Detecting Obfuscated Malware using Memory Feature Engineering

Tristan Carrier, Princy Victor!, Ali Tekeoglu2 2 and Arash Habibi Lashkari! @
LCanadian Institute for Cybersecurity (CIC), University of New Brunswick (UNB), Fredericton, NB, Canada

2 Johns Hopkins University Applied Physics Laboratory, Critical Infrastructure Protection Group, Maryland, U.S.A.

Keywords:

Abstract:

Obfuscated Malware, Memory Analysis, Ensemble Learning, Malware Detection, Stacking, Machine
Learning

Memory analysis is critical in detecting malicious processes as it can capture various characteristics and behav-
iors. However, while there is much research in the field, there are also some significant obstacles in malware
detection, such as detection rate and advanced malware obfuscation. As advanced malware uses obfuscation
and other techniques to stay hidden from the detection methods, there is a strong need for an efficient frame-
work that focuses on detecting obfuscation and hidden malware. In this research, the advancement of the
VolMemLyzer, as one of the most updated memory feature extractors for learning systems, has been extended
to focus on hidden and obfuscated malware used with a stacked ensemble machine learning model to create
a framework for efficiently detecting malware. Also, a specific malware memory dataset (MalMemAnalysis-
2022) was created to test and evaluate this framework, focusing on simulating real-world obfuscated malware
as close as possible. The results show that the proposed solution can detect obfuscated and hidden malware
using memory feature engineering extremely fast with an Accuracy and F1-Score of 99.00% and 99.02%,

respectively.

1 INTRODUCTION

Since the advent of Malware in the 1980s, it has be-
come one of the focal points in the field of cyberse-
curity. Malware is any malicious software used by
cybercriminals that harms the system or user by per-
forming various criminal activities. With the fast ad-
vancement of technology and internet access, mal-
ware has also evolved regardless of the available se-
curity measures (Statista, 2021). Morever, their abil-
ity to evade from the detection methods has made the
process of malware detection complex. With diver-
sity in malware categories and families, it is essential
to cover all the bases.

There are several Malware categories such as
Worms, Viruses, Bots, Botnets, Trojan Horses, Ran-
somware, Spyware, Rootkits, etc. As malware fami-
lies has several functionalities like infiltrating the sys-
tem, gaining access to information, preventing access
for authorized users, or performing other cybercrimes
within each category, the best solution to detect them
should focus on both categories and families to pre-
vent and stop them in the future.

https://orcid.org/0000-0001-7638-0941
b https://orcid.org/0000-0002-1240-6433

Carrier, T., Victor, P, Tekeoglu, A. and Lashkari, A.
Detecting Obfuscated Malware using Memory Feature Engineering.
DOI: 10.5220/0010908200003120

As the complexity and time consumption of man-
ual detection methods are very high, different learning
systems like machine learning and deep learning are
used, which can produce intelligent insights from the
data automatically. The primary importance of these
learning systems is figuring out which training data to
feed to the system to make the quickest and most ac-
curate assessment. Machine learning systems take in
a set of features that can be looked at with a large sam-
ple size to compare and contrast differences. Further-
more, these features can be input in different formats,
which is a factor in determining the machine learn-
ing system that should be used. While some machine
learning algorithms are focused on speed, others are
focused on accuracy and precision. Therefore, select-
ing the different algorithms that correspond to the ob-
jective and input type has an enormous impact on the
results of the system. Ensemble machine learning is
one such model in machine learning that correlates
well with these goals of detection and characteriza-
tion.

There exists several approaches for obfuscated
malware detection based on memory analysis. How-
ever, in most of the works, the complexity and time
consumption are high, which makes them not suitable

177

In Proceedings of the 8th International Conference on Information Systems Security and Privacy (ICISSP 2022), pages 177-188

ISBN: 978-989-758-553-1; ISSN: 2184-4356

Copyright (© 2022 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

for real-world application. This is the motivation to
propose a fast, efficient and easy to develop solution
for obfuscated malware detection by making use of
the most effective features captured through memory
analysis.

Main Contributions: The main contributions of
this research include:

e Proposing a malware analysis framework that
uses a two-layer stacked ensemble learning model
to improve the current obfuscated or hidden mal-
ware detection solution.

e Proposing 26 new memory-based features for
the only available open-source memory analyzer
for learning systems, VolMemLyzer, by focusing
specifically on the obfuscated and hidden malware
detection and implementing the new version of
the open-source project, VolMemLyzer-V2.

e Generating and releasing a comprehensive dataset
by executing more than 2500 malware samples
on three common obfuscated and hidden cate-
gories, including Spyware, Ransomware, and Tro-
jan Horse, to test and evaluate the proposed frame-
work.

The structure of this paper is shown as follows.
Section 2 introduces the related works on memory
analysis models that used machine learning and deep
learning for malware detection. Section 3 proposes an
obfuscated and hidden malware detection framework
that tackles the challenges identified in this study.
Section 4 presents the dataset creation process and the
malware types, families, and samples, while section 5
presents the experimental analysis. Finally, section
6 concludes the paper by discussing the findings and
future works.

2 LITERATURE REVIEW

Since the inception of malware, it has gained enor-
mous attention in the cybersecurity field due to its
various delivery methods and categories. Although
there exist several detection methods, each carries its
challenges. This section highlights the related works
on malware detection through memory analysis and
discusses the remaining issues and challenges in this
research field.

2.1 Malware Memory Analysis
Memory analysis is a method that provides a strong
understanding of the activities in the system by cap-

turing memory snapshots and extracting features from
them. (Shree et al., 2021) discusses the reliability

178

in malware memory analysis since all critical infor-
mation is stored in memory. The memory analysis
that is not performed live needs snapshots, and ob-
taining these snapshots is essential to ensure that the
memory files are not affected. Affected memory files
could change the results of the memory analysis pro-
cess and would remove the reliability of the analysis
taking place.

(Stiittgen and Cohen, 2014) proposed a frame-
work that shows how to capture a memory from a
Linux system with minimal impact by using a relo-
cation hooking that can copy the information safely.
Furthermore, since this technique doesn’t require the
installation of an environment on the system, those
tasks will not be in the analyzed memory. In addi-
tion to the memory snapshot capturing difficulties, au-
tomation and the complexity of the analysis process
are other challenges. As a solution for this, (Socala
and Cohen, 2016) explains the method of automatic
profile generation for live memory analysis, which
can automate the analysis process in a viable manner.

Moreover, the work by (Okolica and Peterson,
2010) discusses the importance of having a highly
flexible memory analysis process that can work on
different platforms and systems as this would signifi-
cantly reduce the amount of time needed to match the
system with the profile. Furthermore, the work also
discovered debugging structures on memory analysis
to allow the tools to run on more systems. In another
work, (Block and Dewald, 2017) introduced a mem-
ory analysis plugin that can use to simplify the analy-
sis process. This plugin focuses on the details of the
heap objects in memory, and these heap objects can
help a memory analysis professional understand what
undergoes in the system memory.

When the memory has been successfully captured,
the next step to consider is how to extract the data
from within it. (Okolica and Peterson, 2011) ex-
plains the importance of DLLs and Windows drivers,
which are difficult to extract with no entry point to
gain access, especially with no export functions. To
get the information from these drivers, a huge work
is needed from a memory forensic professional. The
authors show the method of reversing the drivers to
gain quicker and more efficient access to the driver
information.

A work by (Dolan-Gavitt, 2008) discusses the im-
portance of gaining access to the full registry in mem-
ory with the use of cell indexes. Similarly, (Zhang
et al., 2011) also explains the extraction of registry
information from physical memory for Windows sys-
tems and the importance of understanding the file
structure. In the other work by (Zhang et al., 2009),
the use of the data structure, Kernel Processor Con-

trol Region, is explained for translating the differ-
ence from virtual to physical memory in the address
space, thus improving the memory forensics on win-
dows machines. (Zhang et al., 2010) also did their
study on converting virtual to physical addresses by
using the paging structure for 2MB pages in a Win-
dows 7 system.

Memory analysis can be used in many differ-
ent ways to find out what happened to a victim.
(Thantilage and Jeyamohan, 2017) discuss the usage
of volatile memory analysis to gain information on
social media evidence. The developed application fo-
cuses specifically on targeting volatile memory anal-
ysis to obtain social media evidence.

Updating lots of systems in an industry can be ex-
pensive and often goes unnoticed until an attack oc-
curs. For this, (Sharafaldin et al., 2017) proposes a
new tool called BotViz that uses a hybrid approach
for detecting bots in a network. In addition to that,
this model uses hooks to strengthen bot detection.
The work by Martin-Perez (Martin-Perez et al., 2021)
presents an interesting concept of memory dump pre-
processing with two different strategies that can relo-
cate file objects to make the analysis process quicker
and easier. The first strategy, called Guided De-
Relocation, specifically selects a new space for the
information. The second strategy is Linear Sweep
De-Relocation, which sweeps through the memory to
find a storage spot. Memory forensic tools have dras-
tically changed how memory analysis is performed;
however, they can still be refined and improved to
be faster, more efficient, and easier to use. (Lewis
et al., 2018) discusses the method by which the de-
fects are fixed and improvements are added to pro-
fessional tools such as Volatility. Improving mem-
ory forensic algorithms to adapt to current standards
is also needed as they explain many novel memory
analysis algorithms.

2.2 Malware Detection Using Memory
Analysis

Sometimes, dynamic and static methods of malware
classification can be both inaccurate and imprecise.
According to (Dai et al., 2018), the idea of using
an extracted malware memory dump file that is con-
verted into grayscale image results in higher accuracy
and precision than static and dynamic methods. Re-
sults show a 20 percent increase in accuracy when
converting to a grayscale image before comparison
with other known malware.

According to (Yucel and Koltuksuz, 2019), using
a three-dimensional heat mapping system can reduce
the time it takes to classify malware along with in-

Detecting Obfuscated Malware using Memory Feature Engineering

creasing its accuracy. The work discussed layering
the levels on top of each other, which shows the in-
tensity of malware in each section of the malware
memory dump. Moreover, this heat map can be com-
pared to other malware systems to show a higher ac-
curacy detection and classification rate. As Malware
classification analysis can be costly in time and accu-
racy, (Kang et al., 2019), suggests the use of vector-
ing assembly source code using the Long Short-Term
Memory-Based (LSTM) method for classifying mal-
ware. Using word2vec with the LSTM system, the
increase in accuracy reached 0.5 percent higher than
other methodologies.

Malware detection and analysis are difficult for
advanced systems; however, malware detection in a
cloud is even more difficult with more liabilities. It
can be hard to examine if malicious acts are happen-
ing with constant live processes running, especially
while taking privacy into account. Using an unbiased
training set, the minHash method was able to have a
nearly perfect detection rate. With increasing cloud
operations, using the minHash method can increase
efficiency and reliability, as shown in the numerous
experiments as (Nissima et al., 2019) has shown. In
this work, the results are drastically different in detec-
tion across the different classifiers, which shows the
impact of the classifiers based on the different types
of malware being input into the system. To reduce this
variance, classifiers can work together to make up for
their weaknesses.

The current direction of remote computing leads
to more information stored in the cloud; as such, they
have been a bigger target for malware with an increase
in demand for security. With the static and dynamic
approaches not being applicable for cloud comput-
ing, the need for new security methods has increased
for specialized cloud computing security. (Li et al.,
2019) suggests a deep learning approach that collects
a memory snapshot of the system and converts it into
a grayscale image. The convolutional neural network
then models the system and trains deep learning to
differentiate between malicious and benign memory
snapshots. Results showed that this process reduces
runtime for analysis as well as accurately identifies
malware. After obtaining the target virtual machine
introspection, it is fed to the extracting model, which
converts it to the grayscale image passed from the tar-
get VM to the secure VM for analysis.

(Sai et al., 2019) developed the concept of manag-
ing memory with API call mining. This method ana-
lyzes API calls that access the system’s memory and
observes the transitions in the memory to watch the
management and ensure that the system does not con-
tain any malicious activity. This method can check the

179

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

allocated memory during runtime and detect roughly
95 percent of all malicious programs from the system
memory behavior.

The importance of detecting new malware is ex-
tremely high to prevent new attacks from harm-
ing systems. Many techniques have high detection
rates on known malware using in-depth training tech-
niques. However, while comparing previous works, it
can be identified that the works do not deal with new
never seen before malware. As a solution for this, (Si-
hwail et al., 2019) suggests using memory forensics to
extract artifacts from memory combined with mem-
ory feature extraction. Based on past known mal-
ware and the extracted artifacts, the framework can
determine what future malware will consist of. Re-
sults showed that the model has an extremely high
detection rate and accuracy while still keeping a low
amount of time needed to run.

As some malware like Objective-C malware, also
known as userland, puts MacOS X systems at risk,
(Case and Richard, 2016) proposed a plugin for the
Volatility framework that focuses on automatically
analyzing the artifacts of the system that have impor-
tance. This is done by monitoring the Objective-C
at runtime and outputting a file that can be analyzed.
Based on this file, it can be examined and determined
how to deal with the current situation. This results
in a fast analysis time and less work for the analysts,
thus allowing more systems to be monitored in the
same amount of time. As typical Malware detection
and unpacking tools can be detected from the mal-
ware debuggers, malware stays dormant during scans
and avoids malware detection methods.

However, according to (Kawakoya et al., 2010),
while using the stealth debugger, malware is not
aware when to stay dormant or when to run to avoid
malware detection scans. In addition to that, the
stealth debugger takes the virtual machine memory
and sends it to the guest operating system. After
which, it runs the analysis to identify the true origins
of the code. Since most malware is advanced enough
to contain obfuscation methods, this model can detect
most packers at an incredibly high accuracy rate, with
some packers getting a perfect detection rate. While
static and dynamic approaches are a good start for de-
tecting malware, they can often be exploited by obfus-
cated malware, leading to malware deactivating the
detection methods. Using application-specific detec-
tion with machine learning, (Xu et al., 2017) was able
to get nearly a perfect malware detection rate. This
method works on the top layer and works down to
the kernel level, where many corruption attacks can
occur. With this approach, corruption attacks were
stopped 99 percent of the time with less than a five

180

percent false positive rate.

To combat the malware obfuscation techniques,
the detection method needs to be designed with ob-
fuscation in mind. This can be done using a specif-
ically designed dataset to test how well a detection
system deals with obfuscated malware. (Sadek et al.,
2019) challenged detection methods by using a large
dataset that consists of positive and negative memory
snapshots, advanced payload systems, and malware
obfuscation. (Bozkir et al., 2021) have come up with
a novel approach that uses an RGB image to show
memory dump files in their malware detection sys-
tem.

While using the manifold learning technique
called UMAP, (Javaheri and Hosseninzadeh, 2017)
identified the original memory dump file showing ma-
licious or benign activity. After testing with ten mal-
ware families and benign samples, the results were
roughly 96 percent accuracy at the extremely fast
speed of only 3.56 seconds. Moreover, a framework
was also developed to combat the obfuscation of mal-
ware. Using the detection presence time of the mal-
ware at each level of the operating system down to the
kernel, they were able to dump the malware memory
at the precise time and view the malware installation.
The framework was focused specifically on obfusca-
tion and packaging in mind to challenge one of the
biggest problems in malware detection. After testing
the framework, it obtained roughly 85 percent accu-
racy in detecting kernel-level malware. Though there
are many different methods to detect obfuscated mal-
ware, each method has to be looked into for different
situations.

Malware and botnets can be difficult to blacklist
when they use obfuscation and concealment. Botnet
command and control servers can also make a real-
time prediction for domain names extremely chal-
lenging. (S et al., 2019), discusses the use of a frame-
work to counter obfuscation by using the LSTM net-
work. This framework operates for both binary and
multi-class data with a high recall rate and precision,
producing a good F1 score. This F1 score consists of
over 80 percent for binary class data and over 60 per-
cent for multi-class data. Moreover, this framework
can be used to help identify concealed and obfuscated
malware in botnet systems.

VMShield, a proposed method by (Mishra et al.,
2021), protects virtual domains in the cloud from ob-
fuscated and stealthy malware attacks. This work
used a state-of-the-art method that collects runtime
behavior from the different processes and analyzes
the results to make obfuscated and stealthy malware
unable to sneak past detection. Passing down to the
system, VMShield is able to monitor the results of

each layer and trace all of the system calls and extract
the features that are the biggest impact on the system.
VMShield can detect more than 97 percent of the at-
tacks using these introspection techniques, including
hidden and obfuscated attacks. VMShield cloud pro-
tection process step by step, where it discusses the
tracing of the hypervisor from the virtual machine,
feature extraction, selection process, and profile gen-
eration. Finally, VMshield obtains the result of the
model and delivers a status report that can be looked
by the admin.

Virtual machine introspection has become a com-
mon tactic with detecting malware and other mali-
cious sources as it can miss hidden, dead, or obfus-
cated malware. With the use of a virtual machine
monitor, otherwise known as a hypervisor, (Kumara
and Jaidhar, 2016), discusses an automated internal
and external system that can detect hidden, dead, and
obfuscated malware inside the virtual machine with
the aid of machine learning. After testing the sys-
tem with an advanced data set using cross-validation,
the authors found that their system has a 99.55 per-
cent accuracy rate while still holding the extremely
low false-positive rate of 0.004 percent.

There exist works like (Sklavos, 2017) that dis-
cusses the security issues in IoT devices by study-
ing the malware for both system hardware and soft-
ware. In this work, the most widespread malware cat-
egories, such as logic bombs, rootkits, bots, etc., were
discussed from a software viewpoint. In addition to
that, the hardware security in IoT devices was also
studied by mentioning the power monitoring attacks,
timing attacks, etc. The work also presented the ex-
isting malware detection approaches and summarized
expected future directions.

Overall, it can be identified that several ap-
proaches exist for obfuscated malware detection
based on memory analysis. To the best of our knowl-
edge, no literature focused on the detection in the
memory through feature extraction, as the methods
used are very complex and time-intensive. It is also
interesting to notice that the works have focused on
detecting malware found in different system layers for
general and obfuscated malware cases. The VolMem-
Lyzer was developed as the first memory-based mal-
ware analysis feature extractor for learning-based so-
lutions, but it did not focus on obfuscated malware
analysis (Lashkari et al., 2020). As a result, this
work proposes an obfuscated malware memory anal-
ysis framework that focuses on a fast and low-cost
solution that will be discussed in the next section.

Detecting Obfuscated Malware using Memory Feature Engineering

3 PROPOSED APPROACH

In most existing works, the complexity and time con-
sumption are high, making them unsuitable for real-
world application. As a solution for this, a fast, ef-
ficient, and easy to develop solution for obfuscated
malware detection is proposed in this paper by using
the most effective features captured through memory
analysis.

3.1 General Overview

The overview of this obfuscated malware detection
framework is depicted in Figure 1. The components
of the proposed framework include:

e Memory Dump File: Memory dumps can be
obtained by using programs such as MAGNET
RAM, ManTech Memory DD, Forensic Tool Kit
(FTK), or virtual machine managers with the
memory capturing feature. This is a snapshot
showing the activity that took place in memory on
the system (MAG, 2021)(Man, 2021)(For, 2021).

e Volatility: is a completely open collection of
tools, implemented in Python under the GNU
General Public License, to extract digital arti-
facts from volatile memory (RAM) samples. (Vol,
2016).

e VolMemLyzer-V2: The memory feature extrac-
tor for learning-based solutions with the 26 new
features implemented as part of the proposed
model to target obfuscated and hidden malware.
VolMemLyzer extracts the features using volatil-
ity plugins and generates a CSV file(Lashkari
et al., 2020).

e CSV Feature File: This is the output from the
VolMemLyzer feature extractor, which contains
all the features that have been extracted in a com-
pact comma-separated values file (CSV).

e Ensemble Learning: A machine learning tech-
nique that focuses on combining classifiers to
cover its weaknesses. As some classifiers are eas-
ily swayed by outliers or have a high bias, ensem-
ble learning allows these weaknesses to have less
impact on the overall results (Ens, 2021). The
stacking ensemble technique was used for this
framework which has two layers of classifiers.

e Malicious and Benign Classification output: The
binary output for each memory dump file that
shows whether there is a malicious activity or be-
nign activity.

181

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

Volatility

L.

VolMemLyzer
Feature Extractor —»|
26 Mew Features

Memory
Dump File

Y

File

CSV Feature

.

Ensemble
Leamning

Malicious and Benign
Classification output

Figure 1: Malware Memory Analysis Process.

3.2 Proposed Features

The first step in this model is to obtain the memory
dump, which is compatible with the current Volatil-
ity version 2.6 (Vol, 2016) used for the framework
with the VolMemLyzer (Lashkari et al., 2020). The
memory dumps are then passed to the VolMemLyzer
feature extractor, which uses Volatility to extract 58
features. Among these 58 features, the newly added
26 features specifically focus on targeting obfuscated
and hidden malware, as explained in this section.

There are five different categories that these fea-
tures belong to from Volatility. The first category is
called Malfind, which detects potential malicious ex-
ecutables that are usually DLLs associated with Tro-
jan malware. The next category is called Ldrmodule,
which gives information on potential injected code
into the system, which is often the way which spyware
enters the system. The Handle category is the one
that looks at the type of information in memory and
its classification. The Process View features show the
process list with information that can be used to find
malicious processes. The last feature type is the API-
hook features which show the total number of API-
hooks of key types. Table 1 depicts the features ex-
tracted for the memory analysis framework.

3.3 Detection Model

Once these features are extracted, they are ready to be
fed into the proposed ensemble learning. The ensem-
ble learner has two stages, being the training stage and
the validation stage. In the training stage, the ensem-
ble learner runs the base learners, and the prediction
results from these classifiers are used as input for the
second layer classifier. After the ensemble learner is
trained, it is then validated, going through the same
process as the training to validate the data set results
and ensure that the training was successful.

There exist several ensemble learning techniques
such as stacking, voting, boosting, bagging etc. In
voting, the weights given by the user are used to com-
bine the classifiers, whereas stacking achieves this

182

aggregation with a meta classifier. In this proposed
work, stacking is selected as the method for ensemble
learning due to the speed and variance performance.
As mentioned above, the first layer runs individually,
allowing them to run in tandem and reduce the time
needed for classification. The second layer deals with
a slight variance of inputs which allows it to be run
quickly after the first layer is finished. The differ-
ent classifiers can compensate for each other’s weak-
nesses, keeping the accuracy high while classifying
fast.

As there are a plethora of machine learning clas-
sifiers, it is vital to identify the suitable classifier
that can be applied to the proposed model. Usually,
the classifier is selected based on the type of dataset
used for classification. This work’s chosen classifiers
are SVM, Decision Tree, Linear Perceptron, Naive
Bayes, Random Forest, and KNN as base learners, ex-
perimenting with different combinations. However,
only three were selected at a time, as the proposed
model developed using Python is built to use three
base learners and one meta learner. Similar to base
learners, different meta-learners such as SVM, KNN,
Naive Bayes, and Logistic Regression were also used
for finding the best classifier. All these classifiers
were chosen with the goal in mind for speed and ac-
curacy. The best combination among these will be se-
lected in the experimentation phase. Finally, the meta
learner outputs the binary results showing whether the
memory snapshot was malicious or benign. Figure 2
shows the different base learners and meta learners
used in the proposed model.

4 CREATING A NEW DATASET

As the proposed malware detection framework fo-
cuses explicitly on targeting obfuscated malware, a
dataset is developed to simulate real-world conditions
close to the malware found in the real world.

Detecting Obfuscated Malware using Memory Feature Engineering

Table 1: Extended Feature List.

Feature Type | Feature List Feature Discription
commitCharge Total number of Commit Charges
protection Total number of protection
Malfind uniquelnjections Total number of unique injections
avgMissingFromLoad | The average amount of modules missing from the load list
avgMissingFromInit | The average amount of modules missing from the initilization list
Ldrmodule avgMissingFromMem| The average amount of modules missing from memory
port Total number of port handles
file Total number of file handles
event Total number of event handles
desktop Total number of desktop handles
key Total number of key handles
thread Total number of thread handles
directory Total number of directory handles
semaphore Total number of semaphore handles
timer Total number of timer handles
section Total number of section handles
Handles mutant Total number of mutant handles
pslist Average false ratio of the process list
psscan Average false ratio of the process scan
thrdproc Average false ratio of the third process
pspcid Average false ratio of the process id
session Average false ratio of the session
Process View | deskthrd Average false ratio of the deskthrd
nhooks Total number of apihooks
nhookInLine Total number of in line apihooks
Apihooks nhooksInUsermode Total number of apihooks in user mode

Input Data

~z

First Layer Classifiers &]

A b

Random Forest SVM | Decision Tree | | Linear Perceptron | | KNN | Naive Bayes

— o o T T

~z

Second Layer Classifiers &]

4.1 Overview

LR
KNN
SV

NB

s .
(Binary Classification |
_ /

Figure 2: Stacked Ensemble Learning Classifiers.

malicious records is created by capturing malicious
as well as benign dumps. For capturing malicious

In this research, a dataset (MalMemAnalysis-2022) memory dumps, 2,916 malware samples collected
of 58,596 records with 29,298 benign and 29,298

183

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

from VirusTotal that have different malware cate-
gories including Ransomware, Spyware, and Trojan
Horse as listed in the Table 2, are executed in a
VM with 2 GigaBytes of memory. Similarly, for the
creation of benign memory dumps, normal user be-
haviour is captured by using various applications in
the machine. The detailed process will be discussed
in the below section. (New dataset will be avail-
able in “https://www.unb.ca/cic/datasets/MalMem-
2022.html”).

Table 2: Malware sample count.

Malware Category | Malware Count
Families

. Zeus 195
Trojan Horse Emotet 196
Refroso 200
scar 200
Reconyc 157
S 180Solutions 200
pyware Coolwebsearch| 200
Gator 200
Transponder 241
TIBS 141
Ransomware Conti 200
MAZE 195
Pysa 171
Ako 200
Shade 220

4.2 Creating Dataset

Four main steps were considered in this dataset cre-
ation: research, memory dump extraction, memory
dump transfer, and feature extraction.

e First step is the research of the malware category,
family, and sample type. It is important to have
malware that simulates as close to a real-world ex-
ample as possible. As such, malware designed to
specifically target old systems that are no longer
in use and do not work on newer systems would
not accurately detect the malware of current sys-
tems. This is the reason why in-depth research
was done on each family and type of malware.
Based on the research, we have collected a mini-
mum of 100 and a maximum of 200 malware sam-
ples from five different families in three malware
categories: Trojan Horse, Ransomware, and Spy-
ware.

e The second step is memory dumping. The mem-
ory dump can be activated outside the virtual ma-
chine, where the memory snapshot is captured
from using the VirtualBox virtual machine man-

184

agement system. This ensures that the memory
dump is not contaminated with a process usually
not on the typical system. The memory dump is
captured from a Windows10 system rather than a
windows XP or older system that is not used as
much. This is to ensure that the malware being
tested is as close to a real-world simulation as pos-
sible. To expand the dataset, this process was au-
tomated where 2,916 malware samples from three
malware categories including Trojan Horse, Ran-
somware, and Spyware were executed in the VM.
As it is important to have some benign processes
executed during the malicious memory dump cre-
ation, different applications in Windows VM were
opened along with executing the malware sam-
ples. This is done to make sure that the classifier
is not able to determine the difference just based
on the benign processes alone. For each sample
execution, 10 memory dumps, each with a 15 sec-
onds gap, were captured to ensure no malware
behaviour is left out, and extracted 29,298 mali-
cious memory dumps. For benign dumps, normal
user behaviour is captured by using different ap-
plications in the machine and performed oversam-
pling using SMOTE algorithm to make the dataset
balanced. Unlike other oversampling methods,
SMOTE does not generate duplicates instead pro-
duces synthetic values that are negligibly distinct
from the actual values.

e The third step consists of transferring the result-
ing memory dump files to a Kali Linux machine to
perform the feature extraction using the VolMem-
Lyzer with the 26 new features added to target
malware obfuscation.

o The fourth main step on the initial process was the
feature extraction of the memory dump files and
the creation of the final combined CSV file for all
tested memory dump files, which is to be used in
the ensemble learning system. After the memory
dumps were acquired, the VolMemLyzer feature
extractor ran on all the memory dumped files in
the folder and generated the resulting CSV file to
be used in the ensemble learning system.

sectionEXPERIMENTS To finalize our proposed
model, we have used the newly created dataset. The
detailed experimental setup, along with the finalized
model, is discussed in the below sections.

4.3 Experimental Setup
A python code and a bash script are used to execute

the malware samples on a 64-bit Windows 10 isolated
virtual machine inside Oracle Virtual Box and cap-

tured the local machine’s memory dumps. For the fea-
ture extraction, we created the CSV file with features
from the captured memory dump using VolMemLyzer
feature extractor for learning systems, publicly avail-
able on GitHub (Lashkari et al., 2020). In addi-
tion to that, for developing stacked ensemble learn-
ers, python was used with the Sklearn library and de-
ployed in the Jupyter Notebook IDE for simplifying
the development of model (skl, 2021).

4.4 Finalizing The Proposed Model

This section finds the best combination of base learn-
ers and meta learners by performing several experi-
ments. First, each base-learner is evaluated using the
created dataset, and results are analyzed using differ-
ent evaluation metrics, including Accuracy, weighted
average Precision, weighted average Recall, and F1-
score, as shown in Table 3. From the results, it can
be identified that RF, Decision Tree, and KNN exhib-
ited better performance, whereas Linear Perceptron
has the least performance.

Table 3: Individual Classifiers Result.

Classifiers | Pre. Rec. | F1 Acc.
RF 098 | 097 | 0.97 | 0.97
NB 092 | 092 | 092 | 0.92
DT 097 | 097 | 097 | 0.97
KNN 095 [095 | 095 | 0.95
SVM 091 | 090 | 090 | 0.90
LP 0.61 | 059 | 0.53 | 0.60

To select the best stacking model and finalize
it, different combinations of base-learners and meta-
learners were considered and the top four highest ac-
curacy results among them are shown in Table 4. Re-
sults proved that the performance of the model is
increased when ensemble methods like stacking are
used. One of the main goals of the research was to fo-
cus on overall speed of which classification speed has
been optimized. The classifiers that were considered
had a fast classification speed while also able to work
on a large variance of data for the first layer. The sec-
ond layer classifiers didn’t need a large variance so
strictly speed and accuracy was looked into. Stacking
was chosen to satisfy the goal of a fast speed in clas-
sification since stacking allows first layer classifiers
to run in parallel. At a fast speed, it is able to check
the results from multiple classifiers and determine the
right binary classification. Moreover, it is also iden-
tified that although some classifiers perform poorly,
their performance can be enhanced when combined
with some other classifiers.

Hence, based on the results, the selected classifiers

Detecting Obfuscated Malware using Memory Feature Engineering

Table 4: Ensemble Model Comparison.

Base Meta Pre. | Rec.| F1 Acc.
Learner Learner
NB,LP,DT | SVM 0.96| 0.95| 0.95| 0.95
SVM, LP, DT| KNN 0.97] 0.96| 0.96| 0.96
NB,LP,RF | LR 0.98| 0.97| 0.97| 0.97
NB, RF, DT | LR 0.99] 0.99] 0.99| 0.99

were Naive Bayes, Random Forest, and Decision Tree
for the base-learners and Logistic regression as the
meta-learner in the finalized model. Figure 3 shows a
confusion matrix representing the true positive, false
positive, false negative and true negative.

08
benign 00013
- 0.6
F-]
o
L
=
= 04
malware
02

benign malware
Predicted label

Figure 3: Confusion matrix results.

Furthermore, since the memory dump used for
feature extraction is taken from a Windows10 system,
the size of each memory dump is 2GB which is quite
large. However, the resulting CSV files’ size is around
2KB, allowing for scalability in the proposed model.
Moreover, this model could solve the complexity and
time-consuming issues found in the existing works.

Table 5 shows the approximate time for samples
to be classified as malicious or benign. From this, it
can be identified that the classification time displayed
is linear, which proves the model’s scalability. Over-
all, the proposed stacked ensemble model has a clas-
sification time of around 0.008 milliseconds per sam-
ple, which is significantly lower than most of the other
models listed in the related works (the second column
of the Table 6).

4.5 Comparing Proposed Model With
Relevant Studies

The comparison mainly focused on existing works
that targeted obfuscated malware or hidden malware
that belonged to one of the three categories of Ran-
somware, Spyware, and Trojan Horse malware. Table
6 shows the results of the four various related works

185

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

Table 5: Approximate Classification Time Based On The
Number Of Samples.

No. of samples | Time (Sec)
50 0.4

100 0.8

150 1.2

200 1.6

250 2

300 2.4

in the targeted area. Due to the differences in datasets
and approaches, the exact results are difficult to com-
pare and often biased towards a specific method.

The four criteria for comparison were overall ac-
curacy of the technique, overall speed per sample,
memory usage needed to classify a sample, and over-
all model complexity. Based on these criteria, each
work was given a result on a scale from very low to
very high. These four related works are then com-
pared to the proposed model, Detecting Obfuscated
Malware using Memory Feature Engineering.

The first work selected for comparison is the work
by (Xu et al., 2017) which has very impressive ac-
curacy and medium complexity. However, the mem-
ory usage is high, and the work did not mention the
speed. In the second work, (Bozkir et al., 2021) de-
tected obfuscated malware with high accuracy and a
rate of 3.56 seconds to detect per sample. Although
the complexity of this model is high, the primary con-
cern is the memory usage as the system needs to store
the RGB image representation for each sample and
three different images for the creation of the final im-
age. The third work is from (Javaheri and Hossenin-
zadeh, 2017) which has a model that requires a lower
amount of memory with high speed. However, it is
worth noting that this framework does have increased
complexity and has less accuracy than the previous
methods. The fourth work is from (Nissima et al.,
2019), and the model exhibits a high accuracy with
lower complexity compared to the previous two meth-
ods. However, it is slower, and the amount of memory
used is not mentioned.

Comparing these related works shows the impor-
tance of a fast detection method for obfuscated or hid-
den malware. The high amount of obfuscated mal-
ware has made speed and scalability a requirement
rather than a luxury. From the results, it can be identi-
fied that the new features and stacked machine learn-
ing model improve the overall accuracy for obfus-
cated and hidden malware detection.

186

S CONCLUSIONS

As networking and the internet evolved, malware au-
thors swiftly adapted their malicious code, and most
of them are used to exploit vulnerabilities in Mi-
crosoft Windows. Although several techniques ex-
ist to detect obfuscated or hidden malware based on
memory analysis, the time consumption and com-
plexity of the works are high. As a solution for this
problem, obfuscated malware detection model is pro-
posed, which extracts features from memory dumps
using VolMemLyzer, a feature extractor for learning
systems. For this, a dataset (MalMemAnalysis-2022)
was constructed by executing malware samples from
three main categories, Spyware, Ransomware, and
Trojan Horse malware, in an isolated virtual machine.

The model was designed to use memory fea-
ture engineering with a stacked ensemble learner to
achieve the goals of this research. Different combi-
nations of base-learners and meta-learners were used
using the created dataset, and the final model was se-
lected based on different evaluation metrics. The best
results were exhibited when Naive Bayes, Decision
Tree, and Random Forest were used as base learners
and Logistic Regression as the meta-learner with an
accuracy of 99%. Moreover, this model is compared
with related works that focus on obfuscated malware
detection in memory. The comparison results showed
that the proposed model has less classification time
and better performance.

5.1 Future Work

Detecting obfuscated malware in memory using fea-
ture engineering with the VolMemLyzer shows a
quick and precise way of dealing with malware that
is attempting to hide in memory. The next step of
this research is to work with more advanced designer
malware that is specifically designed for different sys-
tems, including Mac and Linux-based systems. More-
over, this can ensure that older systems are protected
with this detection model and can be incorporated
with upcoming systems. This would protect most sys-
tems from obfuscated malware attacks by focusing on
automated detection. With ransomware running ram-
pant in today’s society, ensuring that this malware is
detected and dealt with before it causes harm is ex-
tremely important. The speed of this model can help
detect the malware before such harm is caused and
thus reduce overall harm.

Detecting Obfuscated Malware using Memory Feature Engineering

Table 6: Comparison Table With Other Obfuscated Malware Detection Methods.

Method Accuracy | Speed 1\/[[?512;)? Complexity

(Xu et al., 2017) Very High | Not Mentioned| High Medium

(Bozkir et al., 2021) High Medium Very High High

(Javaheri and Hosseninzadeh, 2017) | Medium High Low High

(Nissima et al., 2019) High Medium Not Mentioned| Medium

Proposed Model High Very High Low Medium
ACKNOWLEDGEMENTS Dolan-Gavitt, B. (2008). Forensic analysis of the windows

We thank the Mitacs Program for providing the
Global Research Internship (GRI) opportunity to sup-
port this project.

REFERENCES

(2016). Volatility framework - volatile mem-
ory extraction utility framework. https:
//github.com/volatilityfoundation/volatility. (Ac-
cessed on 08/10/2021).

(2021). Ensemble methods in machine learn-
ing: What are they and why use them?

https://towardsdatascience.com/ensemble-methods-
in-machine-learning-what-are-they-and-why-use-
them-68ec3f9fef5f5. (Accessed on 08/10/2021).

(2021). Ftk® forensic toolkit: The gold standard in digital
forensics for over 15 years. https://www.exterro.com/
forensic-toolkit. (Accessed on 08/9/2021).

(2021). Magnet ram capture: What does it do?
https://www.magnetforensics.com/resources/
magnet-ram-capture/. (Accessed on 08/11/2021).

(2021). Mantech memory dd version 1.3 for
forensic ~ analysis of computer = memory.
https://investor.mantech.com/press-releases/press-
release-details/mantech-memory-dd-version-13-
forensic-analysis-computer-memory. (Accessed on
08/12/2021).

(2021). Understanding logistic regression in python. https:
/lrealpython.com/logistic-regression-python/. (Ac-
cessed on 08/10/2021).

Block, F. and Dewald, A. (2017). Linux memory forensics:
Dissecting the user space process heap. Digital Inves-
tigation, 22:pp. 66-75.

Bozkir, A. S., Tahilioglu, E., Aydos, M., and Kara, L
(2021). A malware detection approach through mem-
ory forensics, manifold learning and computer vision.
Science Direct, 103.

Case, A. and Richard, G. G. (2016). Detecting objective-c
malware through memory forensics. Digital Investi-
gation, 18.

Dai, Y., Li, H., Qian, Y., and Lu, X. (2018). A malware clas-
sification method based on memory dump grayscale
image. Digital Investigation, 27:pp. 30-37.

registry in memory. Digital Investigation, 5:pp. 26—
32.

Javaheri, D. and Hosseninzadeh, M. (2017). A framework
for recognition and confronting of obfuscated mal-
wares based on memory dumping and filter drivers.

Kang, J., Jang, S., Li, S., Jeong, Y.-S., and Sung, Y. (2019).
Long short-term memory-based malware classifica-
tion method for information security. Computers and
Electrical Engineering, 77.

Kawakoya, Y., Iwamura, M., and Itoh, M. (2010). Mem-
ory behavior-based automatic malware unpacking in
stealth debugging environment. 5th International
Conference on Malicious and Unwanted Software,
Nancy, Lorraine, pages pp. 39-46.

Kumara, A. and Jaidhar (2016). Leveraging virtual machine
introspection with memory forensics to detect and
characterize unknown malware using machine learn-
ing techniques at hypervisor. Digital Investigation,
23:pp. 99-123.

Lashkari, A. H., Li, B., Carrier, T. L., and Kaur, G.
(2020). Volatility memory analyzer. https://github.
com/ahlashkari/VolMemLyzer.

Lewis, N., Case, A., Ali-Gombe, A., and III, G. G. R.
(2018). Memory forensics and the windows subsys-
tem for linux. Digital Investigation, 26:pp. 3—11.

Li, H., Zhan, D., Liu, T., and Ye, L. (2019). Using deep-
learning-based memory analysis for malware detec-
tion in cloud. 2019 IEEE 16th International Con-
ference on Mobile Ad Hoc and Sensor Systems Work-
shops (MASSW), Monterey, CA, USA, pages pp. 1-6.

Martin-Perez, M., Rodriguez, R. J., and Balzarotti, D.
(2021). Pre-processing memory dumps to improve
similarity score of windows modules. Computer &
Security, 101.

Mishra, P., Aggarwal, P., Vidyarthi, A., Singh, P., Khan,
B., Alhelou, H. H., and Siano, P. (2021). Vmshield:
Memory introspection-based malware detection to se-
cure cloud-based services against stealthy attacks.
IEEE Transactions on Industrial Informatics.

Nissima, N., Lahava, O., Cohena, A., and Rokacha, Y. E. L.
(2019). Volatile memory analysis using the minhash
method for efficient and secured detection of malware
in private cloud. Computers & Security, 87.

Okolica, J. and Peterson, G. L. (2010). Windows operating
systems agnostic memory analysis. Digital Investiga-
tion, 7:pp. 48-56.

187

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

Okolica, J. S. and Peterson, G. L. (2011). Windows driver
memory analysis: A reverse engineering methodol-
ogy. Computers & Security, 30:pp. 770-779.

S, A., S, S., Poornachandran, P., krishna Menon, V., and P,
S. K. (2019). Deep learning framework for domain
generation algorithms prediction using long short-
term memory. /ICACCS.

Sadek, I., Chong, P., Rehman, S. U., Elovici, Y., and Binder,
A. (2019). Memory snapshot dataset of a compro-
mised host with malware using obfuscation evasion
techniques. Data in brief, 26.

Sai, K. V. N., Thanudas, B., Chakraborty, A., and Manoj,
B. S. (2019). A malware detection technique using
memory management api call mining. /EEE.

Sharafaldin, 1., Gharib, A., and Lashkari, A. H. (2017).
Botviz: A memory forensic-based botnet detection
and visualization approach. International Carnahan
Conference on Security Technology (ICCST).

Shree, R., Shukla, A. K., Pandey, R. P., Shukla, V., and
Bajpai, D. (2021). Memory forensic: Acquisition and
analysis mechanism for operating systems. Materials
Today: Proceedings.

Sihwail, R., Omar, K., Ariffin, K. A. Z., and Afghani, S. A.
(2019). Malware detection approach based on artifacts
in memory image and dynamic analysis. Applied Sci-
ences.

Sklavos, N. (2017). Malware in iot software and hardware.
In Workshop on Trustworthy Manufacturing and Uti-
lization of Secure Devices (TRUDEVICE’16), pages
8-11.

Socala, A. and Cohen, M. (2016). Automatic profile gener-
ation for live linux memory analysis. Digital Investi-
gation, 16:pp. 11-24.

Statista (2021). Statista: annual number of mal-
ware attacks worldwide from 2015 to 2019.
https://www.statista.com/statistics/873097/
malware-attacks-per-year-worldwide/. (Accessed on
08/10/2021).

Stiittgen, J. and Cohen, M. (2014). Robust linux memory
acquisition with minimal target impact. Digital Inves-
tigation, 11:pp. 112-119.

Thantilage, R. and Jeyamohan, N. (2017). A volatile mem-
ory analysis tool for retrieval of social media evidence
in windows 10 os based workstations. National Infor-
mation Technology Conference (NITC).

Xu, Z., Ray, S., Subramanyan, P., and Malik, S. (2017).
Malware detection using machine learning based anal-
ysis of virtual memory access patterns. Design, Au-
tomation & Test in Europe Conference & Exhibition
(DATE), Lausanne, pages pp. 169—174.

Yucel, C. and Koltuksuz, A. (2019). Imaging and evaluat-
ing the memory access for malware. Forensic Science
International: Digital Investigation, 32.

Zhang, R., Wang, L., and Zhang, S. (2009). Windows mem-
ory analysis based on kpcr. International Conference
on Information Assurance and Security.

Zhang, S., Wang, L., and Zhang, L. (2011). Extracting win-
dows registry information from physical memory. 3rd
International Conference on Computer Research and
Development.

188

Zhang, S., Wang, L., Zhang, R., and Guo, Q. (2010). Ex-
ploratory study on memory analysis of windows 7
operating system. International Conference on Ad-
vanced Computer Theory and Engineering(ICACTE),
3.

