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Abstract: For many real-world decision-making problems subject to uncertainty, it may be essential to deal with multiple
and often conflicting objectives while taking the decision-makers’ risk preferences into account. Conditional
value-at-risk (CVaR) is a widely applied risk measure to address risk-averseness of the decision-makers. In
this paper, we use the subset-based polyhedral representation of the CVaR to reformulate the bi-objective
two-stage stochastic facility location problem presented in (Nazemi et al., 2021). We propose an approximate
cutting-plane method to deal with this more computationally challenging subset-based formulation. Then,
the cutting plane method is embedded into the ε-constraint method, the balanced-box method, and a recently
developed matheuristic method to address the bi-objective nature of the problem. Our computational results
show the effectiveness of the proposed method. Finally, we discuss how incorporating an approximation of
the subset-based polyhedral formulation affects the obtained solutions.

1 INTRODUCTION

On the one hand, many real-world problems have
multiple conflicting objectives, e.g., cost versus cus-
tomer satisfaction or profitability versus environmen-
tal concerns. On the other hand, it is important to
incorporate uncertainty about the considered parame-
ters into the decision-making process. Optimization
under uncertainty and multi-objective optimization
have evolved mostly separately over the past decades.
However, it is desirable to develop optimization tech-
niques to deal with these two domains simultaneously
(Gutjahr and Pichler, 2016).

Due to its sound theoretical background and its
proven algorithmic performance, stochastic program-
ming is a widely applied approach in computational
optimization for handling data uncertainty (see, e.g.,
(Birge and Louveaux, 2011) and (Shapiro et al.,
2014), and references therein). The standard two-
stage stochastic programming problem formulation
considers the expected value as a performance mea-
sure. It assumes a risk-neutral attitude of the decision-
maker and performs well in the context of repet-
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itive decision-making problems ((Birge and Lou-
veaux, 2011)). However, decision-makers may have
other risk preferences, especially in non-repetitive ap-
plications, e.g., in large-scale financial investments or
in the management of high-impact disasters. In the
case where more robust solutions are of interest, one
of the recently most widely recommended risk mea-
sures is the Conditional Value at Risk (CVaR). It can
be adjusted to the actual degree of risk-averseness of
the decision-maker by specifying a confidence level α

(α ∈ [0,1)) (CVaR(α)). The closer the value of α to
0, the more risk-averse is the decision-maker. CVaR
has been applied in different streams of the optimiza-
tion literature, such as, e.g., financial engineering
(e.g., (Krokhmal et al., 2002), (Roman et al., 2007),
(Huang et al., 2021), (Zheng and Zheng, 2021)) dis-
aster management (e.g., (Noyan, 2012), (Elçi and
Noyan, 2018), (Nazemi et al., 2021)), water man-
agement (e.g., (Zhang et al., 2016), (Simic, 2019),
(Chen et al., 2021)), and sustainable supply chain
(e.g., (Rahimi and Ghezavati, 2018), (Rahimi et al.,
2019)). We refer to (Filippi et al., 2020) for a re-
cent survey on application of CVaR to several opti-
mization domains different from financial engineer-
ing. (Huang et al., 2021) propose a two-stage distribu-
tionally robust model including CVaR as a risk mea-
sure for two different practical applications, a multi-
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product assembly problem and a portfolio selection
problem. They also extend the model to a multi-
stage one. Two decomposition algorithms based on
the cutting-plane method are developed to solve the
models. Finally, they conclude that the proposed
models show a more robust performance compared
to the risk-neutral model. (Noyan, 2012) incorpo-
rates the classical CVaR representation into the ob-
jective function of a two-stage mean-risk stochastic
problem in disaster management where the demand
and the damage level of the transportation network
are uncertain parameters. She develops decomposi-
tion algorithms to deal with the computationally chal-
lenging nature of the problem. In line with this study,
(Elçi and Noyan, 2018) consider a chance-constrained
two-stage mean-risk stochastic relief network design
model. They also develop a Benders decomposition-
based algorithm to solve formulations with alterna-
tive representations of the CVaR. (Zhang et al., 2016)
present a risk-averse multi-stage stochastic water al-
location problem. A mean-CVaR objective is consid-
ered in each stage of the problem. Finally, they pro-
pose a nested L-shaped method to solve the problem.
In addition to the aforementioned works that address
single-objective problems, there are also some stud-
ies in the literature that consider multi-objective opti-
mization under uncertainty incorporating CVaR as the
risk measure into two-stage stochastic programming.
(Zheng and Zheng, 2021) consider a bi-objective port-
folio optimization model with a focus on minimiz-
ing CVaR as a risk measure and maximizing the ex-
pected return rate. They also incorporate transaction
costs into the objective functions. A NSGA-II meta-
heuristic method (Deb et al., 2002) based on sparsity
strategy (Zitzler et al., 2001) (SMP-NSGAII) is de-
veloped to deal with the bi-objective model. (Rahimi
et al., 2019) propose a risk-averse sustainable multi-
objective mixed-integer non-linear model to design
a supply chain network under uncertainty by incor-
porating CVaR into their two-stage stochastic model.
The objectives aim at minimizing the design cost and
maximizing the profit. (Nazemi et al., 2021) incor-
porate a risk-neutral, a risk-averse, and the CVaR
measure into a bi-objective two-stage facility loca-
tion model in a disaster management context to an-
alyze a wide range of risk preferences, including risk-
neutral and worst-case approaches. They integrate
different uncertain two-stage models into two well-
known exact multi-objective frameworks, namely the
ε-constraint and the balanced-box methods. Addi-
tionally, they also develop a matheuristic approach
and they analyze and evaluate the combination of dif-
ferent uncertainty representations and multi-objective
frameworks. In most of the aforementioned studies,

the classical representation of CVaR has been em-
ployed to model risk-averseness. However, as men-
tioned earlier, alternative variants of CVaR are also
proposed in the literature. In this paper, we focus on
the existing two-stage bi-objective model presented
in (Nazemi et al., 2021) and extend this work by re-
formulating their two-stage risk-averse model using a
subset-based polyhedral representation of the CVaR.
To address this alternative formulation, we propose
a scenario cutting-plane algorithm. We conduct a
computational analysis on the test instances used by
(Nazemi et al., 2021) to illustrate how the subset-
based variant performs in comparison to the classical
formulation on their model.

The remainder of this paper is organized as fol-
lows. In Section 2, we describe the existing bi-
objective facility location problem under uncertainty
presented by (Nazemi et al., 2021) along with its cor-
responding subset-based polyhedral mathematical re-
formulation. In Section 3, we summarize the devel-
oped solution approach to solve the problem. In Sec-
tion 4 we discuss the computational results. Finally,
we present the conclusion and address potential future
work in Section 5.

2 TWO-STAGE RISK-AVERSE
STOCHASTIC OPTIMIZATION

The problem addressed in (Nazemi et al., 2021) is a
bi-objective two-stage location-allocation model un-
der demand uncertainty motivated by last-mile net-
work design in a slow-onset disaster context. A fi-
nite discrete set of demand scenarios (s ∈ S, S =
{1, ...,N}) with equal probabilities ( 1

N ) is used to in-
corporate stochastic information. The problem aims
at finding the best location to position temporary lo-
cal distribution centers (LDC) in the response phase
of a disaster, such that the affected people can walk to
these centers to receive their relief aids. The model
tries to find the trade-off between two conflicting
objectives, i.e., minimization of operational cost on
opening LDCs and maximization of the coverage or
in other words, minimization of the amount of uncov-
ered demand. We use the same notation as introduced
in (Nazemi et al., 2021) to describe the model. The
problem is formulated on a network, where the sets
of nodes representing the demand and potential LDC
locations are denoted by I and J, respectively, assum-
ing that J ⊆ I. The assumption is that the affected
people in each demand node (i ∈ I) will walk only to
an LDC if their distance (di j) from an opened LDC is
less than a certain distance threshold (dmax). Uncer-
tainty is assumed on the amount of demand at each
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node (q(s)i ). The first-stage decision (here-and-now)
concerns the selection of sites to open LDCs. Binary
variables y j ∈ {0,1} indicate whether or not an LDC
is opened at node j ∈ J. Each LDC is assumed to
have a limited capacity c j and a given fixed cost γ j.
Decision variables x(s)i j ∈ {0,1} and u(s)j represent the
second-stage decisions (wait-and-see) that determine
the allocation of demand nodes to the opened LDCs
and the amount of relief items delivered to each of
them, respectively. The second-stage decisions are
determined based on first-stage values and realized
uncertain demand information. We next elaborate on
our choice of the alternative subset-based polyhedral
representation of CVaR incorporated into the second
stage of the stochastic model.

2.1 Two-stage Subset-based CVaR
(SSCVaR)

(Fábián, 2008) obtains a subset-based polyhedral rep-
resentation of the classical CVaR for the special case
of scenarios with equal probabilities where α= 1− k

N ;
k is the cardinality of any subset of scenarios. The car-
dinality of all scenarios is equal to N (i.e., S̄⊆ S, |S̄|=
k and |S|= N):

CVaR1− k
N
(X) =

1
k

max
S̄⊆S:|S̄|=k

∑
s∈S̄

X (s) (1)

where X (s) is the value of the random variable
X in scenario s. Equation (1) leads to the follow-
ing subset-based polyhedral representation of CVaR
(Fábián, 2008):

CVaR1− k
N
(X)= {minρ : ρ≥ 1

k ∑
s∈S̄

X (s),∀S̄⊆ S : |S̄|= k}

(2)
We utilize the subset-based representation (2) to

obtain the MIP formulation of the two-stage model
(MB):

min ∑
j∈V

γ jy j (3)

min CVaRα(∑
i∈I

q(s)i −∑
j∈J

u(s)j ) = ρ (4)

s.t. ρ≥ 1
k ∑

s∈S̄

(∑
i∈I

q(s)i −∑
j∈J

u(s)j ) ∀S̄⊆ S : |S̄|= k (5)

∑
j∈J

ψ(di j)x
(s)
i j ≤ 1 ∀i ∈ I,s ∈ S (6)

u(s)j ≤ c jy j ∀ j ∈ J,s ∈ S (7)

u(s)j ≤∑
i∈I

q(s)i ψ(di j)x
(s)
i j ∀ j ∈ J,s ∈ S (8)

x(s)i j ≤ y j ∀i ∈ I,∀ j ∈ J,s ∈ S (9)

y j ∈ {0,1} ∀ j ∈ J (10)

x(s)i j ∈ {0,1} ∀i ∈ I,∀ j ∈ J,s ∈ S (11)

u(s)j ∈ Z+ ∀ j ∈ J,s ∈ S (12)

ρ≥ 0 (13)

The first objective (3) minimizes total opening
costs of LDCs. The second objective (4) minimizes
the CVaR of the uncovered demand of the affected
people. The auxiliary variable ρ represents the solu-
tion value of the r.h.s. of (2), which coincides with the
CVaR as given by (1). Constraints (5) make sure that
ρ is set to the correct value. Constraints (6) ensure that
the demand at node i can only be covered at most once
by an opened LDC if it is located within the coverage
threshold of LDC j (ψ(di j)=1, if di j ≤ dmax and 0 oth-
erwise). Constraints (7) are the capacity constraints,
one for each LDC j. Constraints (8) guarantee that the
amount of demand considered to be covered by LDC
j is at most the actual demand assigned to this node
within its coverage threshold. Constraints (9) guar-
antee that a demand node can only be assigned to an
opened LDC. Constraints (10)-(13) give the domains
of the decision variables.

3 SOLUTION APPROACH

In this section, we describe the designed cutting-plane
(approximation) method to deal with the potentially
large number of scenario subsets in the model. To ad-
dress the bi-objective nature of the problem, we em-
bed the cutting-plane method into the multi-objective
frameworks applied in (Nazemi et al., 2021), namely
the ε-constraint (e) (Laumanns et al., 2006), the
balanced-box (Boland et al., 2015) (BB) and a spe-
cific matheuristic (Mat) developed in (Nazemi et al.,
2021). The matheuristic method embeds the bi-
objective generalization of two heuristic approaches,
namely local branching (Fischetti and Lodi, 2003)
and relaxation induced neighborhood search (RINS)
(Danna et al., 2005), into the ε-constraint method.
The RINS is a variable fixing scheme employed when
moving along the Pareto frontier from one solution
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to another in the ε-constraint framework. Addition-
ally, a local branching approach is applied for the so-
lutions, for which only fixing the variables does not
solve the problem to optimality within a certain time
limit. In a bi-objective setting, it is usually not possi-
ble to find a solution which simultaneously optimizes
all of the considered objectives, but a set of optimal
or efficient trade-off solutions exists, which are in-
comparable among each other and together dominate
all other feasible solutions. The image of an efficient
solution in objective space is called non-dominated
point (NDP) and all NDPs together form the Pareto
frontier. For further background on multi-objective
optimization, we refer to (Ehrgott, 2005).

3.1 Scenario Subset-based
Approximation

Formulation (MB) contains constraints corresponding
to subsets of S. The size of this set of constraints could
grow fast, depending on the cardinality of the subsets
(k) and the set of scenarios S.

As mentioned in Section 1, different
decomposition-based techniques have been pro-
posed to solve two-stage stochastic programming
models with a single objective (e.g., (Shapiro et al.,
2014)). (Elçi and Noyan, 2018) propose a Benders
decomposition-based framework for the subset-based
variant of CVaR with a mean-risk objective function.
In the single objective two-stage stochastic model, the
model is decomposed by scenario once the first-stage
variables are fixed.

In our scenario subset cutting-plane approach, we
iteratively solve the so-called single objective prob-
lem which relaxes the subset-based constraints (5),
and dynamically generates them using a delayed cut
generation algorithm. To be more precise, the single
objective problem contains the objective function (4)
as the main objective, where the value of the other
objective (3) is fixed.

Given an optimal solution (ŷ, ρ̂, û) of the relaxed
model in each iteration, we check whether there is
any violated constraint of the type (5), and identify
a subset Ŝ if there is a violation. To solve this so-
called separation problem, a few simple calculations
(steps 3-8 of Algorithm 1) are required. At each itera-
tion, we have the exact optimal second stage objective
values associated with the current (ŷ, ρ̂, û) vector; in
particular, these objective values can be expressed as
ρs = 1

k (∑i∈I q(s)i −∑ j∈J û(s)j ) for each s ∈ S. Let S∗ =
{s ∈ S : ∑s∈S∗ ρs > ρ̂}. If S∗ = {s ∈ S : ∑s∈S∗ ρs ≤ ρ̂}
then the candidate solution is labeled as the new in-
cumbent. Otherwise, the identified violated constraint
of the form (5) associated with S∗ is introduced as

a cutting-plane. The pseudo-code of the delayed cut
generation algorithm is presented in Algorithm 1.

Initial Cut. We propose a heuristic algorithm in or-
der to initialize the relaxed model. This procedure is
based on the following steps:

1. Rank the scenarios in each demand point based
on their corresponding demand value (qs

j) in de-
scending order.

2. Sum the ranks for each scenario over I, the set of
demand points.

3. Sort the scenarios based on their cumulative total
rank in descending order.

4. Select the first k scenarios of the sorted set.

Algorithm 1: Delayed cut generation.

1: initialize the relaxed model with the initial cut,
t← 1

2: while ∑s∈Ŝ ρs > ρ̂ do
3: for each s ∈ S do
4: ρs← 1

k (∑i∈V q(s)i −∑ j∈V û(s)j )
5: (sort ρs in descending order)
6: end for
7: S∗← the first k values (largest) of the sorted ρs

values
8: Ŝ← S∗

9: t← t +1
10: end while

In our bi-objective setting, due to the presence of
integer variables not only in the first stage, but also
in the second stage, using cutting-plane technique for
every single point along the Pareto frontier causes
computationally no benefit. However, preliminary
tests showed that, employing the cutting-plane algo-
rithm in order to calculate the first extreme point of
the Pareto frontier and, consequently, fixing the gen-
erated subset cuts to the model, leads to a high-quality
approximation of the entire Pareto frontier. We refer
to this approach towards solving model MB by MB in
the following.

4 COMPUTATIONAL STUDY

In this section, we present computational results for
the instances used by (Nazemi et al., 2021) to show
the performance of the proposed method with respect
to the alternative subset-based polyhedral reformula-
tion of the model in comparison to the classical rep-
resentation of CVaR.
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All experiments are executed on a single thread
cluster where each node consists of two Intel Xeon
X5570 CPUs at 2.93 GHz and 8 cores, with 48GB
RAM. The model is implemented in C++ using
CPLEX 12.9. As in (Nazemi et al., 2021) a time
limit (TL) of 7200 s is considered. We note that
we use the generic callback feature of CPLEX in
order to generate the cuts in the MB model. Un-
like lazy constraint callbacks, which prevent CPLEX
from utilizing “dynamic search”, generic callbacks al-
low CPLEX to choose among the options of dynamic
search and classical branch-and-cut as it suits.

4.1 Test Instances

Here, we briefly explain the key points of the test in-
stances and refer the reader to (Nazemi et al., 2021)
for further details. They are derived from a real-world
data set from a drought case presented in (Tricoire
et al., 2012) for the region of Thies in western Sene-
gal. The region is divided into 32 rural areas where
each has between 9 and 31 villages. In total, the re-
gion contains 500 nodes. Opening costs for LDCs are
assumed to be identical for all locations (5000 cost
units). In addition, it is assumed that the affected peo-
ple in a demand node walk to the closest LDC if the
distance is less than 6km. For each instance, first, 10
sample scenarios (|S|= 10) are generated to cope with
demand uncertainty. Then, in order to compare the
algorithms for a larger number of scenarios, samples
with sizes of |S|= 100, 500, and 1000 are generated.

4.2 Solution Quality Indicators

In order to assess the performance of heuristic meth-
ods for bi- and multi-objective optimization, several
different quality indicators have been proposed in the
literature (see, (Zitzler et al., 2003)). In this study,
instead of the hypervolume indicator (IH ) used by
(Nazemi et al., 2021), we employ the hypervolume
gap (gH) and the multiplicative ε-indicators.

For a bi-objective framework with minimization
objective functions, assume X is the set of feasible
solutions in decision space and Z = f (X) is the image
of this set in objective space. We assume A⊆ Z is an
approximation set of a Pareto frontier, and R⊆ Z is a
reference set.

The hypervolume gap (gH) definition is as fol-
lows:

gH% =
IH(R)− IH(A)

IH(R)
·100 (14)

The closer the value of gH% to 0, the higher is the
quality of the approximated Pareto frontier.

The multiplicative epsilon indicator (Iε) ((Zitzler
et al., 2003)) gives the minimum factor ε that the ap-
proximation set (A) in the objective space has to be
multiplied with, such that it dominates the reference
set (R). The closer the value of Iε to 1, the better is the
approximated Pareto frontier. The ε value calculated
here can be interpreted as the gap between A and R in
the objective space.

4.3 Results

We compare all combinations of multi-objective cri-
terion space approaches used in (Nazemi et al., 2021)
(e, BB, and Mat) with two linear counterparts of
the classical (MA) and the approximation of subset-
based polyhedral (MB) representations of the two-
stage CVaR model for different levels of risk. {e-
MA, BB-MA, Mat-MA, e-MB, BB-MB, Mat-MB}
denotes the set of all methods evaluated in this study.

The run time for the two different representations
of the CVaR approach, MA, and MB, is reported in
Table 1. MA is solved to optimality, whereas MB is
the MB which is solved using the explained cutting-
plane technique to approximate its Pareto frontier. It
is worth mentioning that the cutting-plane method
solves the first extreme point of the Pareto frontier to
optimality and all other non-dominated solutions are
computed without generating additional cuts. Results
for different levels of α are reported: the two special
cases identical with the expected value (risk-neutral)
and the worst-case (risk-averse) point of view, and
one ”middle” level and their corresponding k-values
(α = 1− k

N ). The results in this table show that the
combination of the BB with MB solves the instances
slightly faster than its combination with MA. In the
following, we compare the quality of the obtained so-
lutions using MA and MB.

After analyzing the two exact multi-objective
techniques (e and BB), we apply the Mat method in
combination with the MA and MB models to solve
the test instances. As shown in Table 2, the MB-Mat
method is slightly faster than MA-Mat. Additionally,
we solve a few instances with a larger number of sce-
narios. We report the run time and the number of
found non-dominated points (NDP) in Table 3. The
results show that the approximately solved subset-
based representation of the CVaR method (MB) pays
off when the number of scenarios increases.

Performance comparison of the Mat method and
the ε-constraint method for small instances where the
latter could find the optimal Pareto frontier is shown
in Tables 4 and 5. To measure the quality, we report
the hypervolume gap (gH%) and the value of the Iε

indicator. Analyzing the results in Table 4 confirms
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Table 1: Run time comparison of two representations of CVaR, MA, and MB, for different α-level/k-value for instances of
size 21-500 with sample size 10.

α/k value

0/10 0.7/3 0.9/1

#Node e-MA BB-MA e-MB BB-MB e-MA BB-MA e-MB BB-MB e-MA BB-MA e-MB BB-MB

21 1 2 1 2 2 1 1 2 2 2 1 1
44 16 22 15 19 17 23 13 14 20 26 10 17
56 24 31 19 23 18 22 15 23 19 33 14 16
72 36 51 29 35 45 48 30 41 64 103 36 40
90 62 110 59 80 73 78 59 75 99 179 64 73
106 123 229 118 133 151 161 111 132 210 380 141 175
120 143 241 135 163 144 158 121 160 138 262 100 115
163 445 818 392 552 417 506 369 503 636 1365 TL 596
182 577 1550 481 738 932 1053 701 776 1326 2548 1010 1192
203 956 2078 879 1208 616 699 552 716 515 TL TL 558
254 6103 TL TL TL TL TL TL TL TL TL TL TL
264 3903 6800 TL 2449 6453 TL TL TL TL TL TL 4007
275 7133 TL 6585 TL TL TL TL TL TL TL TL TL
295 TL TL TL TL TL TL TL TL TL TL TL TL
326 TL TL TL TL TL TL TL TL TL TL TL TL
355 TL TL TL TL TL TL TL TL TL TL TL TL
388 TL TL TL TL TL TL TL TL TL TL TL TL
410 TL TL TL TL TL TL TL TL TL TL TL TL
436 TL TL TL TL TL TL TL TL TL TL TL TL
449 TL TL TL TL TL TL TL TL TL TL TL TL
472 TL TL TL TL TL TL TL TL TL TL TL TL
482 TL TL TL TL TL TL TL TL TL TL TL TL
500 TL TL TL TL TL TL TL TL TL TL TL TL

Table 2: Run time comparison of a combination of ε-constraint method (e), and the proposed matheuristic (Mat) method with
MA and MB for different α/k-values for test instances of size 21-500 with sample size of 10 scenarios.

α/k value

0/10 0.7/3 0.9/1

#Node e-MA Mat-MA e-MB Mat-MB e-MA Mat-MA e-MB Mat-MB e-MA Mat-MA e-MB Mat-MB

21 1 0.51 1 0.42 2 0.43 1 0.43 2 0.58 1 0.46
44 16 3 15 3 17 3 13 2 20 3 10 3
56 24 4 19 4 18 4 15 3 19 5 14 3
72 36 11 29 8 45 9 30 6 64 11 36 7
90 62 18 59 16 73 23 59 19 99 21 64 14
106 123 32 118 37 151 36 111 28 210 44 141 29
120 143 37 135 40 144 39 121 36 138 43 100 38
163 445 183 392 102 417 132 369 98 636 167 392 104
182 577 212 481 140 932 178 701 128 1326 172 1010 136
203 956 206 879 198 616 217 552 172 515 210 TL 194
254 6103 414 TL 462 TL 589 TL 356 TL 568 TL 514
264 3903 479 TL 652 6453 470 TL 405 TL 478 TL 445
275 7133 686 6585 1082 TL 781 TL 711 TL 819 TL 636
295 TL 726 TL 1068 TL 729 TL 733 TL 836 TL 775
326 TL 893 TL 1027 TL 2407 TL 856 TL 1182 TL 914
355 TL 1447 TL 1378 TL 1499 TL 1339 TL 1619 TL 1333
388 TL 1611 TL 1711 TL 1835 TL 1726 TL 1931 TL 2115
410 TL 2133 TL 2251 TL 4062 TL 2167 TL 2847 TL 1901
436 TL 2439 TL 2413 TL 2531 TL 2340 TL 3608 TL 2220
449 TL 2633 TL 2857 TL 2953 TL 2546 TL 2903 TL 2534
472 TL 2955 TL 3185 TL 3167 TL 2971 TL 3194 TL 3155
482 TL 5054 TL 4044 TL 3715 TL 3216 TL 3885 TL 3162
500 TL 6238 TL 4442 TL 5653 TL 2955 TL 4278 TL 2358

that the combination of Mat and MA gives an upper
bound for the Pareto frontier (as Mat is a heuristic),
whereas the combination of the ε-constraint method
with MB finds a lower bound for the Pareto frontier.
A lower bound is obtained because the ε-constraint
method computes exact solutions of the approximated

problem, but approximates the CVaR objective from
below, as the MB only works with a reduced number
of subsets that are not necessarily worst for each non-
dominated point. Therefore, we obtain negative gH%
values and Iε values ≤ 1. Nonetheless, both methods
provide high-quality approximations of Pareto fron-
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Table 3: Performance comparison of a combination of ε-constraint method (e), and the proposed matheuristic (Mat) method
with MA and MB for α-level 0.7 and its corresponding k-value for larger number of scenarios. T[s] indicates the run time in
seconds.

α/k value: 0.7/3

e-MA Mat-MA e-MB Mat-MB

#Node #Scenario T[s] #NDP T[s] #NDP T[s] #NDP T[s] #NDP

21
100 161 17 27 17 56 17 5 17
500 6476 16 348 16 322 16 52 16

1000 TL 6 1668 17 TL 13 282 17

44
100 1076 30 178 30 316 30 34 30
500 TL 5 1374 32 TL 19 365 32

1000 TL 3 TL 3 TL 7 1239 34

56
100 2267 39 234 39 583 39 51 39
500 TL 3 2675 40 TL 22 776 38

1000 TL 3 TL 2 TL 3 1747 41

72
100 4186 50 180 50 826 50 107 50
500 TL 3 TL 2 TL 15 983 51

1000 TL 2 TL 2 TL 2 TL 2

tiers as both gH%, and Iε represent a gap between the
approximated sets and the reference set.

To measure the performance of the combination
of the Mat method and MB, we re-evaluate the second
stage of MB by solving the MA model, where the first
stage decisions are fixed to the values obtained from
the MB. In other words, in order to assess its true
quality, the solution provided by MB is re-evaluated
by using the exact second-stage objective value as ob-
tained through MA. As can be seen in Table 5, the e-
MB and Mat-MB frameworks generate high-quality
Pareto frontiers.

After that, we also assess the performance of Mat-
MB (with re-evaluated second stage) on large-size
instances where the optimal Pareto frontier is not
known. For this purpose, we consider a union of the
Pareto frontiers (U) obtained by e-MA, BB-MA, and
Mat-MA as the reference set. Table 6 shows the hy-
pervolume gap (gH%) values. Negative values indi-
cate that Mat-MB with re-evaluated second stage val-
ues obtains better approximations than the union of
the other methods.

5 CONCLUSIONS

In this paper, we investigate the subset-based poly-
hedral representation of CVaR to capture risk in a
two-stage bi-objective location-allocation model in-
troduced in (Nazemi et al., 2021), the purpose of
which is the optimal design of a relief network. The
model aims at finding the trade-off between a de-
terministic objective (minimization of location cost)

and an uncertain one (minimization of uncovered
demand) where uncertainty is assumed in demand
values. We introduce an approximate cutting-plane
method to deal with the computationally challenging
subset-based formulation of the two-stage stochastic
optimization problem containing the CVaR.

We evaluate the performance of the proposed
method by conducting a computational study on the
instances used by (Nazemi et al., 2021). Our exper-
iments show that the proposed approximate cutting-
plane approach pays off for a large number of scenar-
ios and they illustrate how incorporating an approx-
imation of the subset-based formulation affects the
quality of the produced solutions. In future research,
we would like to investigate whether the performance
of the cutting-plane method can be further improved
by employing additional enhancements.
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Table 4: Quality comparison using Iε and hypervolume gap (gH%) for approximated Pareto frontiers where the optimal Pareto
frontier is known from solutions of solved instances using ε-constraint method (e), with the sample size of 10 scenarios.

α/k value: 0.7/3

e-MA (Reference set) Mat-MA e-MB

#Node gH% Iε gH% Iε gH% Iε

21 0 1 0.00 1.00 -0.01 0.99
44 0 1 0.00 1.00 0.00 1.00
56 0 1 0.00 1.00 0.00 0.91
72 0 1 0.42 1.22 -0.02 0.95
90 0 1 0.05 1.32 0.00 0.87

106 0 1 0.06 1.33 -0.01 0.94
120 0 1 0.02 1.35 0.00 1.00
163 0 1 0.00 1.00 0.00 0.96
182 0 1 0.00 1.00 0.00 0.94
203 0 1 0.02 1.02 0.00 0.97

Table 5: Quality comparison using Iε and hypervolume gap (gH%) for re-evaluated approximated Pareto frontiers using e-MB
and Mat-MB, where the optimal Pareto frontier is known from solutions of solved instances using ε-constraint method (e),
with the sample size of 10 scenarios.

α/k value: 0.7/3

e-MA (Reference set) e-MB Mat-MB

#Node gH% Iε gH% Iε gH% Iε

21 0 1 0.00 1.00 0.00 1.00
44 0 1 0.00 1.00 0.00 1.00
56 0 1 0.00 1.00 0.00 1.00
72 0 1 0.01 1.03 0.01 1.03
90 0 1 0.00 1.04 0.00 1.04
106 0 1 0.01 1.00 0.01 1.00
120 0 1 0.00 1.00 0.00 1.00
163 0 1 0.00 1.00 0.00 1.00
182 0 1 0.00 1.04 0.00 1.04
203 0 1 0.00 1.00 0.00 1.00

Table 6: Performance of Mat-MB on large-size instances,
where the optimal Pareto-frontier is not known. The union
of the Pareto frontiers obtained by e-MA, BB-MA, and Mat-
MB is considered as a reference set. The sample size of
scenarios is 10.

α/k value: 0.7/3

U (Reference set) Mat-MB

#Node gH% gH%

254 0.00 0.00
275 0.00 0.00
295 0.00 -0.02
326 0.00 -0.06
355 0.00 0.01
388 0.00 -0.10
410 0.00 -0.05
436 0.00 -0.02
449 0.00 -0.03
472 0.00 -0.08
482 0.00 -0.02
500 0.00 0.00
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