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Boolean satisfiability (SAT) solvers are essential tools for many domains in computer science and engineering.

Modern complete search-based SAT solvers represent a universal problem solving tool which often provide
higher efficiency than ad-hoc direct solving approaches. Over the course of at least two decades of SAT related
research, many variable and value selection heuristics were devised. Heuristics can usually be tuned by single
or multiple numerical parameters prior to executing the search process over the concrete SAT instance. In this
paper we present a machine learning approach that predicts the parameters of heuristic from the underlying

structure of the input SAT instance.

1 INTRODUCTION

The Boolean satisfiability (SAT) problem, the task of
finding a truth-value assignment of a given Boolean
formula, is one of the fundamental computer science
problems (Biere et al., 2009). Concretely; the SAT
problem was the first one to be proven to belong to the
NP-Complete class of problems (Cook, 1971). Major
direct use-cases of SAT come from industries such
as software testing (Dennis et al., 2006), automated
planning (Kautz and Selman, 1992), hardware ver-
ification (Gupta et al., 2006) or cryptography (Soos
et al., 2009), as well as many other. Moreover, many
other problems of computer science are often reduced
to SAT.

Standard and in practice often used way of solv-
ing a given problem is to compile it, in some way, to a
concrete SAT instance which is then given to another
program as an input, so called a SAT Solver. The
SAT solver solves the instance and answers whether
there exists a truth-value assignment by which it can
be satisfied or not, with the concrete proof, that is ei-
ther variables assignment which satisfy the formula or
conflict.

There exist many solvers to the SAT problem.
Solvers are divided into two major groups, local
search and systematic search solvers. This work
is focused on systematic search solvers based on
the Conflict-driven clause-learning (CDCL) algo-
rithm (Marques Silva and Sakallah, 1996) whose
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implementations come as variants of the Minisat
(Niklas Eén, 2004) solver.

CDCL SAT solvers have witnessed dramatic im-
provements in their efficiency over the last 20 years,
and consequently have become drivers of progress in
many areas of computer science such as formal ver-
ification (Newsham et al., 2015). There is a general
agreement that these solvers somehow exploit struc-
ture inherent in industrial instances due to the clause
learning mechanism and its cooperation with variable
and value selection heuristics.

Typically, implementations of CDCL SAT solvers
have many parameters, such as variable decay, clause
decay and frequency of restarts, which need to be set
prior to the solver being executed. Depending on how
various parameters are set for an input instance of-
ten has significant impact on the running time of the
solver. Hence it naturally makes sense to try to set
these parameters automatically.

The paper is organized as follows: in Section 3
we introduce related works, Section 4 states which
parameters will be tuned and briefly explains their
meaning, Section 5 measures the impact of each pa-
rameter on solving time, Section 6 presents how we
applied machine learning to our problem and finally
in Section 7 we evaluate our machine learning param-
eter setting in various benchmarks.
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2 CONTRIBUTION

In this work we apply machine learning techniques
(Mitchell, 1997) to predict the values for the parame-
ters of SAT solver which reduce solving time, based
on the type of an input instance. This step is moti-
vated among else by notion that many instances for a
fixed domain are in some way similar thus formula’s
hidden structure will be similar as well.

For example the structure of most industrial SAT
instances are vastly different from the structure of the
random SAT instances (Ansétegui et al., 2012) or in-
stances constructed for planning problems, and these
are different from instances encoding puzzles like the
pigeon-hole problem. Problems that belong to the
same class tend to have similar structure within the
class and specific values of the parameters work bet-
ter for them, than having the default parameter setting
globally for every instance.

Our contribution presented in this paper consists
in:

1. Visual summary of dependencies of solving time
on setting of various parameters of the SAT solver.

2. Extending the set of usual features extracted
by SAT solvers from instances, by computing
graph related features on clause graph (CG), and
variable—clause graph (VCG), which ought to bet-
ter capture the underlying structure of the in-
stance.

3. Building a machine learning mechanism based
on the extended set of features that sets the SAT
solver’s parameters according to the input in-
stance.

3 RELATED WORK

3.1 Portfolio Solver: SatZilla

SatZilla (Xu et al., 2008) is a portfolio solver, which
won many awards in SAT Competition (SAT, ). It in-
troduced new approach of using many other solvers
(portfolio) in the background. The solvers are used
as-is, and SatZilla does not have any control over their
execution.

Machine learning was previously shown to be an
effective way to predict the runtime of SAT solvers,
and SatZilla exploits this. It uses machine learning to
predict hardness of the input instance, and then based
on this prediction select a solver from its portfolio
which will be assigned to solve the problem. This
works because different solvers are better for different
types of instances. Predicting hardness of an instance
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is done by first extracting various features from the
input.

To train the model, SatZilla will first compute
some features on training set of problem instances and
run each algorithm in the portfolio to determine its
running times. When the new input instance comes,
it computes its features. These are then used as input
for predictive model which predicts the best solver to
be used. That particular solver is then used to solve
instance.

3.2 Parameter Tuning: AvatarSat

AvatarSat (Ganesh et al., 2009) is a modified version
of Minisat 2.0 which introduced two key novelties.

First one is that it used machine learning to de-
termine the best parameter settings for each SAT for-
mula.

Second novelty in AvatarSat is the ’course cor-
rection” as it dynamically “corrects” the direction in
which solver is searching. Modern SAT solvers store
new learnt clauses and drop input clauses during the
search, which can change the structure of the problem
considerably. AvatarSat’s argument is that the opti-
mal parameter settings for this modified problem may
be significantly different from the original input prob-
lem.

Input SAT instances are classified using 58 differ-
ent features of SAT formulas such as ratio between
variables and clauses, number of variables, number of
clauses, positive and negative literal occurrences etc.

AvatarSat is tuning only two parameters,
-var-decay and -rinc, nine values for the first
one and three for the second one, so the number of
examined configurations is 27.

3.3 Iterated Local Search

The key idea underlying iterated local search is to fo-
cus the search not on the full space of all candidate so-
lutions but on the solutions that are returned by some
underlying algorithm, typically a local search heuris-
tic. (Lourencgo et al., 2010)

Iterated local search is a local search algorithm
that optimizes parameters but only one dimension at a
time, it is a one-dimensional variant of hill climbing.

In (Pintjuk, 2015) author has used this algorithm
for MiniSat’s parameter tuning. There was not feature
extraction approach as in AvatarSat, SatZilla and this
paper, but it was an attempt to tune SAT solvers pa-
rameters and therefore we mention his solution in this
chapter. Results were measured only on factorization
problem instances.

587



ICAART 2022 - 14th International Conference on Agents and Artificial Intelligence

4 TUNED PARAMETERS

We will tune the following heuristics settings of Min-
iSat solver as these have the most significant impact
on the solver’s running time.

* —var-decay the VSIDS’s decay factor
e —cla-decay the clause decay factor
* -rfirst base restart interval

e —rinc restart interval increase factor
4.1 VSIDS

VSIDS is an abbreviation of variable state indepen-
dent decaying sum. VSIDS has become a standard
choice for many popular SAT solvers, such as Min-
iSat (Niklas Eén, 2004) which we employed as default
solver for this paper.

The main idea of VSIDS heuristic is to associate
each variable with an activity, which signifies a vari-
able’s frequency of appearing in recent conflicts via
the mechanism of bump and decay.

Bump is a number which is incremented by 1 ev-
ery time this variable appears in conflict.

Decay factor 0 < & < 1 is a number by which each
of the variable’s activity is multiplied after each con-
flict and thus decreased.

4.2 Clause Decay

In MiniSat, similar principle as in VSIDS is applied
to clauses. When a learnt clause is used in the
conflict analysis, its activity is incremented. Inac-
tive clauses are periodically removed from the learnt
clauses database (Niklas Eén, 2004). Since a set
of unsatisfiable clauses generates many conflicts, and
therefore many conflict clauses, the high activity of a
clause can be seen as a potential sign of unsatisfiabil-
ity. (D’Ippolito et al., 2010)

4.3 Restart Frequency

Frequency of restarts in MiniSat is determined by two
parameters, the base restart interval and restart inter-
val increase factor. One round of search will take as
long until the search encounters given number of con-
flicts L. For example, minisat (120) will be search-
ing space of assignments as long as it reaches count of
conflicts equal to 120. After that, the algorithm will
pause, determine new number of needed conflicts to
force next restart, and continue searching.

Number of needed conflicts to restart L is deter-
mined as follows:

L = restart_base-restart_inc_factor™esarns,
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5 IMPACT OF PARAMETERS

The term “structure”, due to its vagueness, leaves
much room for interpretation, though, and it remains
unclear how this structure manifests itself and how
exactly it should be exploited. (Sinz and Dieringer,
2005)

However, research has advanced since then, and
nowdays the structure of some instances can be ex-
ploited.

Base idea of this paper comes from (Ansétegui
et al., 2012), where it was shown that industrial in-
stances exhibit “hidden structures” based on which
solver is learning clauses during search. In (Pipatsri-
sawat and Darwiche, 2007) researchers have shown
that formulas with good community structure tend to
be easier to solve.

Variables form logical relationships and we hy-
pothesize that VSIDS exploit these relationships to
find the variables that are most “constrained” in the
formula. The logical relationship between variables
are concretized as some variation of the variable inci-
dence graph (VIG). (Liang, 2018)

Our idea is to exploit this fact, so we will construct
three types of graphs which are representing each
instance, compute various properties of this graph
which will be used as features for machine learning,
in addition to standard features of the instance like
number of variables, clauses, their ratios etc.

This section is dedicated to present results of our
initial data exploration. We performed several ob-
servations on four different classes of problems, on
which we observe how the solver’s parameters affect
then number of conflicts, and thus solving time.

5.1 Classes of Selected SAT Instances

In this paper we limited ourselves to the follow-
ing SAT problem’s structurally diverse classes, for
which we expected different demands on parameters.

* Random SAT/UNSAT
* Pigeonhole problem
* Planning
— n? — 1 problem
— Hanoi towers
* Factorization
Random SAT/UNSAT are instances of 3-SAT
problem, generated randomly. This class of problems
if used as benchmark in SAT competition, this the cat-
egory’s name is RANDOM.

Pigeonhole problem involves showing that it is
impossible to put n + 1 pigeons into n holes if



each pigeon must go into a distinct hole. It is
well known that for this combinatorial problem there
is no polynomial-sized proof of the unsatisfiabil-
ity. (Haken, 1984) Combinatorial problems are part
of SAT competition benchmarks as well, known as
CRAFTED. We chose pigeonhole problem as one rep-
resentative, because it can be generated easily with
random starting positions with fixed size.

As Planning problems representatives we chose
problem known as n?—1 problem, or in its fixed size
(n = 4) form Lloyd’s fifteen. We generated numbered
tiles order randomly, and aggregated these instances
always within fixed size, E.g., we never combined
problem of size 4x4 with 5x5. Another representative
of planning is Hanoi towers problem, this problem is
not possible to “randomize” because initial state is
always given, we included this problem to observe
whether it will exhibit similarities to our other plan-
ning problem.

Factorization problem is problem of determining
whether a big number is a prime. It is an example of
INDUSTRIAL instance from SAT competitions.

5.2 Correlation of Number of Conflicts
and Solving Time

For the initial dataset building process, it is necessary
to find close to optimal solver parameters for which
the solving time is lowest possible.

Because some harder instances take several tens
of seconds to solve, it would be unfeasible to generate
dataset from solving each of these instances by brute
force search on grid of parameter values, thus we de-
cided to build this dataset from small instances from
SATLIB. These instances are usually solved within
fraction of second by Minisat solver, but this approach
comes with a trade-off;, it is hard to capture real solv-
ing time, because for these small instances overhead
can outweigh useful computation time.

Solving time varies a bit with every run and
solving time captured by MiniSat also includes sev-
eral system-originated factors which are not desired.
However, computation is deterministic with fixed ini-
tial random seed, so it is natural to use number of con-
flicts as other metric instead of actual solving time.

Scatter plot in Figure 1 shows strong correlation
between the number of conflicts and solving time on
randomly selected instances from SATLIB. As an im-
plication of this observation it is correct to use conflict
count as measurement of performance of the parame-
ters instead of time.
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Figure 1: Correlation between number of conflicts and solv-
ing time.

5.3 Observed Parameters

Following subsections illustrate how number of con-
flicts depends on selected parameters for each of
aforementioned problem classes. Note that axes do
not have same values in each of the examples. Before
we made these plots we first analyzed which inter-
vals should we chose to discretize. E.g. we observed
that variable decay parameter for values in (0,0.4)
always yielded bad results so we excluded those and
only examined [0.4,1). We have omitted label of ver-
tical axis, and it will always be number of conflicts.

Following plots in this section were first aggre-
gated by different random seeds, and then aggregated
per many instances of the same size.

5.3.1 Variable Decay

RANDOM_SAT_VD
950

900
850
800
750
700
650

600
0.4 0.5 0.6 0.7 0.8 0.9
-var-decay

Figure 2: Variable decay on random SAT instances.

For random satisfiable instances shown in Figure 2
it seems that variable decay at around 0.95 gives best
results. For unsatisfiable instances the plot is slightly
”smoother”, this is likely because the solver has to
search entire space so there are not many backjumps
which would cut "heavy” branches.

From Figure 3 it seems that factorization instances
require -var—decay close to 1. Unsatisfiable variant
(prime numbers) is smoother with the same result.
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Figure 3: Variable decay on factorization instances.
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(b) Hanoi tower planning.

Figure 4: Variable decay on planning instances.

Figure 4 shows that planning instances are very
different from previous instances. As -var-decay
increases from 0.9 higher number of conflicts rises
rapidly, this may be signaling that planning instances
have variables which are more-less independent, be-
cause setting variable decay factor close to value of
1, effectively means algorithm will decay activity of
variables very slowly.
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Behavior of pigeonhole problem instances was
identical to factorization.

5.3.2 Clause Decay
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Figure 5: Clause decay on random SAT instances.

Figure 5 shows that it is best to set —~cla-decay to
value very close to 1 for random instances.
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(a) Satisfiable.
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Figure 6: Clause decay on factorization instances.



Same conclusion can be seen in Figure 6 for fac-
torization instances, but the trend starts to decrease
significantly at the value of 0.93.

For planning instances, we did not observe any de-
pendency, leading us to conclusion that ~cla-decay
parameter does not have significant impact.
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Figure 7: Clause decay on pigeonhole instances.

For pigeonhole problem, Figure 7 shows similar
course as for random and factorization instances.

5.3.3 Restart Interval Increase Factor

In Figure 8, higher value seems to be better for ran-
dom instance, but important note is that the instances
on which we performed these aggregations are of
smaller size than in SAT competitions (SAT, ). For
those, these plots could look very different. We hy-
pothesize that for big instances smaller value of this
parameter would be better, because if the value is too
high, it might mean that longer the solver is running,
the interval until next restart will be too high, so the
much needed restart would not happen in very long
time.

In Figure 9, for not prime instances it was unclear
what value could be suitable, prime instances show
that values above 10 seems to be fastest.

For planning instances, it is clear from Figure 10
that lower values yield faster solving. There is raising
trend, but we think this is dependent on instance size.
Lower value means more frequent restarts, that is sug-
gesting that solver is often in local optima, which
eventually will not lead to solution and the restart
is needed. Hanoi tower problem also required very
small value, dependency on this parameter was almost
linear.

Plot in Figure 11 shows that for value 5 and higher
impact of this parameter does not yield any significant
improvement. Higher values are preferred for pigeon-
hole problem, this means that the problem demands
less restarts because it is likely doing useful work, in
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Figure 8: Restart interval increase factor on random SAT
instances.
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Figure 9: Restart interval increase factor on factorization
instances.

other words, the path to solution is narrow so there are
not many branches which lead to local optima.

5.3.4 Restart Interval Base

Figure 12 shows that initial restart interval around 200
conflicts seems best for both satisfiable and unsatisfi-
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Figure 10: Restart interval increase factor on planning in-
stances.
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Figure 11: Restart interval increase factor on pigeonhole
instances.
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Figure 12: Restart interval base on random SAT instances.

able random instances, this is dependent on the size
of the problem.

We did not observe any dependency of -rfirst
factorization instances.
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Figure 13: Restart interval base on planning instances.

Both plots in Figure 13 contain increasing trend
despite plot lines are quite different, so for planning
instances smaller initial interval is to be preferred, and
thus more frequent restarts.
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Figure 14: Restart interval base on pigeonhole instances.
Decreasing trend in Figure 14 suggests that less

frequent intervals perform better for pigeonhole in-
stances, this further confirms the hypothesis made



with restart increase factor in previous section.
5.4 Implications for Parameter Tuning

The results show that there are some dependencies
among parameters and solving time, thus it makes
sense to try and implement machine learning system
to set these parameters automatically depending on
input instance.

It is debatable whether we should include param-
eter —cla-decay in the list of parameters which will
be learned by machine learning technique, since for
all classes of instances value close to 1 was best. We
included this parameter nevertheless.

The parameter -rnd-freq we will not include
in our experiments, because our prior analysis has
shown that it has no impact, and it is best to set this
parameter’s value to 0.

We used grid-search to find optimal parameters.
For each instance, we prepared the grid of parameters
to be evaluated. The intervals of values in this grid
were those, which appeared promising. For exam-
ple, for random SAT instances we searched the space
of -var-decay € [0.8,0.95] and -rfirst € [50,400],
because we noticed that values from these intervals
yielded best results.

6 PARAMETER TUNING

In this section we will describe each of the compo-
nents of the process of parameter tuning for MiniSat
solver.

Starting with overview of features extracted from
SAT instances which try to describe the structure of
the instance as closely as possible.

Next stage is to prepare a dataset for machine
learning technique.

In comparison to related works in Section 3, we
took a different path in stage of actual learning, in-
stead of treating this problem as classification task,
where features are used for classifying each instance
into class of the problem it most likely belong to, and
only then set parameter values, which are predeter-
mined for each class; we will directly predict val-
ues. Thus the dataset constructed will have n features,
where 7 is number of extracted features, and four tar-
get features (parameters: -var-decay, ~cla-decay,
-rinc, -rfirst). Thus, the approach we imple-
mented is doing an multi-output regression.
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6.1 SAT Instance Features
6.1.1 Basic Formula Features

By basic features we mean characteristics of the in-
stance which were used in SatZilla’s (Xu et al., 2008)
feature extractor which we have used with an option
-base.

6.1.2 Structural Features

To extract structural features of a SAT problem in-
stance, we have decided to use three common types
of graph representations of a formula as defined next.

Definition 6.1. Variable graph (VG) has a vertex for
each variable and an edge between variables that oc-
cur together in at least one clause.

Definition 6.2. Clause graph (CG) has vertices rep-
resenting clauses and an edge between two clauses
whenever they share a negated literal.

Definition 6.3. Variable-clause graph (VCG) is a bi-
partite graph with a node for each variable, a node for
each clause, and an edge between them whenever a
variable occurs in a clause.

From the input instance we construct each VG,
CG and VCG, which correspond to constraint graphs
for the associated constraint satisfaction problem
(CSP). Thus, they encode the problem’s combinato-
rial structure. (Bennaceur, 2004)

For these three types of graphs, we used basic
node degree statistics from (Xu et al., 2008).

Additionally, we computed several graph proper-
ties which we thought could help describe instance’s
structure more closely, and at the same time are not
too much time expensive.

* Variable graph features

diameter

clustering coefficient

size of maximal independent set (approx.)

node redundancy coefficient

number of greedy modularity communities
* Clause graph

— clustering coefficient
— size of maximal independent set (approx.)

* Variable-clause graph

latapy clustering coefficient

size of maximal independent set (approx.)

node redundancy coefficient

number of greedy modularity communities
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The VG is usually smallest in terms of number of
nodes, thus we could compute more properties on this
graph, such as modularity communities and diameter.

In contrast CG is the biggest graph (there are more
clauses than variables) and thus we limited the num-
ber of features extracted from this graph to only two,
relatively easy—to—compute features.

VCG has the highest number of nodes among
these three types of graphs (|Vars| + |Clauses|), but
as defined earlier, it is a bipartite graph and some of
the features are easier to compute on bipartite graph
than on standard graph.

6.2 Constructed Dataset

Constructing training dataset for learning consists of
few steps.

For each instance we ran SatZilla’s feature extrac-
tor, then ran our extractor and combined the computed
features into one sample.

We determined the optimal values for every pa-
rameter of MiniSat for the given instance, using the
brute-force grid search.

Final step of compiling single sample for the
dataset was to add the corresponding optimal param-
eters to the data row of extracted features.

6.2.1 Extraction Complexity

Building variable graph BUILDVG is O(1?), it iterates
over every clause and then over every literal in that
clause. Building variable clause graph has the same
complexity as VG. Building Clause graph is the most
expensive operation, for every pair of clauses, that is
on?) operation, it checks for intersection of literals.
Intersection of two sets is quadratic in worst case, thus
the complexity of BUILDCG is O(n*).

6.3 Learning

As underlying machine learning technique we have
chosen random forest, as this is multi-output regres-
sion and also data are from four distinctive classes
which have different optimal parameter demands, and
we believe random forest suits best for this task.

7 EVALUATION

This section presents the results achieved, it is ev-
ident that the tuned parameters outperform MiniSat
defaults.

All plots of this section only show pure solving
time, time spent computing features was excluded.
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All instances are pre-processed by SatELite in-
stance pre-processor (Eén and Biere, 2005) which is
very fast and the time spent preprocessing can be ne-
glected in any evaluations.

In the following plots there are two columns for
each instance next to each other. Blue columns are
performances on tuned parameters, green ones on the
default MiniSat’s parameters. Instances are sorted by
number of conflicts yielded by default parameter.

7.1 Performance on Training Instances

random satisfiable

- ceraut
coo0p0 | predicted

500000
00000
8 300000

200000
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o
o 0 o & @ 160

Figure 15: 100 Training instances, random, satisfiable.

Instances used for training are from SATLIB, they
have constant number of variables, 250 before prepro-
cessing.

In Figure 15 it can be seen that tuned parameters
(blue), are faster for some of the instances but in fact
slower for those instances that can be solved very fast
with default parameters, those are instances which are
solved within single digit number of restarts.

This is probably because the model tends to
choose wider restart interval (in comparison to de-
fault’s value of 2, which is quite low), because it
was also trained on the factorization instances, which
require less frequent restarts. On those random in-
stances which take considerable time to solve by de-
fault parameters, the efficiency rises dramatically, and
thus tuned parameters should be used on random in-
stances which have larger number of variables, be-
cause for small instances default parameters perform
better.

This could be fixed by including random instances
of different sizes in the training set, so the model
could adapt to the size of the instance better, for ex-
ample, for small instances restart frequency should be
also much smaller.

For every random unstatisfiable instance from
training set (SATLIB) the tuned parameters are much
faster.

This plot proves that it is worth tuning solver’s
parameters in particular for unsatisfiable instances.
There is a slight correlation between heights of green
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Figure 16: 97 Training instances, random, unsatisfiable.

and blue bars on the graph, unlike for random satisfi-
able instances.

The hardest instances are from so called phase
transition which is a ratio of clauses to variables
around value 4.26, so roughly 4x more clauses than
variables.

The computation of features is very fast for ran-
dom instances as they have balanced ratio of clauses
and variables.
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Figure 17: 25 Training instances, factorization, satisfiable
(not prime numbers).

12/25 satisfiable instances were actually slower
with tuned parameters but 10 of them were easy in-
stances. This may seem a bit disturbing result as first
sight, but our hypothesis is that the cause of it, is lack
of easier instances of this type of problem in the train-
ing dataset as first half of the plot shows. On the sec-
ond half of the graph it can be observed that for harder
instances, only two instances are slightly slower. We
would say, for harder instances these results are posi-
tive.

The model does not distinguish well between hard
and easier instances, and as a result it is predicting
restart frequency parameters similarly for both harder
and easier instances.

Another possibility can be that there is no infor-
mation to be captured from the graph structure about
how hard the instance will be.

Majority of eight out of ten instances are favoring
tuned parameters, for two easiest instances the default
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Figure 18: 10 Training instances, factorization, unsatisfi-
able (prime numbers).

parameters perform better but only by a tiny bit of
500-1000 conflicts less which is small enough count
to be neglected.

The improvement is only moderate, nowhere near
the improvement observed on random unsatisfiable
instances.

pigeonhole

nnnnnnnn

Figure 19: Training instances, pigeonhole problem.

First two bars are insignificant, but on remaining
the big improvement can be seen. Even though the
training dataset contained only these four instances
of pigeonhole problem (because higher order of this
problem is very difficult and it was infeasible to per-
form grid-search on many parameters values), the
model was able to predict values correctly.

This might mean that the structure of this instance
is vastly different from all the other instances from
classes.

7.2 Performance on Testing Instances

As a testing set for random instances we generated
instances randomly but with 300 variables in compar-
ison to SATLIB’s 250, to observe whether the model
will be able to predict values correctly also for in-
stances which are much harder than the ones it was
trained on.

Plot shows very good results, so this verify my hy-
pothesis, that even model trained on smaller instances
can perform good on bigger.

For harder instances (second half of the plot),
there is only one instance which takes almost twice as
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random satisfiable

13 < 0 = n E3 ) E3

Figure 20: 36 Testing instances, random, satisfiable.

much with tuned parameters as with the default ones.

This is probably because the structures of the ran-
dom instances are homogeneous regardless of their
size.

le6 random unsatisfiable

- efault
- predicted

0 10 0 0 a0 50
instance

Figure 21: 60 Testing instances, random, unsatisfiable.

Observed results are remarkable, all instances are
faster on tuned parameters by at least 2x, on some
instances, mostly harder ones, 3x faster.

The key takeaway is that the parameter tuning is
very effective way to improve SAT solvers perfor-
mance on unsatisfiable instances.

factorization satisfiable
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Figure 22: 15 Testing instances, factorization, satisfiable.

Similar results as on training set can be seen here
for factorization, satisfiable instances. Performance
is better on harder instances, from harder instances
only one is outperformed by default settings. Easier
instances are solved faster by default settings, most
likely because of low base restart interval.
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Figure 23: 13 Testing instances, factorization, unsatisfiable.

For testing set we picked 2 easy instances, which
can be seen as first 2 bars, then a few average hard
instances and one very hard, the last bar.

For easy instances there is no improvement, for
medium instances predicted parameters give steadily
100000 conflicts, worth noting is that, the same is for
instances in the training set. For hard instance num-
ber of conflicts is also close to 100000, and almost 2x
speedup can be seen. Tuned parameters perform more
less the same as default ones but we hypothesize that,
that as hardness of the instances increase the speedup
would get more significant with it.

7.3 Planning Instances

It is unfortunate that we were unable to train the
model for planning problems. This is due to computa-
tional burden that we encountered later, in the process
of extracting features.

Constructing clause graph which is usually very
big due to the nature of planning instances and com-
puting features on it was not feasible.

If we were to start over, we would not include
clause graph for planning instances, and focus more
on graph properties of corresponding VG and VCG
graphs.

8 CONCLUSIONS

We have shown that a dependency of SAT solver’s
solving time on its parameters exists. This has been
fully illustrated in our experimental evaluation, on a
set of four, structurally diverse SAT instances.

The dependencies were measured with five of
the MiniSat’s parameters concerning heuristics and
restart policy.

The most significant dependencies were observed
on random SAT instances exhibiting dependency on
four parameters. Except the planning instances, every
other class has shown dependency on clause decaying



factor. Each of the studied classes were dependent on
the restart frequency.

The dependency has been utilized for automated
settings of MiniSat’s parameters using machine learn-
ing based on features extracted from graphs derived
from the input instance.

We evaluated how predicted parameters perform
on both training set and testing set.

Significant improvement of running time has been
achieved with predicted parameters for all types of in-
stances except the planning class. The most positive
achievement was tuning parameters for unsatisfiable
random SAT instances, where for significant number
of instances tested we achieved up to 3x speedup.

As asuggestion for a future work, we plan to focus
on computing features of VG and VCG and leave CG
out as it is very computationally expensive and often
causes feature extractor execution time to outweigh
actual solving time.

ACKNOWLEDGEMENTS

This research has been supported by GACR - the
Czech Science Foundation, grant registration number
22-313468S.

REFERENCES

Sat competition website. http://www.satcompetition.org/.

Ansétegui, C., Girdldez-Cru, J., and Levy, J. (2012). The
community structure of sat formulas. In Cimatti, A.
and Sebastiani, R., editors, Theory and Applications
of Satisfiability Testing — SAT 2012, pages 410—-423.
Springer.

Bennaceur, H. (2004). A comparison between sat and csp
techniques. Constraints, 9:123-138.

Biere, A., Biere, A., Heule, M., van Maaren, H., and Walsh,
T. (2009). Handbook of Satisfiability: Volume 185
Frontiers in Artificial Intelligence and Applications.
I0OS Press, NLD.

Cook, S. A. (1971). The complexity of theorem-proving
procedures. In Proceedings of the Third Annual ACM
Symposium on Theory of Computing, STOC *71, page
151-158, New York, NY, USA. Association for Com-
puting Machinery.

Dennis, G., Chang, F. S.-H., and Jackson, D. (2006). Mod-
ular verification of code with sat. In Proceedings of
the 2006 International Symposium on Software Test-
ing and Analysis, ISSTA 06, page 109-120, New
York, NY, USA. Association for Computing Machin-
ery.

D’Ippolito, N., Frias, M., Galeotti, J. P., Lanzarotti, E., and
Mera, S. (2010). Alloy+hotcore: A fast approximation
to unsat core. volume 5977, pages 160-173.

Parameter Setting in SAT Solver using Machine Learning Techniques

Eén, N. and Biere, A. (2005). Effective preprocessing in sat
through variable and clause elimination. In Bacchus,
F. and Walsh, T., editors, Theory and Applications of
Satisfiability Testing, pages 61-75. Springer.

Ganesh, V., Singh, R., Near, J., and Rinard, M. (2009).
Avatarsat: An auto-tuning boolean sat solver.

Gupta, A., Ganai, M. K., and Wang, C. (2006). Sat-
based verification methods and applications in hard-
ware verification. In Bernardo, M. and Cimatti, A.,
editors, Formal Methods for Hardware Verification,
pages 108—143. Springer.

Haken, A. (1984). The Intractability of Resolution (Com-
plexity). PhD thesis, USA. AAI8422073.

Kautz, H. and Selman, B. (1992). Planning as satisfiability.
pages 359-363.

Liang, J. H. (2018). Machine Learning for SAT Solvers.
PhD thesis, University of Waterloo.

Lourenco, H., Martin, O., and Stiitzle, T. (2010). Iterated
Local Search: Framework and Applications, volume
146, pages 363-397.

Marques Silva, J. P. and Sakallah, K. A. (1996). Grasp-a
new search algorithm for satisfiability. In Proceed-
ings of International Conference on Computer Aided
Design, pages 220-227.

Mitchell, T. M. (1997). Machine Learning. McGraw-Hill.

Newsham, Z., Lindsay, W., Ganesh, V., Liang, J. H., Fis-
chmeister, S., and Czarnecki, K. (2015). Satgraf:
Visualizing the evolution of sat formula structure in
solvers. In International Conference on Theory and
Applications of Satisfiability Testing (SAT), Austin,
USA. Springer, Springer.

Niklas Eén, N. S. (2004). Theory and applications of sat-
isfiability testing: 6th international conference, sat,
santa margherita ligure, italy, may 5-8, 2003, se-
lected revised papers, chapter an extensible sat-solver.
Springer, pages 502-518.

Pintjuk, D. (2015). Boosting sat-solver performance on fact
instances with automatic parameter tuning.

Pipatsrisawat, K. and Darwiche, A. (2007). A lightweight
component caching scheme for satisfiability solvers.
In Marques-Silva, J. and Sakallah, K. A., editors, The-
ory and Applications of Satisfiability Testing — SAT
2007, pages 294-299. Springer.

Sinz, C. and Dieringer, E.-M. (2005). Dpvis — a tool to
visualize the structure of sat instances. In Bacchus,
F. and Walsh, T., editors, Theory and Applications of
Satisfiability Testing, pages 257-268. Springer.

Soos, M., Nohl, K., and Castelluccia, C. (2009). Extend-
ing sat solvers to cryptographic problems. In Kull-
mann, O., editor, Theory and Applications of Satisfia-
bility Testing - SAT 2009, pages 244-257. Springer.

Xu, L., Hutter, F,, Hoos, H. H., and Leyton-Brown, K.
(2008). Satzilla: Portfolio-based algorithm selection
for sat. J. Artif. Intell. Res., 32:565-606.

597



