TASE)* 0.119 0.261 0.037
Ours 0.057 0.255 0.013

Ours (without the refinement module) 0.135 0.342 0.026
∗as reported by (Xian et al., 2020).

pairs of RGB-D images and their respective complete
ground truth depth maps. The dataset has 3906 im-
ages corresponding to 1302 tuples of RGB, raw depth
map, and ground truth depth map.

We replicated the same training and testing sce-
narios described by (Xian et al., 2020) to conduct our
study. We randomly selected 1083 tuples to compose
the training set and the remaining 219 to be used in the
test set. We performed data augmentation to increase
the number of tuples in training set by horizontally
flipping the selected tuples and permuting the RGB
channels.

3.2 Results of Depth Completion

Figure 6 shows results of depth completion for test
images considering five repetitions of the recursive
propagator proposed by (Qi et al., 2020) as part of
the edge-aware refinement module.

3.3 Quantitative Evaluation

Even though we considered all pixels of our ground
truth data during the training phase, the errors were
only evaluated on the pixels that had non-zero depth
information measured by the sensor in the input im-
age (Xian et al., 2020; Zhang and Funkhouser, 2018;
Huang et al., 2019; Senushkin et al., 2020). Also, all
depth values were first normalized to [0, 1] as done in
(Xian et al., 2020).

Table 2 shows statistics of the MAE for test set
images. We compared the minimum, the maximum
and the average MAE with the values presented by
(Xian et al., 2020). Our method achieved the lowest
errors in these metrics, although smaller errors do not
guarantee better predictions.

Furthermore, we present in Table 2 the results
for the initial depth completion (before the edge-
aware refinement module). Even though the met-
rics for these unrefined predictions were not as good
as the ones after the refinement, they were lower
than (Zhang and Funkhouser, 2018) showing the im-
portance of the EDT weights. Also, it was competi-
tive with respect to (Xian et al., 2020), confirming our
U-Net and novel loss function was relevant and im-
proved by refinement module from (Qi et al., 2020).

3.4 Qualitative/Visual Evaluation

We investigated the effect in the final model when
weighing (1), (2) and (3) in the training step using the
distance transform. Overall, the model trained with-
out the influence of the distance transform weights
in loss function terms presented blurred depth maps.
Therefore, the introduction of wedt in (1), (2), and
(3) showed influence to preserve fine details. Figure
7 shows a comparison of outputs generated by two
models of trained using the referred possible scenar-
ios of loss functions.

In addition, we trained four different models vary-
ing by two the number of iterations adopted in the
recursive propagator from three - used by (Qi et al.,
2020) - to nine. We found out that increasing the
number of iterations from three to five improved our
results, as illustrated in Figure 8. The improvements
for values over five were not relevant, so we decided
to adopt five recursive repetitions in our method.

Lastly, Figure 9 presents a comparison of depth
maps obtained before and after applying the edge-
aware refinement module considering the same scenes
shown in Figure 6. Although the U-Net itself could
fill in missing areas, some present a coarse filling.
Therefore, the edge-aware refinement module has
shown itself a key component to enhance the com-
pleted depth maps and guarantee smooth results in flat
regions and accurate details in borders/edge regions.

4 CONCLUSIONS

This work presents a deep learning method to fill
missing areas in indoor depth maps captured by low-
cost sensors, such as Microsoft Kinect. Our approach
relied only on the original depth map and its respec-
tive RGB image, in contrast to other methods that ex-
ploited external data (Zhang and Funkhouser, 2018;
Huang et al., 2019).

We applied the Euclidean distance transform to
weigh the loss function and increase the influence of
missing areas when adjusting our CNN’s filters dur-
ing training. The weighted loss function resulted in
a model that preserves finer details rather than blur-
ring the output depth map when considering the same
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Figure 6: Examples of depth map completed by the proposed method. From left to right: RGB image, raw depth map, output
depth map, and ground truth.

Figure 7: Comparison of the influence of using the EDT when calculating the loss function over the final model. On the
left, we show images generated using the EDT in loss function and a crop of 136×96 to highlight fine details. On the right,
we display the results for the same scene removing the term wedt in (1), (2), and (3) followed by the same crop previously
mentioned. The loss function using the EDT led to a final prediction that tends to preserve details.

influence for all pixels in the depth map.
Furthermore, by applying a fully-convolutional U-

Net composed of dense blocks followed by the edge-
aware refinement module presented by (Qi et al.,
2020), we could obtain completed depth maps at high

frame rate (89 FPS at inference time) and with met-
rics consistent with other experiments using the same
dataset.

We also investigated the effects of the refinement
module in the final results by considering the ini-
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Figure 8: Comparison of complete depth maps for different number of iterations (in red) adopted in the recursive propaga-
tor. The straight line representing the top of the glass door seems better represented from the models using the number of
repetitions greater or equal to five.

Figure 9: Comparison of depth maps obtained before (top) and after (bottom) the edge-aware refinement module for each
scene in Figure 6. While the outputs of the U-Net present coarse filling of previously missing areas, the refinement module
boosted the final results by keeping sharp edges and smoothing out coarse predictions.

tial depth maps completed only by the U-Net. Even
though the result approximate those reported by (Xian
et al., 2020), the depth maps present coarse results in
some areas. Thus, the edge-aware refinement mod-
ule is an important component to improve numerical
results and present better predictions.

Future studies may consider developing better
methods to generate the initial completed depth map
in order to boost the final results. Also, other datasets
containing both raw and ground truth fully com-
pleted depth maps could be proposed and addressed
to provide comparisons between the existing meth-
ods. Lastly, the novel loss function based on inverted
Euclidean distance transform could be applied to train
models in other existing scenarios to exploit its advan-
tages in preserving detail and avoiding unnecessary
blurring of final depth maps.
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