
Balancing Multiplayer Games across Player Skill Levels using Deep
Reinforcement Learning

Conor Stephens and Chris Exton
University of Limerick, Ireland

Keywords: Artificial Intelligence, Reinforcement Learning, Games Design, Deep Learning.

Abstract: The balance or perceived fairness of Level & Character design within multiplayer games depends on the skill
level of the players within the game, skills or abilities that have high contributions but require low skill, feel
unfair for less skill players and can become the dominant strategy and playstyle if left unchecked. Player skill
influences the viable tactics for different map designs, with some strategies only possible for the best players.
Level designers hope to create various maps within the game world that are suited to different strategies,
giving players interesting choices when deciding what to do next. This paper proposes using deep learning to
measure the connection between player skills and balanced level design. This tool can be added to Unity game
engine allowing designers to see the impact of their changes on the level’s design on win-rate probability for
different skilled teams. The tool is comprised of a neural network which takes as input the level layout as a
stacked 2D one hot encoded array alongside the player parameters, skill rating chosen characters; the neural
network output is the win rate probability between 0-1 for team 1. Data for this neural network is generated
using learning agents that are learning the game using self-play (Silver et al., 2017) and the level data that is
used for training the neural network is generated using procedural content generation (PCG) techniques.

1 INTRODUCTION

Game balance in multiplayer games can be measured
using player win rate or win probability. If a game’s
level design has a 50/50 win rate for both attacking
and defending teams, the level can be said to be bal-
anced. An example of this within a high profile game
is Overwatch when game director Jeff Kaplan showed
map win rates for attacking and defending teams as
shown in the Appendix, Figure 4. Throughout the last
decade, artificial intelligence has disrupted most in-
dustries, game design has also seen an influx of re-
search interests, the most relevant examples are in us-
ing artificial intelligence to train learning agents to
create and test games design for both QA (Quality as-
surance) and Design purposes (Gisslén et al., 2021).

Reinforcement learning agents have been used to
collect data that can infer the probability of win-rate
of players or teams in various environments. Previ-
ously these agents were trained before data collection,
this research highlights how collecting data during the
learning process brings two key benefits:

• Accelerated Data Collection when compared to
using learning agents or traditional behaviour
trees. Training for deep learning agents can re-
quire considerable time to emulate high perform-
ing players, the learning agents in this paper took

5 days to reach 50 million steps for a single pol-
icy Figure 1. Similarly, the engineering time taken
for developing custom AI (Artificial Intelligence)
behaviour is significant.

• Inclusion of Player Skill as an input parameter to
the game balance tool which allows finer infer-
ence and understanding of the meta-game when
using the tool in editor. Player skill level is an im-
portant metric to consider when designing levels
and future characters.
Previous research by Daniel Karavolos showed

how level design and character statistics can be used
to evaluate the outcome of multiplayer games within
procedural generated levels (Karavolos et al., 2019).

This paper extends previous research that fo-
cused on assessing level design in a 2 player game
(Stephens and Exton, 2020) key additions to this re-
search is using teams of 2 to create a more valid
learning environment and generating data for train-
ing the model which includes each agent’s skill rat-
ing to use during the training of the model and out-
put of the tool, this allows a neural network to pre-
dict the outcome of a game given the skill rating of
the players playing the game. The learning agents
were built and trained within Top Down Game Bal-
ance Project https://github.com/Taikatou/top-down-
shooter open source Unity project that showcases this
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technique where the agents are trained in an adversar-
ial environment which provides an additional dataset
corresponding to the current policy’s skills in the
game which can be used to fine tune our predictive
networks to determine fairness for different skilled
players.

Research companies such as modl.ai have sprung
up to offer tools to accelerate the games development
process using a combination of simulation and arti-
ficial intelligence, allowing them to offer services to
games companies which include; ”Glitch Finder” and
”Player bots” which uses learning agents to both ex-
plore the game and to use player data to create smarter
ai for companions and enemies within the game.

1.1 Skill Curves - Ceilings & Floors

Interesting and viable choices are key to creating an
engaging multiplayer experience, to ensure players
have a broad range of choices even if they are facing
stronger opponents, some gameplay options are de-
signed to have a higher impact on the required skill ra-
tio allowing weaker players to assist their friends and
change the outcome of any game. To capture, mea-
sure, and document these design considerations, an
analytical tool such as skill curves and spreadsheets
can be used to portray the difference to players and the
potential limitations of each game mechanic. Most of
these tools are an artistic portrayal of a character ef-
fectiveness given the players skill with that character.
One popular example to compare is Genji in Over-
watch who has a broad variety of mechanics and skills
that are necessary for the player to use him to the best
of their ability. These skills include:

Hit-scan accuracy for Genji’s deflect 1, game
play knowledge such as cooldown awareness allow-
ing players to time Genji’s Dash reset and ability com-
binations with other players on the team, projectile-
based accuracy for his Shurikens and communication
skills which allows the player to combine Genji’s ul-
timate ability with other ultimate abilities on the play-
ers team. In comparison, characters such as Lucio
and Mercy can provide value to the team simply by
existing Mercy, requiring little to no technical skill,
with the differentiation between different players be-
ing how well they know what is going to happen in
the game which is known as ”Game-Sense” (Skyline,
2017).

1Hit scan accuracy relies on instantaneous rays which
intersect with the games geometry to determine what the
player hit (Wikipedia, 2021)

1.2 Matchmaking

A key pillar supporting this research is the importance
and data connected to skill rating in games, online
multiplayer games have been using skill rating met-
rics to match players together for a considerable time
(Herbrich et al., 2007a),

This is due to the game’s designers wanting play-
ers to play against similarly skilled opponents, this
gives two key use cases for this research, the first is
as a design tool, the second option is to use the pre-
dictions made from the tool during the matchmaking
process allowing the game to balance itself even if
players have wide variances in their level of skill.

Skill is a difficult attribute in games to quantify,
as there are different aspects to skill in different situ-
ations and games. To make it easier, skill rating sys-
tems have traditionally quantified skill by the proba-
bility that one player/team will defeat another. The
first popularised example of a skill rating algorithm
is the Elo rating system in chess. The Elo rating
system uses a Gaussian distribution to quantify the
player’s skill, the mean of the distribution represents
the player’s skill, and the standard deviation is a con-
stant defined by the game representing how big the
increments of a player’s skill rating can be. For exam-
ple, the probability of player one beating player two is
the aggregate of both of their Gaussian Distributions.

Skill rating in games is an important component
of large-scale competitions and leader boards in com-
petitive games. The most well-known type of Skill
Rating in games is called the Elo rating system (Elo,
1978). Elo has shaped the terms we use to talk not
just about how the rank is calculated after each game
but what we call distinct spaces within the skill rating
spectrum of any zero-sum game. Elo is used for chess
and other single-player competitive games, however,
it has experience issues when used directly in mul-
tiplayer games (Rank has to be recalculated if the
team changed). This brought about the True Skill 1
and 2 (Herbrich et al., 2007b) (Minka et al., 2018).
These skill rating algorithms allow developers and
publishers to create fairer and more enjoyable games
for their players by understanding the probability that
any Player A will beat Player B with high statistical
accuracy.

1.3 Player Skill

Most games try to give all players the same chance
to win or succeed, this is known as Player Balance.
Player Balance does not usually consider the skill of
players and usually only applies to the beginning of
games (Nystrom, 2014). Imbalance has a variety of
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sources within multiplayer games, these include the
cool-down times, the size of the collision boxes, play
styles that don’t have sufficient strategic counters, and
class imbalances within the character classes.

Mechanics are designed in games to have dimin-
ishing returns in comparison to a players skill level,
this brings about a variety of benefits, firstly less
skilled players can achieve great impact with friends
or other players by using a character with a high Skill
Floor. This allows them to enjoy the mechanics of the
game without feeling overwhelmed by a better oppo-
nent, The most notable example is the ”Noob Tube” in
Call of Duty: Modern Warfare 2 (Credits, 2012). The
Noob Tube is a mechanic with a rather high output
in terms of impact within a multiplayer game com-
pared to the skill level required to use it. Alternatively
players that play with higher technical abilities would
make different playing decisions, which should result
in them playing Characters or strategies with greater
skill requirements but with higher risks. A good rule
of thumb for game’s designers is that the relationship
between players’ skill & a players impact in game
should have diminishing returns as players improve
at the game.

2 RELATED WORKS

Recent work in this area and the most relevant to-
wards this research was conducted by (Liapis et al.,
2019) which explored deep learning techniques to
evaluate procedural generated content and this work
is spread over 4 key papers. This work leverages deep
learning to predict the outcome of games from gen-
erated datasets. The first paper titled Using a Surro-
gate Model of Gameplay for Automated Level Design
refers to this neural network as a ”Surrogate Model of
Gameplay” (Karavolos et al., 2018), this terminology
is carried out throughout the 4 papers. (Liapis et al.,
2019) creates a dataset for solving several supervised
learning problems by simulating games within a First-
Person-Shooter by having agents play against each
other by using behaviour trees. Behaviour trees de-
fine agent behaviour based on the state of the envi-
ronment. The impact of this design choice is that the
agent’s policy is consistent throughout the data collec-
tion phase of this research, secondly, the behaviour of
the simulated players is biased towards how the AI
would play the game and not how the players would
play the game. Players see what is on the screen, have
limitations with their controls, and play to win rather
than following a rigid behaviour.

3 RESEARCH QUESTIONS

The main focus of this paper is to assess the effect of
player skills on a game’s level design. The aims of
this research are as follows:

• How can reinforcement learning generate game-
play data for multiplayer games for various skilled
players?

• Can we infer the win rate of different game lev-
els for different skilled players using supervised
learning?

Asymmetric gameplay is a key consideration
when designing multiplayer levels to ensure both
teams have equal opportunities to complete their ob-
jectives, Capture the Flag Vs. Attack Vs. Defence
are examples of symmetric and asymetric gameplay
options. This paper aims to answer the research ques-
tions for symmetric gameplay in a death match style
game within an asymetric map, this decision limits
the affect of level design to the geometry of the level
(e.g. allowing agents to cover from shots) and the po-
sitioning of the players spawn location and items.

4 METHODS

This research uses a variety of techniques to gener-
ate game-play data used to train a neural network ca-
pable of predicting the ”Fairness” of a level given
the level’s design and the skill of the players com-
prising the team. These techniques include using re-
inforcement learning agents and Procedural Content
Generating (PCG) techniques to generate both lev-
els and gameplay data simulating both Level design-
ers and players, allowing this tool to be used both in
the early stages of game development and can prevent
miss used content creation and play testing on unbal-
anced content, avoiding costly and time consuming
processes.

4.1 Reinforcement Learning Agents

To simulate players playing this top-down game, we
used deep reinforcement learning agents built using
Unity’s excellent ml-agents framework (Juliani et al.,
2018). Agents are trained with a variety of sensors to
allow them to understand the world around them.

This work collects game data during the training
process. In other examples of this technique pre-
trained agents were used to ensure the skill of the
agent’s policy is consistent during the data collec-
tion process and to ensure the results collected from
the following simulations are consistent, this research
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takes an alternative approach by having the learning
agents train during the collection process as it allowed
us to have the skill rating of the agent’s policy as an
input to the neural network.

4.1.1 Action Space

Each agent takes an action every 3 frames and can
decide a movement action and a gun action the move-
ment actions are as follows: None, Left, Right, Up,
Down. The gun actions are: None, Rotate Left, Rotate
Right, Shoot.

4.1.2 Sensors

To allow the agents understanding of the world, they
are equipped with sensors that capture game data and
feed it into the neural network representing the agents
policy. The policy’s network is comprised of two
hidden layers each with 512 neurons. The output of
the neural network are the controls for the different
playable characters. To structure the learning after
each game, the winning team gets a group reward of
1 after each loss a reward of -1 and 0 for a draw.

Grid Sensor. A custom sensor that shows a repre-
sentation of the world as a stacked 2D matrix of the
game worlds layout, the learning agent uses a one hot
encoding for each game object including:

• Team Bullets

• Enemy Bullets

• Walls

• Grass

• Team Characters

• Enemy Character

Ray Cast Sensor. A Ray Cast Sensors shoots invis-
ible rays out from the agent’s position, each ray al-
lows the agent to detect what is at the end of the ray
and how far away they are from it. Each agent has
a ray cast sensor that shoots out a ray every 7.5 de-
grees in a circle, providing the agent a broad knowl-
edge and finer grain understanding of the world when
compared to the grid sensor, however this sensor can-
not see through the walls and does not have the nec-
essary observations to accurately substitute for the in-
formation provided to a human player.

Game Play Sensor. The last sensor is the game
play sensor which captures any data that would be
presented within the UI of the game, including their
health, gun rotation if their gun can shoot, and the
time left in the game.

4.1.3 Training

Each agent is trained using MA-POCA (MultiAgent
POsthumous Credit Assignment) (Cohen et al., 2021)
allowing multiple agents to play collaboratively as a
team, similarly to games such as League of Legends
and DOTA 2. MA-POCA solves some interesting
problems found within competitive video games, pre-
viously early termination of an agent within a learn-
ing environment could lead an agent that contributed
a lot to the teams success a reward of 0 which is ref-
ered to as the Posthumous Credit Assignment Prob-
lem. MA-Poca prevents the sample complexity that is
caused by using sampling states (a previous solution
to this problem) and uses attention instead of a fully
connected layer with absorbing states.

Creating a balanced dataset for all skill ratings
is key to successful training, self-play (Silver et al.,
2017) allows a consistent iterative improvement of the
agent’s policy, and provides the necessary Elo values
for the dataset. Self play integrates into the learning
environment by having the current policy play against
older policies. The learning environment with self-
play allows the current policy to improve iteratively
with a positive reward signal showing improvement
after each iteration of the agent’s policy. This pre-
vents the policy from not having any rewards or learn-
ing due to playing against the same strength of the
policy. Self-play creates an auto-curriculum effect al-
lowing the learning environment to become more dif-
ficult over time. Figure 1 shows the training process
for the learning agents, showing the stable increase of
the agent’s policy skill rating over the training pro-
cess.

4.2 Level Generation

Each level is generated using procedural generated
techniques, the reason for this is to allow us to make
content to train the neural network that is the basis
of our game balance tool without lengthy develop-
ment time. These techniques have been used before,
but it uses a combination of the drunken walk algo-
rithm with distance spawning for items such as spawn
points and health packs. Drunken walk is the pro-
cess of selecting walkable terrain by randomly mov-
ing throughout the world, each level has between 6-
8 walkers that have a 5% chance of dying after ev-
ery movement of the procedural technique. When the
ground is created, the world is wrapped by walls to
ensure the players have a limited space and give the
world cover and sight lines required for high skilled
play with projectile weapons. Each level has 4 spawn
points for both teams, the two on the leftmost side of
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Figure 1: Agent Training Process.

the game’s map are for Team 1, the two on the right
are for Team 2. Up to 3 health packs are placed within
the level they should be placed on the floor and at least
4 tiles away from a spawn point. Examples of these
levels are shown in Figure 2

Figure 2: Procedurally Generated Levels.

4.3 Data Collection

During the learning process, we output the data af-
ter each completed game, this data is identified by a
unique id for each game including the following data
points which are saved as a CSV (Comma Separated
Value) file:

• Winning Team (1/2, 0 if draw)

• Time Taken to Win

• Agent Elo rating2

• Level ID

Levels were saved as a one-hot-encoded CSV file with
the Level ID in the file name, this data is used as a 2s
input to our neural network, allowing us to use con-
volutional neural networks to achieve better perfor-
mance during both training and inference. Each level
design is used 100 times to create a win rate for infer-
ence. This calculation was done over 10,000 different
levels: 10,000 simulations is a factor of 10 over our
previous work, this value gave a broader variety of
skill ratings for this data, allowing the agent to dif-
ferentiate between different levels of skilled agents
within each level.

2Capturing the Elo skill rating was possible using a back
channel to move the data from the python trainer to the
Unity instance

4.4 Neural Network Design

The tool to measure the game’s balance was built
using Python Keras and the model is imported into
Unity and uses Barracuda for inference. The neural
network is given the Agent’s skill-rating as a normal-
ized integer representing the values from 1200-2100,
a 2D one-hot encoded matrix to represent the game
world, and a one-hot encoding of the players charac-
ter. The output of the neural network is the probability
of Team 1 winning the game given the input parame-
ters of the world.

The aim of the neural network is to generate a
graph that outputs the probability of player 1 win-
ning, given the skill rating, to achieve, there were two
different methods the first would be for the model to
output multiple data points for a single map, this was
seen as having a harder training process however the
model would require less computation during infer-
ence. This approach would be more suitable within
a production ready version of the tool, the implemen-
tation within this research is to have the skill as an
input and using the model multiple times with differ-
ent inputs to generate 10 separate probabilities that
comprise the required curve.

4.4.1 Network Layout

The network structure is designed for multiple inputs
or mixed data. In machine learning, mixed data refers
to the concept of using multiple types of independent
data. In our context, this is the two continuous val-
ues for both teams playing the game when playing the
game and the image data for the level design. Figure
7 shows the structure of the model; input 17: Input-
Layer is the input of our mixed data into an otherwise
conventional convolutional neural network. This out-
put of this neural network is a single neuron with a
sigmoid activation function (Narayan, 1997) with an
output of 0-1 to create the logistic regression needed
for predicting the ”Fairness” of the level.

Balancing Multiplayer Games across Player Skill Levels using Deep Reinforcement Learning

831



5 RESULTS

Agent training and data generation is slow, but the
steady learning shown in Figure 1 rate and the high
entropy in Figure 6 created a broad and valid dataset
for this problem domain. This consistent improve-
ment of the learning agent’s skill rating avoids class
imbalance during both training and testing of the
model.

95% of the sample maps from the testing data split
model achieves the 10%+- win rate probability that is
currently considered acceptable in multiplayer games
for matchmaking. This is acceptable, however, the
variance of the model is too high for production use.

As shown in Figure 5 the graph generation in
Unity is relatively straight forward with the graph up-
dating in almost real time when an artist changes the
level’s tile-map. The UI shown in Figure 3 showcases
how the tool looks when the graph is clicked it shows
Figure 5. Each graph is made up of 10 data points,
each 0.1 increment on the graphs X-axis is the equiva-
lent of 40 Elo skill points. The Y-axis is the probabil-
ity of Team 1 winning the game which is in the range
of 0-1.

6 DISCUSSION

Automated tools are becoming an increasingly com-
mon place in games. Companies have moved from
automated build systems that can create daily builds
using Jenkins or Team City to procedural art tools for
creating large open world games such as Houdini and
more recently to automated QA testing using learn-
ing agents, as games expand in scope the development
and testing process for them becomes more arduous,
Red Dead Redemption 2 is an excellent example of
this. Other areas of expansion for the games industry
are wider worlds and procedural art tools, a common
term is a 4k world which stands for 4 kilometres by 4
kilometres. Automation allows easier creation and it-
eration of content and is a key focus for game compa-
nies to prevent burn out that has been a massive issue
within the industry.

There is a broad range of future applications for
this tool kit, ranging from designing content to testing
exploits within the game’s mechanics. One suitable
use case within Player Vs. Enemy (PvE) games is
to evaluate how powerful different combinations are
either made by hand or using (PCG) techniques for
players of different skill levels. Another use case is
for testing new gameplay elements and rulesets, this
tool can evaluate key gameplay metrics such as the

session length and key weapon statistics such as aver-
age damage and max damage.

The authors think due to the broad applicability
of game design tools built using supervised learning
should hopefully see unique and new usecases within
the games development process. One key considera-
tion is the difficulty of integrating similar tools into
game engines other than Unity. Unreal Engine and
other proprietary game engines such as Lumberyard
don’t have easy to use inference tools at this cur-
rent time preventing this approach from being used
in a wide variety of games especially when we con-
sider Unity’s poor multiplayer support. While Unity
is moving towards a more scalable consistent multi-
player architecture, Unreal Engine is moving towards
integration of more AI within the game engine with
projects such as InteractML and Airsim getting key
support from Epic Games (Developer of Unreal En-
gine).
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APPENDIX

Figure 3: Unity Tool.

Figure 4: Overwatch Win Rate 2017 (Blizzard Forum).

Figure 5: Win-rate Vs Player Skill Inferred.

Figure 6: Policy Entropy.

Figure 7: Level Design Neural Network Model.
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