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Abstract: Autonomous driving is emerging as a useful practical application of Artificial Intelligence (AI) algorithms 
regarding both supervised learning and reinforcement learning methods. AI is a well-known solution for some 
autonomous driving problems but it is not yet established and fully researched for facing real world problems 
regarding specific situations human drivers face every day, such as temporary roadworks and temporary signs. 
This is the core motivation for the proposed framework in this project. YOLOv3-tiny is used for detecting 
roadworks signs in the path traveled by the vehicle. Deep Deterministic Policy Gradient (DDPG) is used for 
controlling the behavior of the vehicle when overtaking the working zones. Security and safety of the 
passengers and the surrounding environment are the main concern taken into account. YOLOv3-tiny achieved 
an 94.8% mAP and proved to be reliable in real-world applications. DDPG made the vehicle behave with 
success more than 50% of the episodes when testing, although still needs some improvements to be 
transported to the real-world for secure and safe driving.  

1 INTRODUCTION 

In recent years, AI is becoming highly researched 
regarding autonomous driving (Arcos-García et al., 
2018b; Chun et al., 2019). Researchers are constantly 
studying ways to make autonomous vehicles reliable 
in the context of real-world applications (Kaplan 
Berkaya et al., 2016; Lim et al., 2017). In some 
situations, it might be required to have temporary 
road signs which by default can alter the previously 
standard regulation. The new temporary road signs 
can overlap the normal road rules and therefore the 
vehicles must ignore the standard rules and follow the 
specific ones. Recently, some studies have been 
conducted in regard of this subject, namely in 
Formula Student competition (Svecovs & 
Hörnschemeyer, 2020), however, there is still a gap 
in scientific research (Liu et al., 2021).  The majority 
of the solutions do not necessarily use supervised 
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Figure 1: Detection of the roadworks signs and vehicle’s 
movement control. 

learning and reinforcement learning combined. This 
project combines YOLOv3-tiny and DDPG for 
solving roadworks signs detection and the vehicle’s 
behavior control in those real-world situations. Both 
use neural networks, although in different contexts. 
Figure 1 presents the detection module and the 
planning of motion in real-time. 
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The system receives sensorial information 
through a strategic camera and 16 sensors placed at 
the front of the vehicle. This solution does not require 
hard transformations to the chassis used in common 
vehicles, making it more suitable for manufacturers 
to apply the concepts. 

Usually, authors present two main approaches for 
autonomous driving problems which are end-to-end 
and modular (T. Ribeiro et al., 2019; Huang & Chen, 
2020; Yurtsever et al., 2020). This project follows the 
second approach in order to simplify the complexity 
of the problem. In case of system fail or upgrade 
system components, maintenance becomes a simpler 
task. The main tasks that the framework is supposed 
to handle are: a) to process the detection of temporary 
roadworks signs (object detection); b) to process the 
data from the previous task commanding the vehicle 
(Behavior Plan and Control) to act (Actuator) the 
optimal way for the current state of the environment. 
Figure 2 portrays the proposed framework. 

 

Figure 2: Project modular-based approach and 
implementation of the autonomous driving framework. 

YOLOv3-tiny can detect multiple objects from 
different classes at high frame rates. This is crucial for 
maintaining the security and safety, since good 
reflexes are expected from a human driver as well. 
The vehicle also needs to be able to perform and 
behave with efficiency and precaution. Many pieces 
of research use deep reinforcement learning to 
accomplish that performance (Sallab et al., 2017; 
Kiran et al., 2021) and so DDPG is chosen for this 
project. DDPG is suitable for real-world complex 
robotic tasks and it uses neural networks to learn from 
the environment and deploy the best vehicle behavior 
it can achieve. For that, it chooses the action that leads 
to the best reward achievable. This paper is composed 
by a brief introduction of YOLOv3-tiny, the dataset 
on which it was trained, a summary of DDPG and its 
configuration, the simulation environment used, how 
the communication was made between the framework 
modules as well as the final results and the 
correspondent conclusions. 

2 YOLOv3-tiny 

YOLOv3-tiny (Adarsh et al., 2020) is an one-stage 
object detection algorithm proposed by J.Redmon 

(Redmon & Farhadi, 2018) which focus on high 
frame rates, taking advantage of YOLOv3 best 
features. The architecture of YOLOv3-tiny is mainly 
composed by convolution layers followed by max-
pooling layers to perform feature extraction from the 
input images divided into SxS grid cells. YOLOv3-
tiny is fast because it operates only at two different 
map scales which are 13x13 and 26x26, for 416x416 
input images. It is able to detect medium-large objects 
since for those scales small objects remain 
undetectable. 

For predicting the bounding boxes, YOLOv3-tiny 
uses the same concepts of YOLOv3. It relies on the 
use of anchor boxes to indicate the algorithm possible 
locations of the objects that it is trying to detect. The 
anchor boxes can be changed according to the dataset 
in which YOLOv3-tiny is trained. The predicted 
bounding box coordinates are calculated by the offset 
between the predicted bounding box and the anchor 
boxes. Finally, a threshold is used as a filter to 
eliminate the bounding boxes that have low accuracy 
and therefore are not useful to classify objects. The 
remaining bounding boxes are excluded using Non-
Maximum Suppresion (NMS). It uses Intersection 
over Union (IoU) for evaluating how coincident the 
predicted bounding boxes are to the ground truth 
bounding boxes and remove the least coincident ones. 

3 DATASET OF YOLOv3 

The dataset used for training YOLOv3-tiny contains 
1252 photos with four objects randomly applied: 1) 
Street cone; 2) Roadworks sign; 3) Road Separator; 
4) Red and White Tape. These objects are presented 
in figure 3. 
 
 
 
 
 

Figure 3: The four objects used in the dataset. 

The datasets found for these objects are not many, 
these also lack in quality and have poor 
diversification. To make up for these flaws, a new 
entire dataset was built from scratch and every image 
was tweaked to be different from the one behind and 
after it. The goal was to avoid unnecessary 
correlations between the images. Every image differs 
in number of signs, different types of signs, hue, 
saturation, brightness, shadows, object size, 
perspective, contrast, color temperature, blur, noise, 
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distortion and light conditions. Figure 4 shows some 
examples. 

Figure 4: Examples of images picked directly from the 
dataset. 

This extra work resulted in gradual improvements 
in the algorithm response as it is described in the 
Results section. The LabelImage Tool was used to 
label the entire dataset images. Figure 5 shows how 
the images were labeled. 

 

Figure 5: Signs surrounded by bounding boxes manually 
applied, also known as labelling. 

Some signs were intentionally positioned in the 
image to teach the algorithm to ignore them, so they 
are not labeled. One of YOLOv3-tiny advantages is 
that it does not require a large dataset to show good 
results. Approximately 2000 images were used to 
make the algorithm reach an mAP above 90%. 

4 DEEP DETERMINISTIC 
POLICY GRADIENT (DDPG) 

DDPG is the brain behind the vehicle actuator. It is a 
model-free, off-policy and actor-critic based model 
that uses a deterministic policy and deep neural 
networks to improve the actions of the vehicle in a 
way that leads to obtain the maximum rewards that it 
can achieve in a certain environment. The authors 
(Lillicrap et al., 2016) presented it as a solution to 
Deep Q-Networks limitations regarding the 
continuous domains. The main characteristics of this 
algorithm makes it a good fit in the autonomous 
driving field where the environments typically are 
continuous, complex and there is no environment 

model previously known (Wang et al., 2018). DDPG 
relies only in experience and trial-and-error. At first, 
the trial-and-error based training can be exhaustive 
but once the algorithm starts learning it results in very 
robust solutions. Figure 6 represents the DDPG 
architecture. 

 

Figure 6: DDPG Structure. 

Actor-Critic based methods like DDPG use neural 
networks so the policy can predict actions, called a, 
for the incoming states, called s, with the main goal 
of obtaining the optimal Q pair. Since there is no 
reference or labeled dataset that indicates what is the 
optimal pair, DDPG uses target networks to estimate 
the optimal value for the next state, called Q_target. 
It is possible to find what is the optimal Q, called y 
(in figure 6). Q must converge to y and the target 
networks cannot be regularly updated like the original 
ones otherwise Q_target would change a lot on each 
step and thus it would be difficult to converge Q. So, 
the target network is fed with weights that are softly 
updated. 

The optimal behavior for the vehicle is established 
by a reward system so that in exploitation, the policy 
learns what are the actions highly rewarded according 
to a certain state. The reward system created in this 
work is expressed as: 

reward = A * speedinstant – B * distancefinish_line 

– C * ∆angledirection – D *step 
(1) 

Where speedinstant is the current speed of the 
vehicle, the distancefinish_line is the distance between 
the vehicle and the finish line, the ∆direction is the 
vehicle’s changing of direction and the step is a 
counter in every episode to ensure the vehicle 
executes the path in the shortest time possible. A, B, 
C and D are coefficients used to adjust the impact of 
each variable of the reward function, depending on 
the vehicle’s behavior. 

Regarding the state space and action space of 
DDPG, they are respectively the following: 

S = {intersectionmatrix, distancefinish_line} (2)

A = {steeringapplied, speedapplied} (3)
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In the state space, the intersectionmatrix is a matrix 
of 16x3 dimensions and is the result of the visual 
processing applied to every frame of the simulation. 
The distancefinish_line is the same variable as the one in 
the reward system. In the action space, the 
steeringapplied and the speedapplied are the steering and 
speed commanded to the actuator, respectively. 

The origin of the intersectionmatrix is shown in 
figure 7. One can see a set of 16 line segments rooted 
in a single point in the lowest center of the frame. 
These are separated by an angle of 12 degrees in the 
interval of 180 degrees. 

 

Figure 7: Image processing applied in a frame. 

The line segments serve as a simpler orientation 
for DDPG to know where the obstacles are and react 
quickly to avoid them, rather than computing the local 
coordinates of the objects detected. For instance, 
every time a cone intersects one of the 16 line 
segments, the line segment turns red and a flag is 
generated and stored in the first column of the matrix 
(and in the line correspondent to the line segment 
number) that will be fed into the neural network. In 
the second column of the matrix, it is stored a value 
between 0 and 1, which corresponds to the distance 
of the intercepted cone to the vehicle, calculated by 
using visual processing techniques. In case more than 
one cone intersects the same line segment, only the 
nearest one is considered. On the other hand, if a line 
segment is not intercepted by any cone, the distance 
value is set to 1. To contextualize, 1 is estipulated as 
an unreachable distance so it is the distance value 
assigned to the cases where the line segments are not 
intercepted. 

The third column considers what line segments 
are intercepted by the target. To achieve that, 
proximity sensors were introduced (figure 8). 

 

Figure 8: Sensors placed in the vehicle. The line of the 
sensors blink yellow when intercepting the target. 

The sensors were disposed following the same 
orientation of the 16 line segments displayed in the 
frame. This allows to map the target flags with the 
correspondent line segments in the matrix. The goal 
of the sensors is to give the vehicle an insight into the 
position of the target, mainly in accentuated curves, 
where the camera cannot see the target. Besides the 
target, all other objects remain invisible for the 
sensors. Table 1 shows a resulting matrix example. 

Table 1: Matrix generated by the processing applied to the 
figure 7 captured frame. 

Line 
Number 

Intersection Distance 
(%) 

Target 

1 0 1.0 0 
2 0 1.0 0 
3 0 1.0 0 
4 0 1.0 0 
5 1 0.39 0 
6 1 0.53 0 
7 1 0.63 0 
8 0 1.0 1 
9 1 0.73 1 
10 1 0.725 0 
11 0 1.0 0 
12 1 0.4 0 
13 0 1.0 0 
14 0 1.0 0 
15 0 1.0 0 
16 0 1.0 0 

To analyze table 1, one must look at figure 7 and 
count the line number from the right to the left (the 
same orientation of the unit circle). In this work, 
proximity sensors are used for detecting the target, 
although in real world the target coordinates are 
known. 
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5 SIMULATION ENVIRONMENT 

CoppeliaSim was the simulator chosen to build the 
environment and test the algorithms. The virtual 
space contains a car and two arrays of cones. In 
addition, there is a starting line and a finish line. The 
vehicle length is approximately 0.8 meters and the 
distance of the track is about 5 meters. These 
dimensions were chosen according to the scenarios 
proposed by Festival Nacional de Robótica 
competition (Portuguese Robotic Festival). Figure 9 
shows two of the main paths used to train and test the 
system. The goal of the agent was to command 
actions to the vehicle through the analysis of the 
scenario using the camera which is strategically 
placed in the top center of the vehicle’s roof. 

 
 
 
 
 
 

 

 

Figure 9: Environment used for training and testing the 
vehicle. A curve path and a double curve path, respectively. 

When the DDPG episode starts, it automatically 
starts the environment and sends the variables to the 
car to start moving. The episode ends when the 
vehicle  reaches the finish line, is outside the limits, 
stops or crashes against a cone. To improve the 
algorithm training and reliability, in every episode the 
vehicle starts at a random orientation, between ± 30 
degrees. This ensures that the algorithm does not 
overfit or becomes partially biased by its initial 
position. 

6 SYSTEM COMMUNICATION 

Communication between the modules in the 
simulation environment is achieved by using the 
Robotic Operating System (ROS). In figure 10, two 
diagrams represent the messages that are sent or 
received along with the corresponding publisher or 
subscriber nodes, respectively. The diagram a) is a 
brief representation to better interpret what 
information is required to be sent and received. It is a 

simple representation of the diagram b) adapted from 
a ROS tool, rqt_graph. 

 

a) 

 
b) 

Figure 10: ROS structure. 

Following the bottom diagram, the topic “/image” 
receives the frames captured by the vehicle’s camera 
and sends it to the YOLOv3-tiny node (called 
“distance_offset_node”). After YOLOv3-tiny 
processes that frame, it sends the matrix with the 
intersected lines to the DDPG node (called 
“talker_and_listener”) through the “/my_yolo_topic” 
topic. After DDPG obtains the relevant information 
regarding the environment’s state space, it sends the 
proper action space to CoppeliaSim through 
“/my_ddpg_topic”, receiving it in the 
“sim_ros_interface” node. This node is also 
responsible to send three important variables for 
DDPG processing using three topics: 1) “/chatter” 
sends the instant speed; 2) “/final_pos_distance" 
sends the distance to the final line; 3) “/target_pos” 
sends the sensors flags triggered when encountered 
the target. ROS is operating at 5 Hz for all modules 
due to YOLOv3-tiny processing time. 

7 RESULTS 

The system was implemented, trained and tested in an 
Asus laptop with Intel Quad-Core i5, 2.30GHz, 
Nvidia Geforce 940M GPU using Ubuntu 18.04.5 
LTS 64-bit as the Operating System. For the 
programming environment the main language was 
Python alongside libraries such as OpenCV, 
Tensorflow and Keras. YOLOv3-tiny was trained in 
Google Colab due to its computational power. The 
following list shows the training hyperparameters for 
YOLOv3-tiny along with the chosen values: Number 
of epochs = 100; Dataset split = 80% training / 20% 

0.8m 

5m 
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testing; Learning Rate = 0.0001; Batch Size = 4; 
Kernel Regularizer = 0.001; Leaky ReLU (alpha) = 
0.3; Data Augmentation = On ; Input image resolution 
= 416x416; IoU loss threshold = 0.5; Non-Maximum 
Suppression (sigma) = 0.3; Score threshold = 0.3; IoU 
threshold = 0.45. 
Anchors = [[[10,  14], [23,    27], [37,      58]], 

              [[81,   82], [135, 169], [344, 319]], 
              [[0,       0], [0,         0], [0,        0]]]; 
Every value was chosen regarding the 

hyperparameter properties and what value represents 
the best equilibrium of what it can offer. The most 
relevant optimizations were made in the dataset. 
Images were added and changed gradually as the 
performance of the algorithm was registered. Table 2 
reports the results obtained when optimizing the 
dataset gradually with the goal of improving 
performance. 

Table 2: YOLOv3-tiny training results. 

Training mAP FPS Dataset 
Images 

1 88% 10 553 

2 74% 29 1300 

… … … … 

9 93.1% 30 1090 

10 93.0% 26.9 1090 

11 93.7% 27.2 1110 

12 91.5% 26.2 1110 

… … … … 

16 93.1% 26.5 1231 

17 94.8% 26.4 1252 

Analyzing the table, one can see the worse result 
in the second train with mAP of 74%. This value was 
caused by the shape inconsistency of the red and 
white tape. Table 3 shows the details about the AP of 
the red and white tape which proved to be the cause 
of the mAP lowering. This tape proved to be 
incredibly volatile regarding the deformation it 
presents on every situation. Sometimes random and 
similar objects mislead the algorithm and for that 
reason it was replaced by the road separator. 

Table 3: Red and White Tape training results. 

Object Cone Sign 
Red and 

White Tape 

AP 85.4% 100% 35.4% 

For the next trainings the red and white tape was 
disused due to low detection accuracy. Multiple 
trainings were carried out to analyze the impact of 
some changes and improvements in the algorithm 
with proper testing between every training. Finally, 
the best results were obtained in training number 17. 
Table 4 shows the details. 

Table 4: Best training YOLOv3-tiny results. 

Training Cone AP Sign AP Divider AP 

16 84.1% 99.3% 95.8% 

17 86.7% 99.3% 98.5% 

Figure 11 shows the loss obtained in the 17th training. 
The training loss is calculated for every step whereas 
the validation loss is calculated every epoch. The 
results show that the model is not overfitting. 

 

 

Figure 11: Results of YOLOv3-tiny training loss. 

At this point, the dataset was already good and 
then the hyperparameters were slightly changed in 
order to obtain some minor improvements. Those 
changes didn’t result in better performance so the 
values remained the same. Figure 12 combines four 
samples from real-world YOLOv3-tiny testing. The 
real-time detection was performing at approximately 
12 FPS so the testing video was stuttering. To avoid 
that, the detection was made every other frame and 
the capturing frame rate increased to approximately 
25 FPS, as shown on the top left corner of the samples 
of figure 12. 
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Figure 12: YOLOv3-tiny test with images captured from 
real world. 

In DDPG training, the exploration starts randomly 
and so the algorithm results depend on the exploration 
success. The list of hyperparameters along with its 
chosen values is next described: Number of epochs = 
100; Actor Learning Rate = 0.001; Critic Learning 
Rate = 0.0001; OU theta = 0.15; OU sigma = 0.2; 
Minibatch size = 64; Buffer size = 10000; Tau (used 
to update target networks) = 0.001; Gamma= 0.99. 
The neural networks of the DDPG approach consist 
of two hidden layers with 400 and 300 neurons 
respectively, with ReLU activation. follows the same 
principle, using an output layer to compute the action 
space for the actor network and the Q(s,a) pair for the 
critic network. More than a hundred trainings were 
performed and figure 13 shows the best results 
achieved. 

 

Figure 13: DDPG training and testing results obtained in 
two different paths. 

The top left graph represents the training for a 
curved path and the bottom left graph represents the 
correspondent test made. On the right side, the same 
is true but for a double curved path. Both training and 
testing graphs have a positive evolution along the 
episodes. However, the training performance drops at 
60 epochs on the curved path, and after the 80 epochs 
for the double curved path. This phenomenon 
occurred quite frequently and shows that DDPG can 
unlearn the knowledge previously acquired. 

To make sure the weights generated are not faulty 
based on that phenomenon, checkpoints were 
introduced to save them on the best learning point, 
calculating the mean reward of the last 50 epochs. In 
the case of the double curved path, once it reaches the 
peak reward at 80 epochs, the mean value will be 
higher and thus it will be the last checkpoint where 
the weights are saved. Both testing graphs show an 
average reward above 6. Therefore, most times it 
performed the path with success, since approximately 
every reward value of 10 represents the episode 
completed with no faulty behaviors. Also, both 
graphs show a negative peak almost at the end. The 
negative peak, marked by a yellow dot, does not mean 
that the vehicle did not go to the final line. Often 
means that the vehicle decided to move very slowly 
in the middle of the episode and the step variable on 
the reward system ensures it gets penalized for it. 
These peaks cannot be avoided since the algorithm 
needs them to know that it is not a desirable behavior. 
Figure 14 shows the vehicle completing the course 
without any faulty behaviors, although as previous 
graphs prove, this does not happen in 100% of the 
cases and thus, it is still recommended for simulation 
purposes only. 

 

Figure 14: Demonstration of the vehicle using the 
implemented system and completing the path. 
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8 CONCLUSIONS 

This project intended to show a proof of concept of 
what can be achieved by integrating two different 
types of neural networks learning methods regarding 
autonomous driving. These cooperate and interact 
with the environment where the system is trained and 
tested. YOLOv3-tiny was used for detecting 
roadworks signs and proved to have an mAP above 
90%, so it is a good choice for real situations, 
especially in autonomous driving where processing 
speed is a major concern for maintaining safety. 
DDPG was used for controlling the vehicle’s 
behavior and showed to be well-qualified when 
handling complex environments in simulation, since 
it achieves the intended goal more than 50% of the 
trials. At this point, it would not be recommended to 
apply the system in real world yet, since it does not 
perform as it should in 100% of the cases and that can 
compromise the safety of the surrounding 
environment or the passengers. The future work must 
consist of continuously improving the two learning 
methods to a point where both accuracy and safety are 
reliable enough to transfer this autonomous driving 
system to the real world. 
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