
Towards a MaaS Service for Cloud Service Interoperability

Nour El Houda Bouzerzour1,2 a and Yahya Slimani1,3
1LISI Laboratory of Computer Science for Industrial Systems, Carthage University, Tunis, Tunisia

2ENSI, La Manouba University, Manouba, Tunisia
3ISAMM, La Manouba University, Manouba, Tunisia

Keywords: Cloud Computing, Cloud Service Description, Service Interoperability, Transformation Rules, ATL, WSDL.

Abstract: Cloud computing is an emerging computing paradigm, which provides high service availabality, high scala-
bility as well as low usage costs. This has encouraged enterprises and individual users to embrace cloud tech-
nology. However, the lack of service interoperability (also known as the vendor lock-in) issue still persists.
The vendor lock-in is caused by the cloud service providers who aim to prevent the clients from switching to
other clouds or providers. The solutions to overcome the vendor lock-in addressed a specific cloud actor or a
specific cloud model, which makes them not generic. Thus, we present in this paper, our Cloud Interoperabil-
ity Pivot Model (CIPiMo). CIPiMo is a Model-as-a-Service, which standardizes the cloud service description
languages by transforming them into a Generic Cloud Service Description model (GCSD) to make them in-
teroperable. We rely on MDE techniques to achieve a Model-to-Model transformation. Therefore, we define
mappings between the source description languages (OWL-S and WSDL) and the target language (GCSD).
Furthermore, we illustrate our proposed meta-models for each language and we implement our transforma-
tions using ATL with OCL. Eventually, we use a static analyzer (AnATLyzer IDE) to validate the correctness
of our transformations. We provide use cases to demonstrate the applicability of our approach.

1 INTRODUCTION

Cloud computing has known a huge spread and
popularity among providers and clients. The reason
being that cloud computing offers an on-demand
access to a pool of shared computing resources (Liu
et al., 2011) with high availability and scalability, as
well as in a ”pay-as-you-go” fashion. Despite the
numerous advantages of cloud computing, providers
and clients are still hesitant to adopt it because of
its prominent obstacles. The security and privacy
concerns, the service recovery from disastrous
situations and the SLA management are among these
obstacles. However, the most prominent issue is the
lack of cloud service interoperability. The latter is
defined as the ability of heterogeneous systems to
communicate, whether they are deployed on the same
cloud or on multiple clouds (Opara-Martins et al.,
2014). The cloud providers, who offer proprietary
services and decline standardization, are causing the
service interoperability issue. This is also known as
the vendor lock-in, where the providers prevent the
clients from switching from one provider to another

a https://orcid.org/0000-0002-8785-6631

or from one cloud to another in interconnected cloud
environments (Opara-Martins et al., 2014). The
solutions that were proposed in the literature (such
as brokers, standards and semantic approaches)
either target a single cloud actor (client or provider),
they are specific to a certain technology, or they
do not address all the cloud models (SaaS, PaaS,
IaaS). Therefore, these approaches are not generic
(Bouzerzour et al., 2020b). Other solutions such
as RESTful APIs and gRPC are widely adopted
to enable systems’ interoperability. However, they
are still faced with issues. The semantic REST
APIs are not adopted or recognized by commonly
used tools (Cheron et al., 2019). Furthermore, the
communication between two cloud systems using
different protocols (e.g: REST HTTP protocol and
MQTT (Message Queuing Telemetry Transport)
protocol) requires a protocol adapter to happen.
Eventually, The use of RESTful APIs does not solve
the semantic inconsistencies, which are created by
adopting heterogeneous cloud systems’ descriptions
(Baudoin et al., 2014).
Therefore, in this paper, we propose a cloud service
interoperability approach based on the standardiza-

72
Bouzerzour, N. and Slimani, Y.
Towards a MaaS Service for Cloud Service Interoperability.
DOI: 10.5220/0010911400003119
In Proceedings of the 10th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2022), pages 72-83
ISBN: 978-989-758-550-0; ISSN: 2184-4348
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



tion of cloud service descriptions. Thus, we define
the following research hypothesis:
RH1: the heterogeneity of cloud service descriptions
is among the reasons causing the vendor-lock-in,
RH2: standardizing service descriptions will allow
their interoperability.
To enable the standardization of cloud service de-
scriptions, the authors of (Ghazouani and Slimani,
2017) proposed a Generic Cloud Service Description
model (GCSD). The GCSD describes cloud services
in a standardized and comprehensive manner (from
multiple aspects), which was demonstrated by
use case scenarios that describe different services
from different delivery models (SaaS, PaaS, IaaS)
(Ghazouani and Slimani, 2017). Therefore, we
rely on an MDE model-to-model transformation
technique to transform heterogeneous description
languages to the GCSD to make them standardized
and interoperable. MDE is a software engineering
approach, which uses human and machine-readable
models. MDE considers models as first class entities
to express specifications of systems at different levels
of abstraction. The model’s elements, the relations
between them and their constraints are described
by a meta-model (Bezivin et al., 2005). We rely on
MDE because it is expected to gain more growth in
the software industry, as it was stated and approved
by various high quality research and studies that
MDE is indeed able to provide effective and helpful
solutions to improve the software development
process (Brambilla et al., 2017).

Figure 1: Our proposed interoperability model CIPiMo
(Bouzerzour et al., 2020a).

In this paper, we present an overview of our in-
teroperability model, which we name CIPiMo (Cloud
service Interoperability Pivot Model). Furthermore,
we implement, validate, and we test our MaaS pivot
model by providing use cases for different description
languages.
The rest of this paper is organized as follows: In Sec-
tion 2, we present our MaaS pivot model CIPiMo.

Whereas is Section 3, we present the mappings of the
source description languages to the GCSD as well as
their meta-models. In Section 4 we implement our
transformation rules, and we discuss the results. Sec-
tion 5 discusses the static validation of our transfor-
mations using AnATLyzer. In Section 6, we present
the related works and in Section 7 we conclude this
paper.

2 CLOUD SERVICE
INTEROPERABILITY PIVOT
MODEL (CIPiMo)

CIPiMo is an MDE-based MaaS (Model as a Ser-
vice) service (aka. Modeling as a Service), which
enables cloud service interoperability by transform-
ing heterogeneous service descriptions into a GCSD.
MaaS is a SaaS variant (Software as a Service), which
allows users to deploy and execute model-driven and
modeling services over the Internet, and it provides
an interface for the client to communicate with the
services. Among the main contributions of MaaS
is enabling interoperability between tools and sys-
tems by bridging the gaps between their specifica-
tions (Bruneliere et al., 2010). Thus, CIPiMo aims to
overcome the vendor lock-in by promoting: (i) client-
centric interoperability, which allows enterprises or
end-users to adopt a multi-cloud strategy to inter-
operate their services, which are deployed on dif-
ferent providers or clouds, and it encourages enter-
prises to migrate their legacy systems to the cloud
(Bouzerzour et al., 2020b); and (ii) provider-centric
interoperability, which enables cloud federations be-
tween SME (Small and Medium Enterprises) service
providers to gain more computing power and scal-
ability, or hybrid cloud strategy for bursting the re-
sources at peak moments (Bouzerzour et al., 2020b).
This transformation mediator maps the concepts and
elements of source languages to the GCSD concepts.
Then, it applies a set of transformation rules to trans-
form the source language into the generic descrip-
tion. Hence, the service descriptions will be uni-
fied and interoperable. We chose a transformation
through a pivot rather than a direct transformation
from a source language to a target language because
it requires fewer transformations, especially if the
number of languages to be transformed is substan-
tial (Boukhari et al., 2012). Figure 1 presents an
overview of CIPiMo: in the cloud environment, ser-
vice providers describe their services using different
CSD languages (such as OWL-S and WSDL), which
will be transformed using CIPiMo by applying the
transformations corresponding to the proposed map-

Towards a MaaS Service for Cloud Service Interoperability

73



pings for each language. Then, the resulting descrip-
tions will be standardized and ready to be published.
The mapping phase is achieved by the manual ex-
traction of different elements and their corresponding
definitions from the corresponding specification doc-
ument of each language. Then, we align the source
element with its equivalent target element.

To demonstrate the functionality of our proposed
pivot model we provide use cases, which transform
WSDL and OWL-S service descriptions to the GCSD.
We fully recognize that WSDL and OWL-S were
not originally created for describing cloud services.
However, both of these languages were used by re-
searchers, who considered cloud services as web ser-
vices, to describe cloud services (Ghazouani and Sli-
mani, 2017). In (Zhou et al., 2011), the authors used
WSDL-S for semantically describing services for
SaaS discovery. Whereas, in (Goscinski and Brock,
2010), a WSDL file extension was proposed to take
into consideration cloud characteristics. OWL-S was
used in (Martino et al., 2014) to semantically describe
Microsoft Azure API functional and non functional
properties and it was also used in (Karim et al., 2014)
to define cloud services and their Quality of Service
(QoS). Moreover, the available cloud service descrip-
tion and modeling approaches that were presented in
the literature (such as (Bergmayr et al., 2014) (Perez
and Rumpe, 2014) (Andrikopoulos et al., 2014)) ad-
dressed the description of the deployment, the con-
figuration, and the provisioning of the cloud service
rather than the description of the service properties
and functionality. Furthermore, the majority of the
cloud description and modeling languages lack for-
mal documentation or specification documents to de-
fine in details their constructs and elements. Unlike
that, WSDL and OWL-S are thoroughly documented
in their specification documents (Christensen et al.,
2001) (Martin et al., 2004). Moreover, many legacy
systems were based upon these languages and they
provide all the basic required concepts to describe a
service and to demonstrate our proposal. Therefore,
in the aim of demonstrating the genericity of our pivot
model, we chose to run our interoperability model on
WSDL (which is a syntactic language) and on OWL-
S (which a semantic language), respectively, to unify
their description and make them interoperable.

3 PROPOSED MAPPING RULES

In this section we present the mappings from WSDL
and OWL-S to the GCSD. Furthermore, we illustrate
our proposed exhaustive meta-models for each lan-
guage. To model the description languages meta-

models we use Eclipse Modeling Framework (EMF)
ECORE meta-model as the de-facto standard model-
ing framework in the industry.

3.1 Mapping WSDL to GCSD

WSDL (Web Services Description Language) (Chris-
tensen et al., 2001) is an XML format to describe web
services as collections of network endpoints operat-
ing on messages. To define network services, WSDL
1.1 uses, mainly, six elements, which are Types, Mes-
sage, PortType, Binding, Port; and Service. However,
WSDL only describes services from a technical as-
pect. Figure 2 depicts, our proposed WSDL meta-
model, which illustrates all WSDL elements required
to describe a service and the relations between them.
Table 1 depicts the proposed mapping from WSDL to
GCSD.
As depicted in Table 1, the WSDL operation el-
ement, which describes the operations that are per-
formed by the service, is transformed into the Func-
tion concept in the GCSD, which in its turn de-
scribes a course of actions to be performed by the
service. Each message part element is trans-
formed into a Parameter instance as they both
describe the parameters required by the opera-
tion/Function. The input and output are
also mapped to Parameter concept because they
define the abstract messages formats. PortType de-
scribes a set of abstract operations and it describes
the abstract message that is involved in the operation.
Therefore, it is mapped to the abstract class Inter-
face. Binding, which defines a concrete protocol
for the operations defined in a portType is mapped to
Protocol. The operation name and the part
name are mapped to the concept Description,
which attaches typed textual descriptions to the other
concepts (in this case, names are Description objects
of type name). Import location, port lo-
cation, and definition targetNameSpace
are all mapped to Artifact URI, which represents
a link to a resource that can be located using a URI.

We do not define mappings for message because
it provides an abstract definition of the data being
transmitted by its parts; it is presented as an argument,
which is mapped to a method invocation. Therefore,
the mapping of the different part elements of the
enclosing message implies the mapping of the mes-
sage element.

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

74



Table 1: Mapping WSDL elements and OWL-S classes into the GCSD concepts.

WSDL elements Description GCSD concepts
definition It is the root element of all WSDL documents. It de-

fines the name of the web service.
- GCSDservice (root con-

cept)
service A service groups a set of related ports together ServiceModule Service
part It defines the parameters of the web service function. FunctionalModule Parameter
operation It is a transmission primitive that an endpoint can sup-

port.
Function

input It specifies the abstract message format for an opera-
tion.

Parameter

output It specifies the abstract message format for an opera-
tion.

Parameter

fault It specifies the abstract message format for any error
messages that may be output as the result of the oper-
ation.

Fault

portType It is a set of abstract operations. TechnicalModule Interface
binding It specifies the concrete protocol and data format

specifications for the operations and messages defined
by a particular portType.

Protocol

soap:binding: trans-
port

It indicates the SOAP transport that the binding cor-
responds to.

AccessProfile

operation:name It is an operation name, which is not required to be
unique.

FoundationModule Description: value

types It is a data type definitions used to describe the mes-
sages exchanged.

TypeReference

import: location It associates a namespace with a document location. Artifact:URI
port: location It is an address for a binding and it defines a single

communication endpoint.
Artifact: URI

Figure 2: Our proposed WSDL meta-model.

3.2 Mapping OWL-S to GCSD

OWL-S (Martin et al., 2004) is an ontology for web
service description, which is based on three sub-
ontologies: (i) serviceProfile, (ii) serviceModel; and,

(iii) Grounding. However, it lacks the business aspect
of the service. Our proposed OWL-S meta-model
is depicted in Figure 3. Whereas, the mappings of
OWL-S classes to GCSD concepts were detailed in
(Bouzerzour et al., 2020a).

Towards a MaaS Service for Cloud Service Interoperability

75



Figure 3: Our proposed OWL-S meta-model.

We also define a meta-model for the GCSD. Given
that the GCSD is based on Unified Service Descrip-
tion Language (USDL) (Barros and Oberle, 2012),
it has nine concepts to represent USDL’s modules.
Furthermore, each concept regroups sub-concepts.
Therefore, we do not include it the GCSD meta-model
in this paper for space reasons.

4 IMPLEMENTING
TRANSFORMATION RULES

We rely on Atlas Transformation Language (ATL)
(Jouault et al., 2008) to implement the transforma-
tion rules. ATL is a domain-specific language for uni-
directional Model-to-Model (M2M) transformations,
which provides declarative and imperative constructs.
Moreover, ATL is built upon Object Constraint Lan-
guage (OCL) (Cabot and Gogolla, 2012), which is an
OMG standard and a typed declarative language.

Therefore, in this section we present our imple-
mentation using ATL and we define OCL invariants
for WSDL and OWL-S. However, we do not define
any constraints for the GCSD, as it is based on USDL,

which does not specify any constraint to allow open-
ness and genericity. Otherwise, specifying constraints
for specific types will result in enlarging USDL core
model with the complex and overlapping constraints
(Barros and Oberle, 2012). To implement our trans-
formations we use ATL toolkit (Version 4.2.0) on
top of Eclipse IDE (Version: 2020-12 (4.16.0)). We
also use ATLauncher (Guana, 2015) to programmati-
cally launch our transformations. ATLauncher is stan-
dalone Java class that runs ATL M2M transforma-
tions outside the Eclipse to promote the integration
of MDE tools with other software engineering solu-
tions. Therefore, using ATLauncher, our transforma-
tions will be integrated into a JAVA application, which
will be offered as a MaaS service to allow cloud ser-
vice interoperability.

4.1 Transformation Rules from WSDL
to GCSD

Figure 4 depicts the implemented transformation
rules from WSDL to GCSD and Figure 5 presents the
OCL constraints that we implemented for our trans-
formation.

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

76



Figure 4: WSDL transformation rules.

Figure 5: OCL constraints for WSDL transformation.

As it is shown in Figure 4, rule defini-
tion2GCSDservice transforms the WSDL defini-
tion, which is the root element of the service de-
scription to GCSDservice concept with the defi-
nition name represented by the GCSDservice name
and the targetNamespaces is represented by the
Artifact concept’ attribute URI. The constraint
states that a definition may have an optional but
unique name. Next, rule import2Artifact transforms
the import element to the Artifact concept,
which provides a URI property to locate a resource.
The rule part2Parameter depicts the transformation of
the WSDL part class and its type to Parame-
ter concept and TypeReference concept, which
represents the parameter type using unitSymbol
property. The part name is transformed to the De-
scription concept’s value attribute. Then, the

rule Operation2Function transforms WSDL oper-
ation to Function concept. The operation’s
input, output and fault properties are de-
scribed by the GCSD relations inputs, out-
puts, and faults, respectively; and the opera-
tion name is described by the value property of the
Description concept.

For the concrete description of WSDL services,
the rule service2Service transforms of the service
class and the service name to the GCSD Ser-
vice concept and the property serviceName re-
spectively. The rule soapbinding2Protocol transforms
the binding transport to the Protocol concept
identifier. Eventually, the PortType2Interface
rule transforms WSDL portType and port ele-
ments to Interface concept, the port binding
is transformed to Interface’s implementation-

Towards a MaaS Service for Cloud Service Interoperability

77



Figure 6: WSDL description of StockQuoteService service.

Figure 7: StockQuoteService service description in GCSD.

Specification and the portType name is trans-
formed to the implementationTypeId property,

which references the service interface.

To test our transformation, we apply our trans-

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

78



Figure 8: OCL constraints for OWLS- transformation.

formation rules on WSDL ”StockQuote” service in-
stance, which is illustrated in figure 6. After ap-
plying our transformation, we get the following de-
scription in GCSD (XMI file) (as shown in Figure 7).
As depicted in Figure 7, the GCSDService is the
main concept, which is located in the URI (described
by the Artifact). The second Artifact URI de-
scribes the WSDL schema nameSpace. Two Param-
eters are described, with their names (described by
Description), their type (described by TypeR-
eference), the type xsd schema URI (described
by Artifact). One Function is described with
its inputs and outputs and name (described by De-
scription). A Service is described with its
name and an Interface is also described with its
implementationSpecification and its URI (described
by Artifact).

4.2 Transformation Rules from OWL-S
to GCSD

Figure 8 presents the OCL constraints that we imple-
mented for our transformation, and Figure 9 depicts
the implemented transformation rules from OWLS to
GCSD.

The rule service2GCSDservice transforms OWL-
S service and Profile classes into Service
and ContactProfile concepts to describe the
service’s name and general information. The rule
Process2Function transforms OWL-S Process (of
type AtomicProcess) and Participant (of type
TheClient) into Interaction, Function and
Consumer concepts, respectively. The hasPar-
ticipant property is transformed into invovle-
dRoles to describe the participant interacting with
the process and it also specifies the roleDescrip-
tion for the Consumer concept. Whereas,
the hasInputs, hasOutput, ProcessPre-
condition, and ProcessResult properties
are transformaed into input, outputs, pre-
conditions, and postconditions, respec-
tively. The Paramter2Parameter rule transforms
OWL-S Parameter and its type (described by Pa-
rameterType attribute) into GCSD Parameter
and TypeReference (which describes the type us-
ing unitSymbol attribute) concepts.
The precondition2precondition rule transforms OWL-

S Condition and Expression into Condi-
tion concept, the OWL-S condition’s expression
(described by expr property) is transformed into
the conditionExpression property. The OWL-
S condition’s expression body (expressionBody
attribute) and expression language (expression-
Language attribute) are transformed into GCSD
Expression value and languageID, respectively.
The rule result2postcondition transforms the OWL-
S Result into GCSD Condition and the re-
sultID attribute into Description’s value attribute.
The rule grounding2Interface transforms OWL-S
grounding into Interface concept and the
grounding wsdlDocument attribute is transformed
into implementationTypeId attribute. The rule
theServer2provider transforms OWL-S participant of
type theServer into GCSD Provider. Even-
tually, the rule CompositeProcess2Phase transforms
OWL-S Process of type CompositeProcess into
GCSD Phase and the Process name is transformed
into Description’s value attribute.
We apply our transformation rules on OWL-S ”Con-
goBuyService” service instance, as shown in Fig-
ure 10. The resulting description in GCSD is de-
picted in Figure 11. The GCSDservice describes
the OWL-S service and its name. The capabili-
ties describe the Process achieved by the OWL-S
service. ContactProfile provides the contact in-
formation (described by Description). The In-
teraction describes the participants involved in
the atomicProcess and the Process is described by
the Function and its inputs, outputs, preconditions,
and postconditions. Consumer describes the partic-
ipants and their types (client or provider). Two Pa-
rameters are described with their types and names
(described by TypeReference and Descrip-
tion) and one Condition is described alongside
its Expression body and language. The Inter-
face describes the WSDL document for the ground-
ing using the implementationTypeId. OWL-
S CompositeProcess is composed of subprocesses
(atomic and composite) and it is constructed using
control constructs and references to processes called
PERFORMs. Therefore, the transformation of OWL-
S CompositeProcess requires defining UML activity
for describing the control constructs, UML sequence
diagram for describing the compositions, and OCL
to specify the pre- / post-conditions required for the
composition (Bouzerzour et al., 2020a). Thus, this
transformation is out of the scope of this paper, and it
will be included in a future work.

Towards a MaaS Service for Cloud Service Interoperability

79



Figure 9: OWL-S transformation rules.

Figure 10: CongoBuy Bookselling service description in OWL-S.

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

80



Figure 11: CongoBuy Bookselling service description in GCSD.

4.3 Results Discussion

The whole process of implementing and testing our
proposed transformations proves the correctness of
our research hypothesis. Indeed, the heterogeneity
of service descriptions hinders the interoperability.
Offering services described using different, propri-
etary specifications promotes the vendor lock-in issue
(Opara-Martins et al., 2014). Furthermore, the pre-
liminary results that we obtained from transforming
WSDL to GCSD and OWL-S to GCSD are an evi-
dence that the unification of service descriptions en-
ables their interoperability, combination, customiza-
tion, and composition (Nguyen et al., 2012).

5 STATIC VALIDATION OF ATL
TRANSFORMATIONS

Regardless of EMF being the de-facto standard mod-
eling framework in the industry, it is still faced with a
lack of an official validation and verification tool for
EMF models with OCL constraints (González et al.,
2012). Only two tools were found in the literature: (i)
EMFtoCSP (González et al., 2012), which translates
the model and its constraints into a constraint satis-

faction problem, which is then solved by a constraint
solver. EMFtoCSP checks the strong satisfiability, the
weak satisfiability, the lack of constraint subsump-
tions and the lack of constraint redundancies in a
model. However, the tool, which was developed as
a research project, was not updated for several years.
Therefore, the tool stopped from running at times,
or it generated ambiguous results at other times; and
(ii) EFinder (Cuadrado and Gogolla, 2020), which
is a model finding tool that automatically searches
for models satisfying a set of the model’s OCL con-
straints. The approach enables EMF meta-model ver-
ification, verification of model transformations, and
model synthesis. However, we did not get any results
from it. EFinder was originally running over AnAT-
Lyzer (Cuadrado et al., 2016), which is a transfor-
mation validation tool for the static analysis of ATL
model transformation. AnATLyzer is integrated with
ATL environment, and it is available as an Eclipse
plug-in, which enables the detection of typing and
rule errors, as well as a support for pre-conditions and
post-conditions. Therefore, we used AnATLyzer to
correct errors (such as unresolved bindings, uninitial-
ized features, rule conflicts, and others) in our trans-
formations.

Towards a MaaS Service for Cloud Service Interoperability

81



6 RELATED WORK

MDE-based approaches were proposed as solutions to
achieve the cloud service interoperability. In (Alipour
and Liu, 2018) the authors applied an MDE technique
to manage auto-scaling services. Their approach en-
ables the migration, deployment and configuration
of services on multiple clouds. Ferry et al. pro-
posed CloudMF (cloud modeling framework) (Ferry
et al., 2013a), and they extended it in (Ferry et al.,
2014) with: (i) a provider-agnostic management so-
lution for applications that are deployed on IaaS and
PaaS; (ii) an eclipse-based editor for the textual syn-
tax alongside a web-based editor for the graphical
syntax; and (iii) remote access to models@run-time
reasoning engines. Furthermore, the authors proposed
a domain-specific modeling language (DSML) called
(CloudML) (Ferry et al., 2013b). Uni4Cloud was
proposed in (Sampaio and Mendonca, 2011) to au-
tomatically configure and deploy applications across
multiple clouds in an IaaS provider-agnostic manner.
Whereas, MODAClouds (Ardagna et al., 2012) was
proposed for service migration between clouds, and it
provides a cloud-agnostic software design, a decision
system to determine the most suitable cloud to deploy
a given component and a support for migrating legacy
software to the cloud. The approach in (Alipour and
Liu, 2018) is different from our approach because
the authors applied the transformation to transform
a CPIM (Cloud Platform Independent Model) to a
CPSM (Cloud Specific Platform Model) using EMF
model generation abilities. In (Ferry et al., 2013a)
(Sampaio and Mendonca, 2011), the authors adopted
MDE techniques to enable the management of de-
ployment, configuration and provisioning of PaaS and
IaaS resources in multicloud. Whereas, in (Ardagna
et al., 2012), the authors used MDE to enable the
design and execution of applications on multicloud.
Therefore, none of the aforementioned approaches
applied MDE M2M technique to transform an input
model to an output model based on a set of transfor-
mation rules and constraints.

7 CONCLUSION

This paper presents CIPiMo, which is a MaaS based
on MDE to enable interoperability between cloud ser-
vices described using heterogeneous CSD languages.
The model enables the interoperability between ser-
vices of different cloud models and for different target
actors. The preliminary results that we obtained from
our use case scenarios are promising, and they reveal
that our model is capable of standardizing the descrip-

tions of heterogeneous cloud services. Therefore, it
enables their interoperability. As for future work, we
will extend our model by defining the transformations
for other CSD languages. Eventually, using a cloud
simulation tool (for example: CloudSim) we will test
the performance criteria of our MaaS model.

REFERENCES

Alipour, H. and Liu, Y. (2018). Model Driven Deploy-
ment of Auto-Scaling Services on Multiple Clouds. In
IEEE International Conference on Software Architec-
ture Companion (ICSA-C), pages 93–96, Seattle, WA,
USA.

Andrikopoulos, V., Reuter, A., Xiu, M., and Leymann, F.
(2014). Design support for cost-efficient application
distribution in the cloud. In 2014 IEEE 7th Interna-
tional Conference on Cloud Computing, pages 697–
704, Anchorage, AK, USA. IEEE.

Ardagna, D., Nitto, E. D., Casale, G., and Petcu, D. (2012).
MODAClouds: A Model-driven Approach for the
Design and Execution of Applications on Multiple
Clouds. In Proceedings of the 4th International Work-
shop on Modeling in Software Engineering, pages 50–
56, Zurich, Switzerland.

Barros, A. and Oberle, D. (2012). Handbook of service
description. USDL and Its Methods.

Baudoin, C., Dekel, E., and Edwards, M. (2014). Interop-
erability and portability for cloud computing: a guide.
Cloud Standards Customer Council, 1(1):1–31.

Bergmayr, A., Castilla, J. T., Neubauer, P., Wimmer, M.,
and Kappel, G. (2014). Uml-based cloud applica-
tion modeling with libraries, profiles, and templates.
In CloudMDE 2014: 2nd International Workshop
on Model-Driven Engineering on and for the Cloud
co-located with the 17th International Conference
on Model Driven Engineering Languages and Sys-
tems (MoDELS 2014), pages 56–65, Valencia, Spain.
CEUR-WS.

Bezivin, J., Bruneliere, H., Jouault, F., and Kurtev, I.
(2005). Model engineering support for tool interoper-
ability. In Workshop in Software Model Engineering
(WiSME’2005), Montego Bay, Jamaica.

Boukhari, I., Bellatreche, L., and Jean, S. (2012). An on-
tological pivot model to interoperate heterogeneous
user requirements. In International Symposium On
Leveraging Applications of Formal Methods, Verifica-
tion and Validation, page 344–358, Heraklion, Crete,
Greece.

Bouzerzour, N. E. H., Ghazouani, S., and Slimani, Y.
(2020a). Cloud interoperability based on a generic
cloud service description: Mapping owl-s to the gcsd.
In 29th IEEE International Conference on Enabling
Technologies: Infrastructure for Collaborative En-
terprises (WETICE 2020), Basque Coast - Bayonne,
France.

Bouzerzour, N. E. H., Ghazouani, S., and Slimani, Y.
(2020b). A survey on the service interoperability in

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

82



cloud computing: Client-centric and provider-centric
perspectives. Software: Practice and Experience,
50(7):1025–1060.

Brambilla, M., Cabot, J., Wimmer, M., and Baresi, L.
(2017). Morgan & Claypool Publishers, 2 edition.

Bruneliere, H., Cabot, J., and Jouault, F. (2010). Com-
bining model-driven engineering and cloud comput-
ing. In Modeling, Design, and Analysis for the Ser-
vice Cloud-MDA4ServiceCloud’10: Workshop’s 4th
edition, Paris, France.

Cabot, J. and Gogolla, M. (2012). Object constraint lan-
guage (ocl): a definitive guide. In International School
on Formal Methods for the Design of Computer, Com-
munication and Software Systems, pages 58–90, Berti-
noro, Italy.

Cheron, A., Bourcier, J., Barais, O., and Michel, A. (2019).
Comparison matrices of semantic restful apis tech-
nologies. In International Conference on Web Engi-
neering, pages 425–440, Daejeon, Korea. Springer.

Christensen, E., Curbera, F., Meredith, G., and Weer-
awarana, S. (2001). Web services description lan-
guage (wsdl) 1.1. W3C note.

Cuadrado, J. S. and Gogolla, M. (2020). Model finding
in the emf ecosystem. Journal of Object Technology,
19(2).

Cuadrado, J. S., Guerra, E., and de Lara, J. (2016). Static
analysis of model transformations. IEEE Transactions
on Software Engineering, 43(9):868–897.

Ferry, N., Chauvel, F., Rossini, A., and Morin, B. (2013a).
Managing Multi-cloud Systems with CloudMF. In
Proceedings of the Second Nordic Symposium on
Cloud Computing & Internet Technologies, pages 38–
45, Oslo, Norway.

Ferry, N., Rossini, A., Chauvel, F., and Morin, B. (2013b).
Towards Model-Driven Provisioning, Deployment,
Monitoring, and Adaptation of Multi-cloud Systems.
In IEEE Sixth International Conference on Cloud
Computing, pages 887–894, Santa Clara, CA, USA.

Ferry, N., Song, H., Rossini, A., and Chauvel, F. (2014).
CloudMF: Applying MDE to Tame the Complexity of
Managing Multi-cloud Applications. In IEEE/ACM
7th International Conference on Utility and Cloud
Computing, pages 269–277, London, United King-
dom.

Ghazouani, S. and Slimani, Y. (2017). Towards a standard-
ized cloud service description based on usdl. Journal
of Systems and Software, 132:1–20.

González, C. A., Büttner, F., Clarisó, R., and Cabot, J.
(2012). Emftocsp: A tool for the lightweight verifica-
tion of emf models. In First International Workshop
on Formal Methods in Software Engineering: Rigor-
ous and Agile Approaches (FormSERA), pages 44–50,
zurich, switzerland.

Goscinski, A. and Brock, M. (2010). Toward dynamic and
attribute based publication, discovery and selection
for cloud computing. Future generation computer sys-
tems, 26(7):947–970.

Guana, V. (2015). Atlauncher.
https://github.com/guana/ATLauncher.

Jouault, F., Allilaire, F., Bézivin, J., and Kurtev, I. (2008).
Atl: A model transformation tool. Science of com-
puter programming, 72(1-2):31–39.

Karim, R., Ding, C., Miri, A., and Liu, X. (2014). End-to-
end qos mapping and aggregation for selecting cloud
services. In 2014 International Conference on Collab-
oration Technologies and Systems (CTS), pages 515–
522, Minneapolis, Minnesota, USA. IEEE.

Liu, F., Tong, J., Mao, J., and Bohn., R. (2011). Nist cloud
computing reference architecture. NIST special publi-
cation.

Martin, D., Burstein, M., Hobbs, J., and Lassila, O. (2004).
Owl-s: Semantic markup for web services. W3C mem-
ber submission, 22(4).

Martino, B. D., Cretella, G., Esposito, A., and Speran-
deo, R. G. (2014). Semantic representation of cloud
services: a case study for microsoft windows azure.
In 2014 International Conference on Intelligent Net-
working and Collaborative Systems, pages 647–652,
Salerno, Italy. IEEE.

Nguyen, D., Lelli, F., Papazoglou, M., and Heuvel, H. V. D.
(2012). Blueprinting approach in support of cloud
computing. Future Internet, 4(1):322–346.

Opara-Martins, J., Sahandi, R., and Tian, F. (2014). Criti-
cal review of vendor lock-in and its impact on adop-
tion of cloud computing. In International Conference
on Information Society (i-Society 2014), pages 92–97,
London, UK.

Perez, A. N. and Rumpe, B. (2014). Modeling cloud
architectures as interactive systems. arXiv preprint
arXiv:1408.5705.

Sampaio, A. and Mendonca, N. (2011). Uni4cloud: An
Approach Based on Open Standards for Deployment
and Management of Multi-cloud Applications. In Pro-
ceedings of the 2Nd International Workshop on Soft-
ware Engineering for Cloud Computing, pages 15–21,
Waikiki, Honolulu, HI, USA.

Zhou, J., Abdullah, N. A., and Shi, Z. (2011). A hybrid p2p
approach to service discovery in the cloud. Interna-
tional Journal of Information Technology and Com-
puter Science, 3(1):1–9.

Towards a MaaS Service for Cloud Service Interoperability

83


