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Abstract: The replacement of traditional construction materials with lightweight fibre-reinforced plastics is an accepted
way to reduce emissions. By automating quality assurance, errors in production can be detected earlier, avoid-
ing follow-up costs and hard-to-recycle scrap. Deep learning based defect detection systems have shown
promising results, but their prediction accuracy often suffers from scarce labelled data in production pro-
cesses. Especially in the domain of fibre-reinforced plastics, the task remains challenging because of varying
textile specific errors. In our work, we applied conditional generative adversarial networks combined with
image-to-image translation methods to address data scarcity through generating synthetic images. By train-
ing a generative model on image-segmentation pairs, we produce realistic fibre images matching the given
segmentation maps. Our model enables control over generated output images of arbitrary fibre shapes and
structures, including gaps, ondulations, and folds as error classes. We evaluate our synthetic images based on
GAN metrics, feature distribution and show that they are suitable as a data augmentation method to improve
the error classification performance of deep neural networks. Thereby, we provide a solution for the manufac-
turing domain of fibre-reinforced plastics with scarce data, consequently contributing to an automated defect
detection system that reduces resource-intensive scrap in the future.

1 INTRODUCTION

Climate change, legal emission regulations and in-
creasing environmental awareness in society lead to
a steadily growing demand for lightweight materials
(Türe and Türe, 2020). The underlying idea of us-
ing these materials is to minimise the mass of mov-
ing parts, thereby reducing energy consumption, as
well as emissions. Fibre-reinforced plastics (FRP) are
a material class that provides the necessary require-
ments of mechanical strength and at the same time
low weight (Miao and Xin, 2018). However, pro-
ducing FRP is very expensive due to their resource-
intensive manufacturing process. Therefore, FRP
manufacturers need to avoid scrap and have extensive
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quality control (QC) in order to be profitable and com-
petitive.

Currently, available QC systems can only indi-
rectly detect defects, such as folds (Fuhr, 2017) by
measuring the fibre orientations with for example
Canny-Edge detection. If a deviation in fibre orien-
tation is detected, the specific defect is then deter-
mined by a time-consuming, manual visual inspec-
tion. One possible solution to reduce manual labour
is to use Deep Learning (DL) models for automated
inspection to directly localise and classify defects in
semifinished textile products.

The technical feasibility of DL approaches for QC
in manufacturing of FRP has already been proven for
various approaches, such as using Convolutional Neu-
ral Networks (CNNs) for semantic segmentation in
order to detect defects in fabric image data (Wei et al.,
2019; Jing et al., 2019; Sacco et al., 2018; Sacco et al.,
2019). All approaches have a data-intensive labelling
process in common, in order to achieve high detection
accuracy.
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Despite the promising results from the literature,
the usage of DL models as an automated solution for
image-based QC is still not standardised in industrial
environments, particularly not for the manufacturing
industry of FRP. On one hand, many FRP manufac-
turing companies have machine parks consisting of
old devices that lack data-gathering sensors or inter-
faces. On the other hand, due to small production lot
sizes, available data is also limited. As a result, there
is no, or only incomplete data available for the dif-
ferent steps of the production process. The accessible
data is often insufficient for training of detection mod-
els with acceptable detection accuracy. Additionally,
manual annotation of image data is an expensive and
time-consuming process.

An established solution to address insufficient
amounts of data is through data augmentation. Most
commonly, it uses existing images to synthetically
generate similar but realistic images via, e.g. geo-
metric transformations or stochastic noise. One re-
cent learning based approach for generating new data
samples are Generative Adversarial Networks (GAN)
(Goodfellow et al., 2014). By learning the underly-
ing data distribution of the available data, they have
shown remarkable results in generating realistic im-
ages.

Therefore, we investigate in this contribution the
effectiveness of GANs as a data augmentation method
for training DL models in the data scarce environment
of manufacturing FRP. In our work, we do not only
show that GANs are well-suited for generating real-
istic looking images of FRP, but also semantic mean-
ingful images for training a defect classifier without
manual labelling. In our evaluation, we validate nec-
essary use case driven modifications of model archi-
tecture and training process, qualitatively and quanti-
tatively. Through our quantitative results we show,
that the generated images on one hand contribute
positively in error detection accuracy and the other
hand resemble the feature distribution of the available
dataset. Our contribution validates GANs as a data
augmentation method for industrial applications with
scarce labelled data like the manufacturing of FRP.

2 RELATED WORK

Closely related to our task of synthesising images of
FRP, is the task of texture synthesis. The first ap-
proach that used a CNN to synthesise textures was
introduced in (Gatys et al., 2015). The main idea was
to describe textures as the correlation between high-
level features acquired through feature maps gener-
ated by different layers of a pretrained CNN. Fur-

ther improvements in generating texture with repet-
itive patterns were addressed by adding spatial trans-
formation (e.g. flipping or translation) on the feature
maps (Berger and Memisevic, 2017) and constraining
the frequency domain acquired with Fourier transfor-
mation of the generated image (Liu et al., 2016), or a
combination of both (S. Schreiber et al., 2016).

The first GAN based texture synthesis was intro-
duced in (Jetchev et al., 2017). In their work, the au-
thors replaced the usual noise vector with a spatial
noise tensor as the input for the generator. This al-
lowed the generation of high-quality images that scale
to bigger synthesised image sizes. Further improve-
ments in controlling the synthesis of images with
GANs were presented in (Xian et al., 2018). The au-
thors developed a conditional GAN that generates im-
ages of objects based on a sketch. Furthermore, dif-
ferent parts of the image can be modified through a
texture patch.

Outside texture synthesis, GANs are used as a
data augmentation method in different domains with
scarce labeled data (Shorten and Khoshgoftaar, 2019).
This is especially crucial for problems with imbal-
anced label distributions (e.g. anomaly detection).
One popular domain where these types of problems
frequently appear is the field of medical imaging (Yi
et al., 2019). Here, training samples are limited due
to their labeling cost or patient privacy, which moti-
vated researchers to investigate GANs as an alterna-
tive for synthesising training samples. Likewise, in
(Zhu et al., 2018) the authors successfully use GANs
to augment training data of underrepresented label
classes for emotion classification. Their results show
that through the data augmentation, the classification
performance increased significantly. In the domain of
textile manufacturing, GANs are investigated to gen-
erate textile design patterns (Fayyaz et al., 2020). In
their work, the authors evaluate different state-of-the-
art GAN-based architectures based on their inception
score and use a style transfer approach to generate
a combination of multiple textile designs. Although
GANs show promising results as a data augmentation
method, our work is the first to apply GANs as data
augmentation method in the context of manufacturing
of fibre-reinforced plastics.

3 METHOD

3.1 Dataset

Our dataset is created from greyscale surface scans
of plain weaves made of carbon fibres. Angle and
distance of the scanner head varies over the different
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Fold Gap Ondulation Regular

Figure 1: Overview of different error classes of real images.

scans. To form our classification dataset, the surface
scans are cropped into 384×341 patches, filtered, and
assigned manually to one of four classes, namely fold,
gap, ondulation and regular (cf. Figure 1). As certain
types of errors often occur together with other errors,
we define the prioritisation with decreasing order as
fold, ondulation, gap, and regular. In the case of mul-
tiple errors we assign the class with the highest pri-
ority. The prioritisation is based on observations that
folds often come along with ondulations and ondula-
tions often come along with gaps. The “regular” class
only contains defect-free images. Our full dataset XR

full
contains more than 12k instances.

In this work, we use the superscript R for real and
G for synthetic (generated) datasets and instances.
For the experiments we split up XR

full into 3 parts,
XR

train, XR
val, XR

test, for training, validation, and testing
of models, respectively. Table 1 provides a detailed
overview of the number of instances in all datasets
used in our research.

Table 1: Overview of instances per dataset.

Dataset Fold Gap Ondulation Regular
XR

full 2717 5861 1261 2460
XR

train,min 42 89 19 35
XR

train 906 1954 421 820
XR

val 906 1954 420 820
XR

test 905 1953 420 820
XG

U-Net 5000 5000 5000 5000
XG

StarGAN 5000 5000 5000 5000

3.2 Image-to-Image Approach

Given the goal of using GANs as a data augmentation
method for defect classification, the generation of im-
ages need to be adaptable according to different error
classes. For this purpose, and to capture the geometric
structure of fibre parts, we create segmentation maps,
i.e. pixel-wise class labels, from our image data. To
simplify the manual work, fibre edges are approxi-
mated by quadratic or cubic Bézier curves, or linear
splines.

The occurring patterns between warp and weft are
encoded with two different colours, depicted as or-
ange and blue in Figure 2, each indicating a fibre ori-

Figure 2: Segmentation map annotation of weave.

entation. Note that, since warp and weft cannot be
differentiated in the image patches, the fibre colours
are interchangeable. In addition to the fibre colour,
we add a third colour indicating fold lines, while gaps
are indicated as black sections (cf. Figure 2).

With the derived pairs of segmentation maps and
real images we train a generator, similarly to an
image-to-image approach that translates segmenta-
tion maps to realistic images. This training approach
with corresponding segmentation maps enables the
synthesis of specific weave images and the precise
control of fibre structure and geometry. For the train-
ing of the generator we use a modified implemen-
tation of BicycleGAN (Zhu et al., 2017) to learn a
model that maps segmentation maps to weave images.

BicycleGAN is a multimodal, supervised image-
to-image approach, which works as a hybrid of GANs
and autoencoders. Thus, it trains on input-output
pairs of images and allows, through the modification
of latent variables, to generate images in different
styles. These attributes make it the suitable frame-
work for our use case. In their implementation, Zhu et
al. (2017) use an adaptation of U-Net (Ronneberger
et al., 2015) as generator. U-Net is an architecture
that has been developed and become popular for im-
age segmentation tasks. It consists of an encoder-
decoder “bottleneck” architecture that has been ex-
tended by skip-connections from contracting to ex-
panding layers. A similar, but unsupervised, image-
to-image framework to BicycleGAN is StarGAN v2
(Choi et al., 2020). Like BicycleGAN it is multi-
modal, but, as a major difference, it works also for
unpaired data and can be trained on images from more
than two domains. Unlike Zhu et al. (2017), Choi et
al. (2020) use an encoder-decoder architecture with-
out skip-connections for their generator.
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Input Ground truth Output

Figure 3: Example of the orientation problem, where fibres
of the output image are oriented towards the wrong direc-
tion.

4 IMPLEMENTATION DETAILS

When training BicycleGAN on our dataset in the con-
figuration of Zhu et al. (2017), we were facing several
issues, such as blurry outputs or the “orientation prob-
lem”. The orientation problem appears as fibre parts
oriented in the wrong direction, i.e. rotated 90 degrees
with respect to the direction intended by the segmen-
tation map (cf. Figure 3). We addressed these prob-
lems with a slightly modified architecture and training
setup.

4.1 Architectures

For the generator, we tested two different architec-
tures: An extended version of the U-Net architecture
proposed by Zhu et al. (2017), namely “Extended U-
Net”, and a modified version of the StarGAN v2 gen-
erator architecture proposed by Choi et al. (2020).

4.1.1 Extended U-Net

In our experiments, we found that the U-Net archi-
tecture proposed by Zhu et al. (2017) suffers from
the orientation problem when trained against an un-
conditional discriminator. The problem could not be
solved by additional training or an increased number
of parameters. It appears that an unconditional dis-
criminator is unable to learn the coherence of correct
fibre orientation, as it only gets to see the generator
outputs. The problem can be addressed with a con-
ditional discriminator, i.e. a discriminator which is
fed input-output pairs. Thereby, it is able to learn the
correct coherence from real image pairs and provide a
corrective feedback to the generator. However, we ob-
served that a conditional discriminator in combination
with the U-Net architecture leads to significant lower
image quality and blurry results. Our experiments in-
dicate that this is a general problem of U-Net-like ar-
chitectures.

As an alternative to address the orientation prob-
lem while keeping an unconditional discriminator,

we found it useful to place residual blocks in front
of U-Net. We orient towards the head architecture
of ResNet-34 (K. He et al., 2016) and add a 7× 7
convolutional layer with 64 filters and a stride of 1,
and three residual blocks in front of U-Net to cre-
ate an “Extended U-Net”. The residual blocks cor-
respond to the ResNet-34 residual block with batch
normalization and ReLU activation replaced by in-
stance normalisation and LeakyReLU, respectively.
We observed that although the orientation problem
still occurred in early phases of training, the modifi-
cation overcomes it with longer training. Unlearning
through overtraining is also possible, therefore an op-
timal stopping point is found.

4.1.2 StarGAN V2

In addition to our proposed “Extended U-Net” archi-
tecture, we also experimented with the StarGAN v2
generator architecture to address the orientation prob-
lem. We found that for this architecture only a condi-
tional discriminator leads to acceptable results, as for
an unconditional discriminator the generator failed to
match the given segmentation maps in its outputs.

For our implementation, we slightly modified the
architecture by adding a downsampling and upsam-
pling block, respectively, to shrink the bottleneck to
a size of 8× 8× 512. Additionally, we removed the
adaptive wing based heatmaps from the skip connec-
tions, as our dataset does not require an alignment of
faces, and do not use a latent mapping network, as we
only have a single target domain.

4.2 Training

To show that our approach works for small dataset
sizes, we train our generator on a small dataset
XR

train,min consisting of 185 images from XR
train and their

corresponding segmentation maps. The models are
trained on 256×256 patches randomly cropped from
the training images. Before cropping, we scale im-
ages larger by a factor of 1.1 to 1.33, since it leads to
improved image quality. During the test phase, we
scale segmentation maps larger by a factor of 1.3,
feed them into the generator, and scale the output
back to the original size. Training samples are aug-
mented through rotating, flipping, and commuting the
fibre channels of the segmentation maps. We repre-
sent the colours in our segmentation maps in terms
of one-hot-encoding instead of RGB values in order
to prevent erroneously implied proximity by numeri-
cally close colour values. Due to the increased num-
ber of parameters of our generator architectures, we
train the Extended U-Net generator for 1200 epochs
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and the StarGAN v2 generator for 1600 epochs dur-
ing the normal training phase and fine-tuning phase,
respectively. Unlike Zhu et al. (2017), we use the
same discriminator for the two training cycles, since
the usage of two independent discriminators does not
yield any benefits in our experiments.

5 EVALUATION

For the evaluation of our synthesised images we build
on four different methods: a manual, qualitative in-
spection by eye, an evaluation based on GAN scores,
an evaluation of the feature distribution, and a use
case based evaluation using synthetic images as aug-
mentation in a defect classification task. To create
our synthetic images, we generate 5000 synthetic seg-
mentation maps by modelling fibre courses with lines
or quadratic Bézier curves and adding class-specific
characteristics, i.e. gaps, ondulations, or folds, in var-
ious shapes. We translate the same 5000 segmentation
maps once with the Extended U-Net and the StarGAN
v2 generator to create XG

U-Net and XG
StarGAN, respec-

tively. For our evaluation we assume that the class
intended to imitate in the segmentation map is equiv-
alent to the real class of the corresponding generator
output.

5.1 Manual Evaluation

To evaluate qualitative criteria and gain a first impres-
sion of the generated image quality, we assess our
synthetic images by eye. We found that both gener-
ator architectures produce sharp and realistic results,
without any evidence of the previously introduced ori-
entation problem. Blending of segmentation maps
and output images (cf. Figure 4) reveals that both
architectures produce matching results, while the Ex-
tended U-Net architecture produces perfectly aligned
images and the results of StarGAN v2 deviate up to 4
pixels from segmentation inputs in some cases.

Additionally, we evaluate the influence of the la-
tent vectors by generating several results from each
segmentation map with different latent vectors. We
found that both generators are able to cover the full
spectrum of appearances in real images, i.e. variations
in lighting and shadows (cf. Figure 5) and Figure 6.

5.2 Evaluation on GAN Scores

A manual evaluation is not feasible to capture the en-
tire variance of generator outputs, as that would mean
inspection of thousands of images. Moreover, the va-
riety in possible outputs makes it difficult to assess

Extended U-Net StarGAN v2

Figure 4: Blending of segmentation maps with output im-
ages.
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Figure 5: Results of Extended U-Net generator architecture.
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Figure 6: Results of StarGAN v2 generator architecture.

which dataset is of higher quality. To address these
problems, we use GAN scores, more specifically: In-
ception Score (IS)(Salimans et al., 2016), Fréchet
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Inception Distance (FID)(Heusel et al., 2017), and
their conditional extensions Between-class (BCIS)
and Within-class (WCIS) IS, and Between-class (BC-
FID) and Within-class (WCFID) FID (Benny et al.,
2021). The conditional extensions provide additional
meaning for our specific approach, as our combi-
nation of segmentation map synthesis and image-
to-image generator can be interpreted as a class-
conditional image generator modelling p(x|c), with
the segmentation map synthesis modelling the distri-
bution p(s|c) of segmentation maps s conditioned on
conditional classes c and the image-to-image genera-
tor modelling p(x|s). Since our real dataset is imbal-
anced, we slightly modify scores by weighting sam-
ples depending on the number of instances per class
in order to ensure that each class contributes the same
amount to the final score. This ensures that every er-
ror class is equally important for the given use case.

5.2.1 Inception Score

To capture if our synthetic images match distinct
classes, we use the Inception Score (IS) (Salimans
et al., 2016). In their work, the authors defined the
score as the expectation of the Kullback-Leibler di-
vergence between the true class posterior p(t|x) and
the true class prior p(t) over the distribution p(x) of
images x defined by the generator or real dataset:

IS = exp
(
Ex∼p(x)DKL(p(t|x) ‖ p(t))

)
(1)

Usually, the expectation is estimated as an average
over all instances x(i). To ensure that each class has
the same influence on the score result, we replace the
average by the following weighted average scheme:

IS≈ exp

(
1
C

C

∑
c=1

1
Nc

Nc

∑
ic=1

DKL(p(t|x(ic) ‖ p̂(t))

)

p̂(t) =
1
C

C

∑
c=1

1
Nc

Nc

∑
ic=1

p(t|x(ic)).

(2)

Hence, we first calculate an average over the Nc
instances within each class c then an average over the
C class averages. Thereby, we avoid domination of
the score result by classes with many instances. We
calculate the IS on 10 Inception v3 models (Szegedy
et al., 2016) trained on XR

train and average the IS re-
sults, since the IS is reported to show high variances
between different training runs(Barratt and Sharma,
2018). The training procedure is identical to the pro-
cedure used in 5.4. In the same manner of the IS,
we modify the BCIS and WCIS by assuming that the
class priors are equally distributed, i.e. p(c) = 1

C .

Table 2: Inception scores and FID scores (compared to XR
val)

for different datasets.

Dataset IS BCIS WCIS FID BCFID WCFID
XR

test 3.30 2.81 1.28 0.14 0.06 0.42
XG

U-Net 2.22 1.64 1.35 41.38 37.93 51.76
XG

StarGAN 2.20 1.48 1.49 61.00 60.11 74.30

XR
test achieves significant higher scores than both

synthetic datasets, while scores of XG
U-Net and XG

StarGAN
only differ on a minor level (cf. Table 2). Note that
since we modified the final Inception v3 layer to pre-
dict 4 classes, the IS has an upper bound of 4 instead
of 1000 (Barratt and Sharma, 2018).

5.2.2 Fréchet Inception Distance

To compare real and synthetic images on a feature dis-
tribution level, we use the Fréchet Inception distance
(FID)(Heusel et al., 2017). The FID is defined as the
Fréchet distance between the (assumed) normal dis-
tribution of Inception v3 feature vectors with mean
vectors µR, µG and covariance matrices ΣR, ΣG from
real and generated data, respectively:

FID = ‖µR−µG‖2
2 +Tr

(
Σ

R +Σ
G−2(ΣR

Σ
G)

1
2

)
(3)

Analogous to our modification of the IS, we adapt the
estimate of the mean vector µ̂ and the covariance ma-
trix Σ̂ to

µ̂ =
1
C

C

∑
c=1

1
Nc

Nc

∑
ic=1

f (x(ic)), (4)

and

Σ̂m,n =

N
(N−1)C

C

∑
c=1

1
Nc

Nc

∑
ic=1

( f (x(ic))m− µ̂m)( f (x(ic))n− µ̂n),

(5)

with f (x) denoting the extracted feature vector of an
instance x and N the total number of instances in the
dataset. In the same manner, we modify the BC-
FID and WCFID by assuming that the class priors are
equally distributed, i.e. p(c) = 1

C . To obtain feature
vectors relevant for the use case, we extract them from
an Inception v3 models trained on XR

train instead of the
original model trained on ImageNet(Szegedy et al.,
2016; Deng et al., 2009) and average the score results
from 10 different training runs. As a reference dataset
representing the real data we use XR

val. The FID scores
(cf. Table 2) indicate that both synthetic datasets dif-
fer significantly from the real dataset in terms of fea-
tures, while the feature distribution of XG

U-Net is more
similar than the one of XG

StarGAN.
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Figure 7: Feature distribution mapped in 2D using UMAP.

5.3 Evaluation of Distribution

The FID only compares datasets in terms of an esti-
mated normal distribution over the extracted feature
vectors. However, the assumption of a normal dis-
tribution is not always justified. To further investi-
gate the feature distributions of our real and synthetic
datasets, we extract for all datasets the feature vec-
tors from an Inception v3 model trained on XR

train and
map them into two-dimensional space using UMAP
(McInnes et al., 2020). The UMAP embedding is
learned on the features of XR

full. Instances are plot-
ted in random order to prevent a biased representation
due to a specific class-order within the instances.

The scatter plot of the reduced features (cf. Fig-
ure 7) reveals that, although there are notably differ-
ences between the cluster boundaries, there is a strong
correlation between the feature distributions of real
and synthetic data. Our synthetic images do not cover
the full real data distribution, which can be partly ex-
plained by three main factors: the scarce training data,
which do not cover all parts of the distribution ade-
quately, the generator model, which possibly is not
able to learn certain features from the training data,
and our segmentation map generation method, which
only allows to generate simple segmentation maps.
The latter might also be an explanation for the un-
sharp cluster boundaries, as we deliberately created
segmentation maps close to the class boundaries in
order to generate hard samples and increase the aug-
mentation effect of the synthetic data.

We also tried to create the same scatter plots with
feature vectors extracted from the original Inception
v3 model trained on a ImageNet, but UMAP failed to

Figure 8: Accuracy and precision for different values of τ.

produce a cluster structure. This can be interpreted
as a lack of information in the extracted features and
corroborates our decision not to use this model for the
FID.

5.4 Evaluation on Classification Use
Case

We consider a test with the use case as the most im-
portant evaluation method, as the most realistic im-
ages might be worthless if they do not serve the use
case and even the least realistic images might have
benefits for specific applications.

With regard to our quality assurance use case, we
set up a classification task based on the error classes
of our training dataset. To keep it consistent with the
GAN scores, we use the Inception v3 model and train
it on XR

train,min to create a baseline. To improve the
baseline and demonstrate that our synthetic images
exceed the usage of vanilla image augmentations, we
apply flipping, rotations, and colour augmentations
during training. The training procedure, i.e. learn-
ing rate adaptation and fine-tuning, is completely au-
tomatised and kept constant through all experiments
to minimise human bias on the results. The real train-
ing data is augmented by sampling a fixed fraction τ

of training instances from the augmenting synthetic
dataset (XG

U-Net or XG
StarGAN). From each training run,

the model with the highest accuracy on XR
val is used.

We measure accuracy and precision of the trained
model on XR

test and average the results over 10 train-
ing runs, as they slightly vary depending on parameter
initialisation and training sample selection. Figure 8
summarises our results for different values of τ. Note
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Figure 9: Confusion matrices of Xtrain,min from left to right:
no augmentation (τ = 0), augmented with XG

U-Net (τ = 0.8),
augmented with XG

StarGAN (τ = 0.8).

that we calculate accuracy and precision from a con-
fusion matrix, that is normalised over rows, to avoid
bias by many instances in certain classes.

Our results confirm that our synthetic images can
significantly improve the performance of a classifier
when being used as data augmentation. The actual
performance improvements depend less on the gen-
erator architecture as on τ. We found that for both
datasets the peak performance is achieved at τ = 0.8.

Moreover, the (normalised) confusion matrices
show that the recall improved for every class when
synthetic data augmentation was applied during train-
ing, while augmentations with XG

U-Net and XG
StarGAN

lead to comparable results despite of their different
scores in 5.2 (cf. Figure 9). We find that the con-
fusion matrix is the better alternative to the inception
scores in order to evaluate class-conditional GANs, as
it takes into account the correct/conditional class of
an image and breaks down the scores of results within
the different classes.

6 CONCLUSION

In this work we showed that GANs can effectively be
used to generate synthetic FRP images for the purpose
of data augmentation in a data scarce environment.
In our implementation we adapted BicycleGAN and
tested two generator architectures, namely Extended
U-Net and StarGAN v2. We were able to achieve the
goal of generating realistic textile images with both
architectures.

The generated images in this work are thoroughly
validated in four different ways. Firstly, a qualitative
visual inspection was performed to judge the realism
of the generated images. Secondly, two scores were
implemented, namely IS and FID with their respective
class-conditional versions, to add an objective quanti-
tative inspection. Thirdly, the distribution of original
and synthetic images were compared in terms of their
feature clustering structure using UMAP. It was found
that the synthesised images share a high overlap with
the real images, but do not cover the distribution of

the real images and are therefore less varied. Lastly, a
classifier was trained to predict the type of error found
in the images, where using a mix of real and synthe-
sised data significantly improved the performance of
the classification model.

In future work, we plan to extend our approach
to three-dimensional weaves. This would emphasise
the effects of certain defects, such as ondulations and
folds, which would require either 3D segmentation
maps, or a combination of 2D segmentation from dif-
ferent angles. The output of such model could be 3D
textile objects. Furthermore, we want to explore dis-
entanglement learning methods for generative models
to remove the necessity of segmentation maps for a
controlled synthesis of FRP images.

With our contribution we show that generative ad-
versarial networks are usable in an industrial use case
of manufacturing FRP. They are capable to learn high-
level feature representations of the observation from
which they synthesise new realistic and useful im-
ages. In order to further investigate the learned repre-
sentations in the future, we believe that feature disen-
tanglement methods may unravel meaningful knowl-
edge about the underlying manufacturing process.
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