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Abstract: Delineating brain tumor margins as accurately as possible is a challenge faced by the neurosurgeon during 

tumor resections. The extent of resection is correlated with the survival rate of the patient while preserving 

healthy surrounding tissues is necessary. Real-time analysis of the endogenous fluorescence signal of brain 

tissues is a promising technique to answer this problem. Multimodal optical analysis has been proved to be a 

powerful tool to discriminate tumor samples of different grade of gliomas and meningiomas from healthy 

control samples. In this study, Machine Learning methods are evaluated to improve the accuracy of such 

discrimination. Each sample is described by 16 feature given in input to a Decision Tree based model. Once 

the learning step is completed, the classifier achieves a 95% correct classification on unknown samples. This 

study shows the potential of Machine Learning to discriminate between tumoral and non tumoral tissues based 

on optical parameters.  

1 INTRODUCTION 

Brain and central nervous system cancer is one of the 

most lethal cancers that affect humans (Buckner, 

2007). Many types of brain tumors exist, which are 

classified into different categories and grade 

according to their originating cells and pathological 

class (Louis, 2016). 

Nowadays, total resection is still the primary 

therapy for treating the majority of brain tumours and 

is considered as the most critical stage in the therapy 

procedure of these tumors. The main challenge of the 

neurosurgical operations is to obtain a precise 

identification of the margins of the tumor in order to 

achieve a complete resection (Wilson, 2014). These 

margins often contain diffuse isolated tumor cells 

outside the solid area that have a visual appearance 

similar to adjacent healthy areas, making the surgeon 

unable to correctly identify these margins. The 

inability to fully visualize these limits results in 
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incomplete surgical resection, which increases the 

risk of recurrence. Similarly, unnecessary removal of 

healthy brain tissue that does not contain tumor cells 

can lead to major neurological deficits that affect the 

patient’s quality of life.  

Therefore, and in order to improve diagnosis 

information on these margins and to confirm the 

success of the operation, biopsy samples are extracted 

from these areas for histological analysis, which 

involves Haematoxylin and Eosin (H&E) staining, 

but the results of this post-operative analysis are 

provided a few days later and this information is not 

available for the surgeon during surgery. 

However, several techniques have been proposed, 

developed and transferred to the operation room to 

address this problem such as intraoperative-MRI and 

ultrasound imaging (Kubben, 2011) (Unsgaard, 

2006). The aim of these techniques is to help the 

surgeon properly define the limits of the tumor and to 

precise spatial information on tumor infiltration at the 

Bouvet, F., Mehidine, H., Devaux, B., Varlet, P. and Haidar, D.
Classification of Brain Tumour Tissues in Human Patients using Machine Learning.
DOI: 10.5220/0010909700003121
In Proceedings of the 10th International Conference on Photonics, Optics and Laser Technology (PHOTOPTICS 2022), pages 53-58
ISBN: 978-989-758-554-8; ISSN: 2184-4364
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

53



cellular scale. However, the information provided by 

these techniques have not reached the reliability of 

the gold-standard histological post-surgery analysis. 
 

To address this challenge, our team at the IJCLab 

laboratory is developing a new intraoperative optical 

tool that aims to diagnose tumor zones at the cellular 

scale in order to obtain fast and accurate information 

on the tissue’s nature. This tool consists of a 

miniature non-linear multimodal endomicroscope. 

This endomicroscope is able to detect both the 

quantitative (fluorescence lifetime measurement and 

spectral measurement) and qualitative (fluorescence 

imaging) response of endogenous fluorescence under 

two-photon excitation (TPE) and the detection of the 

generation of the second harmonic (SHG) (Ibrahim, 

2016) (Sibai, 2018). 

However, the development of this tool requires in 

parallel the construction of a tissue database that 

includes the different imaging modalities that we 

want to integrate into our endomicroscope. The 

purpose of this database is to characterize and to 

discriminate different types of brain tissues, whether 

healthy or tumoral, through their specific optical 

signatures. Different analysis methods and data 

processing will be developed and implemented in our 

endomicroscope. The final aim is, based on this 

database, to be able to provide the surgeon a fast, 

reliable and accurate diagnosis in real time. 

In our previous studies, and through different 

quantitative optical parameters, we managed to 

discriminate, with high specificity and sensitivity, 

healthy human brain tissues, from secondary and 

primary brain tumors (Poulon, 2018)(Poulon, 2018) 

low and high grade glioma (Mehidine, 2019), and 

grade I and grade II meningioma (Mehidine, 2021). 
The aim of this study is to expand our analysis 

towards using Machine Learning (ML) methods to 
discriminate healthy from tumor tissues using these 
quantitative parameters. ML approach allows to 
combine several optical parameters thus combining 
the information provided by the different endogenous 
fluorescence molecules. As the histological 
classification was known, we were able to investigate 
supervised methods. Decision Tree is commonly used 
for classification and has the benefit of being among 
the most explainable ML models. Two studies are 
presented, one in the visible excitation domain using 
375 and 405 nm, and one in the Deep Ultra-Violet 
(DUV) using 275 nm. 

 
 
 
 
 
 

2 MATERIALS AND METHODS 

2.1 Samples 

Samples were obtained from the department of 

neurosurgery of Sainte Anne Hospital (Paris) upon 

the approval of the Sainte-Anne Hospital – University 

Paris Descartes Review Board (CPP Ile de France 3, 

S.C.3227). All methods and measurements were 

carried out in accordance with the relevant guidelines 

and regulations of the cited approval. Informed 

consents were obtained also from all patients included 

in this study. Each obtained sample was directly sent 

after the surgery in a saline solution towards the 

neuropathology department in Saint-Anne Hospital 

where the visible measurement setup is located. More 

details about the Visible measurement setup were 

published elsewhere (Poulon, 2017)(Zanello, 

2017)(Mehidine, 2018). Afterwards, each collected 

sample was stored at −80 °C. Few hours before 

cutting, the sample were put at −20 °C, after then it 

was cut into 10 μm slices using a cryostat (CM 1950, 

Leica Microsystems). The 10 µm slice was then fixed 

with 100° ethanol and stored at 4°C until the DUV 

measurements. These fixed slices were then used to 

realize the spectral measurements on the Deep UV 

setup at DISCO Beamline. More details about the 

DUV measurements setup were published elsewhere 

(Poulon, 2018) (Mehidine, 2021). 

2.2 Database 

2.2.1 Visible Range 

The visible measurements setup uses 375 and 405 nm 

as excitation wavelength. Through this wavelengths, 

we were able to excite the following endogenous 

fluorophores: Nicotinamide adenine dinucleotide 

NADH (2 components, Bound NADH and free 

NADH), Flavins (FAD), Lipopigments and 

Porphyrins  I  (P1)  and II  (P2).   The samples   were  

 

Figure 1: Spectrum fitted by a sum of six Gaussians. 
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scanned point by point with a 0.2 mm step along 

several parallel lines spaced by 2 mm. The obtained 

spectrum at each point is fitted by a sum of six 

Gaussians functions, one for each fluorophore. The 

integral under the curve and the maximum are 

recorded for each Gaussian. Figure 1 illustrates an 

acquired spectrum and the six Gaussian fitted curves. 

The samples cohort consisted of 21 specimens 

relative to four different pathologies: Diffuse Glioma 

(DIF), Glioblastoma (GBM), Meningioma (MEN) 

and metastasis (MET) and also one control group 

(CTR) obtained from epileptic surgeries. Table 1 

summarizes the samples cohort used for visible 

spectral measurements.  

The database in the visible domain totalizes 1701 

records. These spectra are those for which data at both 

375 and 405 nm are available exactly at the same 

position on the same sample. 

Table 1: Distribution of the data in the visible domain. 

 Number of tissue 

specimens 

Number of 

spectrum 

CTR 4 685 

DIF 5 274 

GBM 4 260 

MEN 4 310 

MET 4 172 

Total 21 1701 

2.2.2 DUV Range 

The DUV measurements setup uses 275 nm as 

excitation wavelength. Using this wavelength, we 

were able to excite the following fluorophores: 

Tyrosine (TYR), Tryptophan (TRY) collagen 

crosslinks (COL) and NADH. 

In each 10µm slice of each sample, a rectangular area 

was chosen. This area was pixelated and spectral 

acquisition were performed on each pixel. 

Similar to the visible measurements, each spectrum 

acquired in the DUV range was fitted by a sum of 4 

Gaussians functions, one for each fluorophore, and 

the integral under the curve and the maximum are 

recorded for each Gaussian.  

The samples cohort used in DUV measurements 

includes five pathologies and one control group. The 

pathologies represented in that group are: High grade 

glioma (HGG), Low grade glioma (LGG), 

Meningioma grade 2 (GII), Meningioma grade 1 (GI) 

and Metastasis (MET) for a total of 38 patients. In 

most cases, two slices were collected from each 

samples, leading to a total of 67 tissue slices. The 

complete DUV database include 129711 records. 

Table 2 summarizes the samples cohort used for DUV 

spectral measurements. 

Table 2: Distribution of the data in the DUV domain. 

- Number of 

patients  

Number of 

tissue 

specimens 

Number of 

spectrum 

CTR 6 10 21997 

LGG 6 6 32051 

HGG 8 15 21807 

GI 6 12 19872 

GII 6 12 12784 

MET 6 12 21200 

Total 38 67 129711 

2.3 Classification Method 

The software was developed in Python. The Scikit-

learn library was used for pre-processing, feature 

analysis and ML algorithm. 

In a first step, the features were analysed by a pair-

to-plot method in order to roughly evaluate their 

discriminating power and to highlight the obvious 

correlation between them. 

A multivariate analysis was then performed using 

a non-parametric supervised ML approach commonly 

used for classification problems and based on 

Decision Trees (DT). DT are an important type of 

algorithm for predictive modelling ML covering both 

classification and regression topics. The goal of a DT 

is to create a model that predicts the value of a target 

variable by learning simple decision rules inferred 

from the data features (Gordon, 1984). As the name 

suggests, it uses a tree-like model of decisions and 

can be used to visually and explicitly represent them. 

The structure of the DT is illustrated in figure 2. It is 

drawn upside down with its root at the top. The input 

subset is successively split into two branches (edges) 

according to the condition present in each internal 

node. The condition is a threshold on one of the 

feature describing the samples. The end of the branch 

that does not split anymore is the final decision (leaf) 

for that branch. Tuning the model consists in getting 

the most homogeneous branches as possible, in other 

words branches having groups from similar classes. 

The performance of the model is then evaluated on 

unknown samples. 
The classical DT algorithms have been around for 

decades and modern variations like Random Forests 
(RF) or Gradient Boosted Decision Trees (DT) are 
currently among the most powerful techniques 
available. 
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Figure 2: Decision Tree structure. 

In RF algorithm, several DT are built in order to 

decrease the variance thus yielding an overall better 

model. The DT are built independently from a 

random subset of the input samples and/or from a 

random subset of the feature. The final classification 

is obtained by averaging the probabilistic prediction 

of all the DT (Breiman, 2001). 

The GBDT algorithm is an iterative method 

(Wolpert, 1992). The DT are built successively by 

minimizing a differentiable loss function and a weight 

is assigned to each DT for the final classification. 

In Random Forest (RF) algorithm, several DT are 

built in order to decrease the variance thus yielding an 

overall better model. The DT are built independently 

from a random subset of the input samples and/or 

from a random subset of the feature. The final 

classification is obtained by averaging the 

probabilistic prediction of all the DT (Breiman, 

2001). The Gradient Boosted Decision Trees (GBDT) 

algorithm is an iterative method (Wolpert, 1992). The 

DT are built successively by minimizing a 

differentiable loss function and a weight is assigned 

to each DT for the final classification. 

3 RESULTS 

3.1 Visible Range 

Figure 3 shows a typical histogram and a pair-to-pair 

plot (log scale) resulting from the preliminary 

analysis. Figure 3.a suggests that the illustrated 

feature (P2 here) can help discriminate the 

pathologies. Figure 3.b clearly highlights that the 

integral and the maximum of intensity are highly 

correlated. That correlation was observed for each 

fluorophore and each wavelength. We therefore only 

kept the integral for the analysis.  

The features that were taken into account in the 

visible domain are the integral under the curve value 

for each fluorophore at both 375 and 405 nm. 

Previous studies proved that some ratio could also be  

a powerful discriminatory feature (Poulon, 2018) 

(Poulon, 2018) (Mehidine, 2021). We therefore 

included four more parameters, namely the  ratio 

between integral of NADH-F and NADH-B and the 

ratio between integral of P1 and P2 for both 

wavelength, leading to a total number of 16 features 

for each sample. The model was trained with 1360 

samples (80% of the database) and evaluated on the 

remaining 341samples (20%). DT achieves a 90% 

score, RF 92% and GBDT 95% (Table 3). 

We studied the importance of each feature for the 

classification. The feature the most useful to build the 

GBDT model is the ratio P1/P2 at 375nm. The next 

one is integral of NADH-F at 375 nm. Though these 

two features are the most useful, training the model 

with only one of them or both of them leads to very 

poor results (Table 3). 

Table 3: Classification on the test database in the visible 

domain for 1, 2 and 16 features using Decision Tree, 

Random Forest and Gradient Boosting Decision Tree. 

 P1/P2  NADF_F 
& P1/P2 

16 features 

DT 47% 69% 90% 

RF 50% 73% 92% 

GBDT 50% 71% 95% 
 

 

Figure 3: P2 at 375 nm ; histogram of integral under the 

curve (a) ; pair-to-pair plot for maximum if intensity versus 

integral in a log-scale (b). 
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3.2 DUV Range 

In the DUV, 8 features were included for each sample 

into the model:  the integral under the curve of each 

of the 4 fluorophores and 4 ratio: TYR/NADH, 

COL/NADH, TRY/COL, TYR/TRY.  The model was 

trained with 90797 samples (80% of the database) and 

evaluated on the remaining 38914 samples (20%).  

The 3 models achieve very similar score: 87% for 

DT, 89% for RF and 88% for GBDT (Table 4).  

We also studied the importance of each feature for 

the classification. The features the more useful to 

build the models are integral of collagene (COL) and 

of tryptophane (TRY). Here also, training the model 

with only those parameters leads to poor results. 

Table 4: Classification on the test database in the DUV for 

2 and 16 features using Decision Tree, Random Forest and 

Gradient Boosting Decision Tree. 

 COL & TRY 16 features 

DT 49% 87% 

RF 42% 89% 

GBDT 51% 88% 

4 DISCUSSION AND 

CONCLUSION 

For the first time, we used ML methods on 

spectroscopic data from brain tissue samples in order 

to discriminate tumoral from non tumoral tissues 

using quantitative optical parameters. This 

preliminary study suggests that combining several 

features into a ML model significantly improve the 

classification.  

We could not combine DUV and visible data in 

the same model because we did not have the exact 

position of the spectral records and we could not 

establish the correspondence between two samples. 

Such combination will be upgraded in the next 

database. As the most discriminant features in DUV 

and visible don’t come from the same fluorophores, 

an improved result can be expected because it can be 

assumed that useful information is complementary. 

Indeed, though the input number of samples given 

to the ML model is very high, they come from a 

limited number of histological specimens and it is 

necessary to confirm these results on more 

specimens. 

In this study, we only take into account spectral 

data. Work is in progress to take advantage of other 

available information such as fluorescence lifetime 

and fluorescence and SHG optical images. 
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