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Abstract: Autonomous vehicles rely on a variety of sensors for accurate perception and understanding of the scene.
Behind these sensors, complex networks and systems perform the driving tasks. Data from the sensors is
constantly perturbed by various noise elements, which compromises the reliability of the vehicle’s perception
systems. Sensor fusion may be applied to overcome these challenges, especially when the data from the
different sensors lead to contradicting results. Nevertheless, weather conditions such as rain, snow, fog, and
direct sunlight have an impact on the quality of sensor data, in different ways. This challenge has not been
studied in depth, according to the best knowledge of the authors. Accordingly, this paper presents an extensive
study of perception systems under different weather conditions, using real-life datasets (nuScenes and the
CADCD). We identify a set of evaluation metrics and study the quality of data from different sensors in
different scenarios and conditions. Our performance analysis produces insight as to the proper sensor mix that
should be used in different weather conditions.

1 INTRODUCTION

Automated Driving Systems (ADSs) promote the
highest safety standards on the roads. According to
the definition of levels of automation by the Society of
Automotive Engineers (SAE), the highest automation
level (level 5) requires full understanding of the en-
vironment through sensors. The camera (monocular
or stereo) is considered the main sensor in ADS and
is usually accompanied with other sensing modalities
such as lidars and radars, which are capable of depth
estimation and 3D mapping.

Data from these sensors is either processed inde-
pendently or through fusion by the vehicle’s percep-
tion systems. This data is constantly perturbed by
naturally occurring noise elements, which reduces the
quality of the data and often leads to unreliable results
from the perception systems. Harsh weather con-
ditions lead to compounded effects, leading even to
completely blind perception in some scenarios. How-
ever, sensors are not affected in the same way by dif-
ferent weather conditions. For example, direct sun-
light has a negative impact on cameras but radars are
unaffected. Rain and snow have a negative impact
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on cameras and lidars, but radars are not affected as
much. Fog may reduce the visibility of cameras but
not lidars and radars.

Accordingly, it is important to have an accurate
evaluation of the quality of sensor data in different
conditions, in order to identify the proper sensor mix
that should be used in real-time. This is especially
important in sensor fusion, where compromised sen-
sor data may lead to contradicting results.

This paper presents an in-depth examination of
the performance of perception systems in different
weather conditions. We consider different sensors
such cameras, lidars, and radars, and we evaluate the
quality of the data from these sensors individually and
in fusion systems. We identify a comprehensive list of
metrics that evaluate the performance of the sensors
themselves as well as the perception systems. Our
evaluation produces significant insight into how the
quality of sensor data degrades in different conditions.
We use the nuScenes dataset and the Canadian Ad-
verse Weather Conditions Dataset (CADCD) for our
performance analysis, as it includes a variety of sce-
narios and weather conditions that are of interest to
our study.

The remainder of this paper is structured follows:
In Section 2 some preliminary knowledge needed to
understand the work in this paper will be introduced.
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Section 3 presents the methodology of the work and
the details of our study. Following this, the results
of the work and discussed. Finally, the paper is con-
cluded in Section 5.

2 LITERATURE REVIEW

This section discusses multiple studies on the effects
of adverse weather conditions on sensor modalities.
Among them, (Heinzler et al., 2019) produced a thor-
ough analysis on the effects of harsh weather condi-
tions such as heavy rain and dense fog on lidar per-
formance. The authors also propose an approach to
detect and classify rain or fog only through the use
of lidar sensors. Results indicate mean union over in-
tersection of 97.14%. (Peynot et al., 2009), also pro-
vided insight on weather effects by recording a dataset
using camera, infrared camera, lidar, and radar sen-
sors in harsh environments. Results indicate that lidar
performs poorly in comparison to radar. Here, ob-
ject detection was used as a benchmark for evaluat-
ing sensor performance. (Hendrycks and Dietterich,
2019) perform bench-markings of object detectors
on images from a camera containing a multitude of
adverse weather conditions and found an approach
to improve robustness to such adversity. (Michaelis
et al., 2019) also, provided a benchmark of object de-
tectors on camera images containing adverse weather
conditions. Results indicated a decrease in model per-
formance from 60% to 30% of the original perfor-
mance. They also proposed a technique to pre-process
the images, thus increasing performance by a substan-
tial amount. (Lee et al., 2018) combined the data from
lidar, camera and GPS to create a real-time lane detec-
tion system, robust to adverse weather.

(Tang et al., 2019) proposed an autonomous sys-
tem capable of performing both localization and clas-
sification on a 5G network, with localization perform-
ing at 18 fps and classification at 10. However, the
used modalities were not diverse enough.

In this work, multiple sensor modalities will be
tested on the multitude of weather conditions. Also,
all weather conditions in the previous works were em-
ulated in some form or another. For example, (Bijelic
et al., 2018) tested on fog, from a fog chamber, and
not on the actual road. In this work, testing is done on
weather conditions recorded on the open road, where
cars and pedestrians are present. Finally, this work
will investigate the best efficient use of the sensor
configuration based on the weather situation.

Figure 1: Flowchart for autonomous sensor activa-
tion/deactivation.

3 METHODOLOGY

The aim of this work is to assign the best perform-
ing sensor modality to a certain weather condition that
will perform with the best efficiency.

Therefore, given a certain weather condition,
computational requirements and power consumption
can be reduced by keeping the best performing mix of
sensors active, while deactivating the weaker ones. A
flow of the system can be seen in 1. The weather con-
ditions upon which sensor configurations were tested
include cloudy , rain, and snow.

A virtual architecture in which a car is equipped
with 5 different sensors is introduced: 1. A single
monocular camera at the front, 2. A lidar on the roof
of the car, 3. A radar at the front located, 4. An IMU
and a GPS.

3.1 Identifying the Best Sensor
Configuration per Weather
Condition

In order to produce quantifiable comparison results
for the sensors, different object classification models
are used, in which each model would be assigned as a
representative for a sensor mix. Therefore, the accu-
racy shown by the model in a certain weather condi-
tion would be used to quantify the performance of the
sensor mix in that weather condition.

3.1.1 Choice of Sensor Mixes

In this section, the utilized sensor mixes will be dis-
cussed.
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The first sensor mix involves the early fusion be-
tween the camera and the lidar sensors. The reason for
this is to compensate for the camera’s lack of depth
and difficulty in estimating 3D dimensions. The rea-
son why early fusion was chosen was because it re-
tains all data between the two sensors, unlike late fu-
sion which may lose features.

The second sensor setup is composed of a cam-
era and the third sensor setup is a single lidar. This
is to test their individual performance and compare
them to early fusion approaches. The objective here
is to evaluate whether noise on one sensor may signif-
icantly degrade early sensor fusion models, leading to
even worse performance than individual sensors.

The final sensor mix is the middle fusion between
camera and radar. The radar is the only sensor unaf-
fected by weather conditions due to its use of radio
signals. However, its data is far too sparse to be used
on its own and must be fused with a different modal-
ity to add resolution. The camera was chosen as that
modality, as it has the highest resolution among all
sensors and can therefore compensate for the radar
pointcloud’s low resolution, while providing the cam-
era with depth perception.

The full camera-lidar-radar fusion was not pro-
posed, as it contradicts the purpose of the paper which
is to deactivate sensors for the goal of limiting com-
putation.

3.2 Datasets Used

Adverse weather conditions are rare to come across
in most datasets. This is especially prevalent
in the state-of-the-art datasets such as, PASCAL
VOC(Everingham et al., 2010) and KITTI(Geiger
et al., 2012) which are recorded in clear weather con-
ditions. Even nuScenes contains only one of the three
weather conditions desired for evaluation, which is
rain. In order to cover the three weather conditions
needed for generalization, a third dataset was used
known as the Canadian Adverse Driving Conditions
Dataset (CADCD). In this section, the datasets used
in this work along with their purpose are covered as
follows:

1. KITTI: Around 550 samples from the official
KITTI(Geiger et al., 2012) validation split were
chosen in an attempt to create a balance between
the occurrences of cars and pedestrians in clear
weather conditions.

2. NuScenes: Around 1100 samples combining
rainy and clear weather conditions from the of-
ficial NuScenes (Caesar et al., 2020).

3. CADCD: Around 1650 samples combining

cloudy, rainy and snowy conditions in total from
CADCD(Pitropov et al., 2021).

3.3 Object Classification Models Used

For evaluating the accuracy of the 4 sensor mixes in-
cluded in this paper, 4 different object classifiers uti-
lizing different modalities were chosen. All the mod-
els chosen are capable of achieving state-of-the-art
accuracy in comparison to others utilizing the same
sensor(s). The assignments are as follows:

• Lidar(Only)—SECOND(Yan et al., 2018): De-
fault settings set by mmdetection3D (Contribu-
tors, 2020).

• Camera(Only)—Faster R-CNN(Ren et al., 2015):
Default settings set by mmdetection (Chen et al.,
2019).

• Camera-Lidar—MVXNet(Sindagi et al., 2019):
Modified to read only 32 lidar channels/rings
(CADCD(Pitropov et al., 2021) utilizes a 32-ring
lidar). The same configuration was used for evalu-
ating on KITTI(Geiger et al., 2012) for a fair com-
parison (MVXNet reads only 32 rings from the 64
emitted by the lidar used in KITTI).

• Camera-Radar—CenterFusion(Nabati and Qi,
2021): Modified the number of camera-radar
pairs to evaluate on to only 1 pair from the default
3.

3.4 Dataset Preparation

To ensure a fair quantitative comparison, all the labels
of the datasets were converted to the KITTI dataset
label format. For the CADCD case, the 3D labels
are in the format: [label, position:{x,y,z}, dimen-
sions:{x,y,z}, yaw], where label is the class of the
object, the position represents the center of the object
within the lidar frame(x,y,z), the dimensions represent
the dimensions of the cube(x is width, y is length, z
is height), and yaw is the rotation around the vertical
axis.

In KITTI, the labels are represented as:
[type, truncated, occluded, alpha, bbox:{xmin,
ymin,xmax,ymax},dimensions:{y,z,x}, location:{x,y,z},
rotationy]. The type indicates the object category
namely cars and pedestrians. Truncation refers to
the object exiting the image boundaries. Occlusion
indicates how obstructed an object is. It is of no
relevance as the CADCD was recorded without
taking occlusion into account. Thus, it is set to
”fully visible” during conversion for all objects. The
alpha refers to the observation angle of the object
and it is between −π and π. Bbox represents the
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2D bounding box around an object using xmin, ymin,
xmax, ymax. Dimensions represent the 3D dimensions,
however the ordering of the dimensions is different,
whereas the order in the CADCD was width(x),
length(y), height(z), and the ordering used by KITTI
is height(y), width(z), and length(x) for representing
dimensions. Location is the same as the CADCD’s
position and rotationy is the same as the yaw.

Another difference between the two datasets is
the label computation. The CADCD(Pitropov et al.,
2021) computes its labels and calibration matrices
with respect to the lidar frame, whereas KITTI(Geiger
et al., 2012) computes theirs with respect to the cam-
era frame. This means that the axis conventions
on which annotations and extrinsic matrices are pro-
duced are different. The axis for the lidar frame used
by the CADCD are as follows: x pointing forward, y
pointing left and z pointing up. In the KITTI dataset’s
camera frame, these are: x pointing right, y pointing
down, and z pointing forward. For visualising the cur-
rent state of the conversion, a repository dedicated to
visualizing data in the KITTI dataset was used.

From these results, it was deduced that a series of
axes transformations on the CADCD 3D labels and
the CADCD camera-lidar extrinsic matrix, would be
necessary.

3.4.1 Axes Transformation

From what is understood about the two axes con-
ventions used by KITTI and the CADCD, a trans-
formation matrix is created to be multiplied with 3D
bounding box position coordinates and the Euler an-
gles from which the extrinsic matrix is derived. It was
found that, if the CADCD axes were to rotate once
around the x-axis by pi/2 radians, followed by a rota-
tion around the y-axis by −pi/2 radians, the x would
end up pointing right, y pointing down and z pointing
forward.

These transformation matrices are then multiplied
in the order opposite to that of their creation, giv-
ing us the transformation matrix for transforming the
CADCD axes to their counterparts in KITTI.

Trans f ormMat = Rotationy ∗Rotationx (1)

3.4.2 Extrinsic Matrix Conversion

An extrinsic matrix represents the transformation be-
tween any two sensors in the 3D world, in which one
of the two is set as the reference. In order to recon-
struct the extrinsic matrix for the KITTI axes, reverse-
engineering of the current one is necessary.

In order to reconstruct the extrinsic matrix, it must
be broken down into the 3x3 rotation matrix and 3x1

Figure 2: 3D Bounding Boxes existing outside of image
viewing frustum.

Figure 3: Generation of 2D ground truth.

vector as the translation matrix. Next, the three Euler
angles(roll, pitch, and yaw) are extracted from the ro-
tation matrix. After obtaining these Euler angles, they
are stored in a 3x1 vector and the 3x3 transformation
matrix, Trans f ormMat is multiplied by them provid-
ing the new angles. Delicate fine-tuning of these two
parameters was applied to ensure a precise projection
of lidar to camera was attained on the new axes.

3.4.3 Location and Dimensions Conversion

The 3D labels must be properly aligned with the point
cloud to ensure the results are as accurate as possible.
For properly aligning the positions, the x,y, and z rep-
resenting the center of the object were stored into a
3x1 vector and once again, Trans f ormMat is multi-
plied by the vector creating new x, y, and z coordi-
nates for the new axes. Next, the dimensions needed
to be re-ordered from the CADCD’s width, length,
height to KITTI’s height, width, length.

3.4.4 BBox Calculation

2D bounding box data will be needed when eval-
uating Faster R-CNN. Unlike KITTI, the CADCD
labels do not contain 2D bounding box data, xmin,
ymin,xmax,ymax. This meant that these parameters had
to be reconstructed from the existing 3D bounding
box data. The center of the 3D bounding box out-
putted post-conversion along with the re-ordered di-
mensions, were used to output the bottom left and top
right vertices of the 2D bounding box. The generated
2D boxes can be seen in 3.
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3.4.5 Alpha and Yaw

Alpha is calculated using the standard mathematical
approach. First, the viewing frustum angle is calcu-
lated using arctan(x/z) where x is the x-component of
the center of the 3D box and z is the corresponding
z-component. Arctan(x/z) is then subtracted from the
yaw angle of the box. Rotationy from the CADCD
label is taken as is in the KITTI label. Now, the ”di-
mensions”, ”location”, ”alpha” and ”yaw” arguments
are ready. However, there was still an issue regarding
the 3D bounding boxes. The CADCD recorded their
labels via lidar so some 3D bounding boxes were lo-
cated outside the image field-of-view as can be seen
in . This was remedied using a process mentioned
below.

3.4.6 Truncation and Removing Out-of-View
Boxes

Truncation was calculated using a simple approach in-
volving the calculation of two different areas for the
bbox of an object, area-set and area-actual. For area-
set, four vertices are computed; x-min-set, y-min-set,
x-max-set, and y-max-set. X-min-set is computed, by
taking the maximum between 0 and the actual xmin of
the bbox, then taking the minimum between this max-
imum and the image/frame width. The same is done
for x-max-set, except the maximum between 0 and
the actual xmax is taken then the minimum is taken.
y-min-set and y-max-set follow the same approach in
which the maximum is taken between 0 and their ac-
tual counterparts and the minimum is taken between
the image height and the maximum. Finally, area-set
is computed by subtracting y-min-set from y-max-set
and the same is done for x then the two differences are
multiplied. What this approach does, is that in case of
truncation, it crops out the area of the bbox that is
outside the image, leaving only the area inside. The
corresponding set of areas(area-actual) is computed
for each bounding box by taking the area of the box
using the previously calculated, xmin, ymin,xmax,ymax.
Finally, the ratio area-set/area-actual is computed and
truncation is calculated by subtracting this ratio from
1, returning either a 0 or a 1.

For removing 3D boxes outside of the cameras’
FOV, a check is performed on area-set. If it is equal to
0, then this box is skipped. The result of this approach
is shown in 4 and 5.

3.4.7 Labels

Due to the conversion, only the 2 classes, car and
pedestrian were kept. The rest were lost, as KITTI
does not contain them in its labels.

Figure 4: Only 3D boxes inside viewing frustum are kept.

Figure 5: 3D boxes projected on the image within visu-
aliser, using new extrinsic matrix.

3.5 PASCAL VOC Conversion

For evaluating Faster R-CNN which loads data in
PASCAL VOC(Everingham et al., 2010) format. An
online repository known as vod-converter was used to
convert the new CADCD(Pitropov et al., 2021) labels,
in the form of KITTI(Geiger et al., 2012) to PASCAL
VOC(Everingham et al., 2010) labels.

4 RESULTS AND DISCUSSION

In this section, the results provided by the 4 differ-
ent sensor configurations(i.e. the object classifica-
tion models representing them) are covered and com-
pared against those of their peers. The results are
categorized into 4 different weather conditions: clear,
cloudy, rain and snow.

A roughly equal number of samples containing
weather conditions were used during testing (approx.
550). Two classes were tested for classification(car
and pedestrian). All samples were hand-picked for
balance between occurrences of cars and pedestrians.
All samples were taken from the validation splits of
their datasets. All weather conditions were used for
testing on all sensor configurations except CenterFu-
sion(Nabati and Qi, 2021) which was only tested on
clear and rainy samples. IoU threshold was fixed at
50% for all tests except CenterFusion(mentioned in
chapter 3). Sensor configurations are ranked in terms
of accuracy, in each weather condition. Quantitative
results are in AP and qualitative results are also in-
cluded. Also please note: if a qualitative result ap-
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pears cropped, it is because no more predictions were
beyond the cropped region.

4.1 Metrics

4.1.1 Object Classes

For evaluating model accuracy, state-of-the-art met-
rics proposed by PASCAL VOC(Everingham et al.,
2010) and KITTI(Geiger et al., 2012) are used. From
the PASCAL VOC Dataset, the metric AP is used. It
is calculated for two different object classes, car and
pedestrian/person. Results of each model per class
are compared with other models for that same class.
The reason why only 2 classes were chosen will be
covered later.

4.1.2 Ensuring a Fair Comparison

For maintaining a fair comparison between the differ-
ent models, the following is done:

• All results are computed at an IoU threshold of
50% following the reasoning of the PASCAL
VOC dataset(Everingham et al., 2010). There
was however, the inconvenience of one of the
models being pre-trained on nuScenes and out-
putting results in the format of nuScenes which
use a different metric for setting overlap thresh-
olds(mentioned in Chapter 2). This could not be
avoided.

• For results outputted by models pre-trained on
KITTI, only the results for the ”moderate” dif-
ficulty were chosen as it is the average between
”easy” and ”hard” difficulties in terms of bound-
ing box height, occlusion, and truncation.

• A roughly equal number of samples was used
to represent different weather conditions with all
weather conditions being represented by approxi-
mately, 550 samples each. The reason behind this
value is discussed later.

4.2 Clear Weather

In this section, object classifiers in clear, optimal con-
ditions are evaluated and compared.

4.2.1 LiDAR-ONLY (SECOND)

SECOND was able to obtain mAP =74.2 on clear
weather conditions.

4.2.2 Camera-ONLY (Faster R-CNN)

The results of Faster R-CNN indicate mAP=56.15.
Qualitative results can be seen in 6.

Figure 6: Faster R-CNN accuracy on clear weather.

4.2.3 Camera-LiDAR (MVXNet)

MVXNet achieves mAP=66.97. Qualitative results
are shown in 7. There are many false positives.

Figure 7: MVXNet on clear weather conditions.

4.2.4 Camera-Radar (CenterFusion)

CenterFusion was able to achieve mAP = 47.1. Qual-
itative results can be seen in 8.

Figure 8: CenterFusion on clear weather conditions. Red
boxes indicate ground truth and cyan indicate predictions.

4.2.5 Rankings

From the results seen, it appears that the rankings are
as follows:

1. Lidar-only— mAP =74.2
2. Camera-lidar— mAP =66.97
3. Camera-only— mAP =56.15
4. Camera-Radar— mAP =47.1
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4.3 Cloudy Weather

In this section, the different sensor configurations are
tested on cloudy conditions.

4.3.1 Lidar-ONLY (SECOND)

The performance of SECOND was degraded resulting
in mAP=36.6. The results of the classification were
acceptable when objects are within a close range from
the lidar.

4.3.2 Camera-ONLY (Faster R-CNN)

In the case of Faster R-CNN it got mAP=20.6. In this
case there was a large number of false negatives.

4.3.3 Camera-LiDAR (MVXNet)

MVXNet achieved mAP=20.5 in the cloudy weather.
In this case multiple false negatives were detected and
none of the pedestrians were detected. Orientation
estimation is also flawed.

4.3.4 Rankings

Given the previous results, the rankings are as fol-
lows:
1. LiDAR-ONLY— mAP=36.6
2. Camera-ONLY— mAP=20.6
3. Camera-LiDAR— mAP=20.5

4.4 Rain

In this section, the different sensor configurations are
tested in rain.

4.4.1 Lidar-ONLY (SECOND)

SECOND yielded very low accuracy when detecting
pedestrians and mAP=10. There were numerous false
negatives with some false positives. There were flaws
in orientation accuracy as well.

4.4.2 Camera-ONLY (Faster R-CNN)

A mAP=17.85 was achieved. There are balanced
detection rates between car and pedestrian classes.
Qualitative results were seen as poor with large
amounts of false negatives.

4.4.3 Camera-Lidar (MVXNet)

A mAP=10.6 was achieved. Results indicate multiple
false negatives, poor orientation prediction as well as
poor detection of pedestrians.

4.4.4 Camera-Radar (CenterFusion)

A robust detection was obtained in comparison to the
others with mAP=47.1 with very little offset between
the ground truth and the predictions.

4.4.5 Ranking

From the given results, the following rankings are
produced:

1. Camera-Radar mAP=47.1
2. Camera-ONLY mAP=17.85
3. Camera-Lidar mAP=10.6
4. Lidar-ONLY mAP=10

4.5 Snow

4.5.1 Lidar-ONLY (SECOND)

An accuracy of mAP = 32.99 with 0 accuracy for
pedestrians was obtained. Poor orientation estimation
was visible as well as multiple pedestrians being de-
tected as cars.

4.5.2 Camera-ONLY (Faster R-CNN)

A mAP of 21 was indicated. Qualitative results indi-
cate adequate pedestrian detection.

4.5.3 Camera-Lidar (MVXNet)

A mAP=23.93 was obtained with 0% accuracy in de-
tecting pedestrians. Qualitative results indicated poor
orientation estimation, as well as many missing detec-
tions.

4.5.4 Ranking

Even though lidar and camera-lidar indicate better
higher mAP than camera-only, camera-only will be
ranked first as it is the only configuration that has
pedestrian detection accuracy exceeding 0%.

1. Camera-ONLY mAP=21
2. Lidar-ONLY mAP=32.99
3. Camera-Lidar mAP=23.93

4.6 Final Rankings

Now that all sensor configurations have been ranked
on all weather conditions, it is time to display the best
sensor configuration for each weather condition.
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1. For Clear Weather: Lidar-ONLY

2. For Cloudy Weather: Lidar-ONLY

3. For Rainy Weather: Camera-Radar

4. For Snowy Weather: Camera-ONLY

However, given the fact that rain and snow pro-
duce similar types of noise, an assumption can be
made that camera-radar may be the best for snowy
conditions, as well as rain.

5 CONCLUSION

In this paper, various datasets containing various
weather conditions were used and tested on different
modalities for the goal of finding the best sensor con-
figuration for each weather condition. From the eval-
uations of the different sensor modalities, insight as
to which sensors should be used for which weather
conditions has been gained. Now, preparations can be
made for the next step which is to develop a frame-
work based on this knowledge, then an efficient and
safe system for computation on edge devices may be
developed.

Future work opportunities may include the addi-
tion of a model for classifying weather conditions, so
that the decisions can be made based on the model’s
output. A variety of configurations utilizing different
modalities was tested in this paper. However, there
may still be some novel sensors that can be tested
such as, thermal cameras and night-vision cameras.
Also, camera-radar fusion was only tested on clear
and rainy conditions. An opportunity would be to
test this fusion on other conditions. Moreover, this
work resorted to the evaluation of earlier fusion ap-
proaches between sensors(early and middle). Testing
of late-fusion architectures may add more insight as
to which sensor configuration is best-suited to each
weather condition. Finally, it may be beneficial to test
on a large amount of samples.
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