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Abstract: In the last decade neural network have made huge impact both in industry and research due to their ability
to extract meaningful features from imprecise or complex data, and by achieving super human performance
in several domains. However, due to the lack of transparency the use of these networks is hampered in the
areas with safety critical areas. In safety-critical areas, this is necessary by law. Recently several methods
have been proposed to uncover this black box by providing interpreation of predictions made by these models.
The paper focuses on time series analysis and benchmark several state-of-the-art attribution methods which
compute explanations for convolutional classifiers. The presented experiments involve gradient-based and
perturbation-based attribution methods. A detailed analysis shows that perturbation-based approaches are
superior concerning the Sensitivity and occlusion game. These methods tend to produce explanations with
higher continuity. Contrarily, the gradient-based techniques are superb in runtime and Infidelity. In addition,
a validation the dependence of the methods on the trained model, feasible application domains, and individual
characteristics is attached. The findings accentuate that choosing the best-suited attribution method is strongly
correlated with the desired use case. Neither category of attribution methods nor a single approach has shown
outstanding performance across all aspects.

1 INTRODUCTION

For several years, the field of artificial intelligence has
shown a growing interest in both research and indus-
try (Allam and Dhunny, 2019). This attention led to
the discovery of crucial limitations and weaknesses
when dealing with artificial intelligence. The follow-
ing main concerns have become increasingly impor-
tant: resource management, efficiency, data security,
but also interpretability and explainability. According
to (Perc et al., 2019) these limitations originate from
the social and the juristic domain.

Particularly the interpretability of the classifiers’
decisions plays a crucial role in industry and safety-
critical application areas. The legal situation rein-
forces the significance of interpretability. In the med-
ical sector, financial domain, and other safety-critical
areas (Bibal et al., 2020) explainable computations
are required.
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Over several years, a wide range of methods to ex-
plain neural networks was summarized by (Došilović
et al., 2018). These methods involve both intrin-
sic and post-hoc approaches across a broad scope
of modalities involving language processing, image
classification, and time series analysis. The majority
of these approaches have origin from image analysis
since the visual criteria (Zhang and Zhu, 2018) and
concepts are more intuitive for humans.

Due to the lack of evaluations of the existing ap-
proaches in the context of time series, the paper con-
centrates on their applicability and effectiveness in
time series analysis. A comprehensive analysis of ex-
isting attribution methods as one class of commonly
used interpretability methods is presented. The paper
further covers the strengths and weaknesses of these
methods. Specifically, a runtime analysis is done,
which is relevant for real-time use cases. Besides the
computational aspects, the Infidelity, Sensitivity, in-
fluence on accuracy, and correlations between the at-
tributions were evaluated. For this purpose, AlexNet
was used as architecture and experiments on well-
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known and freely available time series datasets were
executed.

The contribution includes a comprehensive anal-
ysis of several state-of-the-art attribution methods
concerning runtime, accuracy, robustness, Infidelity,
Sensitivity, model parameter dependence, label de-
pendence, and dataset dependence. The findings il-
lustrate the superior performance of gradient-based
methods concerning runtime and Infidelity. In con-
trast, perturbation-based approaches give better re-
sults concerning the Sensitivity, occlusion game, and
continuity of the attribution maps. The paper em-
phasizes that none of the two categories is superior
in all evaluated characteristics and that the selection
of the best-suited attribution methods depends on the
desired properties of the use case.

2 RELATED WORK

Often Attribution methods are used to interpret classi-
fiers. A comprehensive overview of the different cat-
egories involving attribution methods is given by Das
et al. (Das and Rad, 2020). Attribution methods are
well-known as they are compatible with various net-
works and therefore do not require any restrictions in
the design of the network. Attribution methods be-
long to the class of posterior techniques that require
less cognitive effort to interpret due to their simple
visualization of the relevance of the input. Further-
more, no detailed knowledge about the analyzed clas-
sifier is needed. Especially for image classification,
there is a wide range of attribution methods and dif-
ferent benchmark works. According to the authors
of (Abdul et al., 2020), an explanation always results
in a trade-off between accuracy, simplicity, and cog-
nitive effort that is one reason for the popularity of the
attribution methods.

Aspects like the Sensitivity, the change of the at-
tribution map by permutation of the input signal, and
other metrics are applied to understand the exact ad-
vantages and disadvantages of the methods. More
details about the importance and impact of Sensitiv-
ity are summarized by Ancona et al. (Ancona et al.,
2017). Besides Sensitivity, Infidelity, known as the
change in classification when permutating the input,
plays a role. According to Yeh et al. (Yeh et al.,
2019), Infidelity serves a pivotal role in explaining the
quality of an attribution method. Further aspects are
the runtime and the difference between black box and
white box requirements.

Also, aspects like the dependency on gradient cal-
culation play a big role. Some methods work with-
out backpropagation and use permutations and the

forward pass to calculate the relevance of the input
points. A detailed differentiation of these categories
can be was provided by Anacona et al. (Ancona et al.,
2019) and Ivanovs et al. (Ivanovs et al., 2021).

The experiments are aligned with existing image
processing surveys and used similar metrics. A com-
prehensive analysis for the image modalities was writ-
ten by Adebayo et al. (Adebayo et al., 2018). Al-
though this paper used similar experiment settings,
the results may differ due to the diverse modalities.

However, the precise evaluation of these methods
in the time series domain is crucial. Karliuk men-
tioned that (Karliuk, 2018) it was legally stipulated
that neuronal networks, for example, may not be used
in all areas of life as their interpretability and ethical
problems still exist. Peres et al. (Peres et al., 2020)
discussed which aspects are relevant for the applica-
tion of neural networks in the economy. In addition
to data protection restrictions and efficiency, the in-
terpretability of neural networks plays a pivotal role,
especially today.

3 EVALUATED METHODS

This section provides an overview of the different
methods, their applicability, and categorization. First
of all, the used methods are a subset that can be used
in the field of time series analysis and do not require
the selection of internal layers for calculation.

3.1 Gradient-based

Gradient-based methods include Integrated Gra-
dients, Saliency maps, InputXGradient, Gradi-
entShap (Lundberg and Lee, 2017) and Guided-
Backprop. In the case of Integrated Gradients (Sun-
dararajan et al., 2017) backpropagation is applied to
calculate an importance value for each input value rel-
ative to a baseline. An elementary part of this method
is to know the baseline. The selection of this base-
line is crucial for the computation of the gradients
to make sense. In contrast, the Saliency (Simonyan
et al., 2013) does not need a baseline and only com-
putes the gradients. A method that is very similar
to this is called Input X Gradient (Shrikumar et al.,
2016). Here the calculated gradients are multiplied
by the input to create a relation between them and the
input values. Guided-Backpropagation (Springenberg
et al., 2014) also uses a backward run to compute the
importance of the values. However, a modification to
the network is required. The resulting limitation is the
access to the activation function to modify it. Previ-
ously mentioned methods require a backward calcu-
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lation leading to noisy explanations due to the gradi-
ents. In addition, they need to access internal param-
eters. The core concept of GradientShap relies on the
estimation of the SHAP values of the input. SHAP
values are estimated using targeted permutations of
the input sequence. These values are an approxima-
tion since the exact calculation of the SHAP values is
very time and resource-intensive. GradientShap is in
this respect very similar to Integrated Gradients.

3.2 Perturbation-based

These methods are different to the gradient based
methods, as they do not need access to the gradients.
Perturbation-based methods slightly change the input
and compare the output to the baseline to create an im-
portance ranking. Example approaches for this cate-
gory are Occlusion (Zeiler and Fergus, 2014) and Fea-
ture Permutation (Fisher et al., 2019) and FeatueAb-
lation. All these methods differ in the way they mod-
ify the individual points. Another method that makes
use of the perturbation principle is Dynamask (Crabbé
and van der Schaar, 2021). A mask gets learned uti-
lizing permutations to calculate the relevant input val-
ues. Apart from Dynamask, the above methods have
the advantage that no backpropagation and thus no
full access to the network and the parameters is re-
quired. Dynamask particularly allows easy visualiza-
tion and restriction to a percentage of the features.
The disadvantages of these methods are the correct
choice of permutation depending on the dataset. In
addition, the increased runtimes due to the multiple
forward passes are negative too.

3.3 Miscellaneous

Shapley Value Sampling (SVS) (Mitchell et al., 2021)
is based solely on a random permutation of the in-
put values. The influence on the output is deter-
mined utilizing multiple forward calculations. Us-
ing SVS requires further points in addition to the
data point under consideration to be changed. Fi-
nally, Lime (Ribeiro et al., 2016) tries to explain the
model using a local model trained on perturbed input
samples related to the original input to train an inter-
pretable model and create importance values based on
this model.

4 DATASETS

For the experiments asubset of the datasets from UEA
& UCR (Bagnall et al., 2021) repositories was used.
The selected datasets cover different aspects such as a

Table 1: UEA & UCR Datasets related to critical infras-
tructures.

Domain & Dataset Train Test Steps Channels Classes
Communications
UWaveGestureLibraryAll 896 3,582 945 1 8
Critical manufacturing
FordA 3,601 1,320 500 1 2
Anomaly 35,000 15,000 50 3 2
Public health
ECG5000 500 4,500 140 1 5
FaceDetection 5,890 3,524 62 144 2
Telecommunications
CharacterTrajectories 1,422 1,436 182 3 20

variance in the number of channels, sequence length,
classes, and task. The tasks include point anomaly
and sequence anomaly classification in which an oc-
currence of a single anomalous point is enough to
change the label. Furthermore, the datasets cover tra-
ditional sequence classification not related to atypical
behavior. These datasets are taken from different criti-
cal domains that require explainability and in addition
privacy. In addition, to the UEA & UCR datasets,
The point anomaly dataset proposed by Siddiqui et
al. (Siddiqui et al., 2019) was included as it is unique
compared to the others, and a perturbation on single
points can change the complete prediction. Table 1
lists the different datasets used in this paper.

5 EXPERIMENTS & RESULTS

In this section, different aspects of the above meth-
ods are evaluated. The methods were not optimized
to ensure fairness among the approaches. Fine-tuning
an attribution method requires assumptions about the
dataset. However, in a real case, this prior knowledge
is not necessarily given. The work covers the follow-
ing aspects: Impact on the accuracy, Infidelity, Sensi-
tivity, runtime, the correlation between the methods,
and impact of label and model parameter randomiza-
tion. In existing work such as (Adebayo et al., 2018;
Huber et al., 2021; Nielsen et al., 2021) these mea-
surements are judged as significant.

In general, all experiments are executed for the
previously mentioned datasets. However, identical re-
sults were excluded due to the limited space and the
low amount of insights they provide to the reader.
The preprocessing of the data covers a standardiza-
tion to achieve a mean of zero and a standard devia-
tion. Therefore, the baseline signal is a sequence of
zeros. AlexNet was modified to work with 1D data
and trained the network using an SGD optimizer and
a learning rate of 0.01 to evaluate the different attri-
bution techniques. In Table 2 the network structure of
the AlexNet is shown. The layer names used in the re-
set of the paper refer to those mentioned in the archi-
tecture figure. All networks were trained for a maxi-
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Table 2: Architecture. AlexNet architecture includes layer
names used in this paper. Dropout layers are excluded from
the table. The padding of every layer was set to ’same’.
The variables ’c’, ’w’, and ’l’ depend on the input channels,
width, and the number of classes of the used dataset.

Name Type In Out Size Stride
conv 1 Conv, ReLu, Batch c 96 11 4
pool 1 MaxPool 96 96 3 2
conv 2 Conv, ReLu, Batch 96 256 5 1
pool 2 MaxPool 256 256 3 2
conv 3 Conv, Relu, Batch 256 384 3 1
conv 4 Conv, Relu, Batch 384 384 1 1
conv 5 Conv, Relu, Batch 384 256 1 1
pool 2 MaxPool 256 256 3 2
dense 1 Dense, ReLu w∗256 4,096
dense 2 Dense, ReLu 4,096 4,096
dense 3 Dense 4,096 l

Table 3: Accuracies. Evaluation of the test data using the
original split provided by the datasets. Subset covers the
performance of the model on the 100 samples subset that
is used in the rest of the paper due to the computational
limitations. The values show the weighted-f1 scores and
provide evidence that the difficulty of the sets is similar.

Dataset Test Set Attribution. Subset
Anomaly 0.9801 0.9464
CharacterTrajectories 0.9930 1.0000
ECG5000 0.9352 0.8907
FaceDetection 0.5956 0.7097
FordA 0.9204 0.9400
UWaveGestureLibraryAll 0.9318 0.9802

mum of 100 epochs. In addition, the learning rate was
reduced by half after a plateau and performed early
stopping based on the validation set. In the particu-
lar case of label permutation, the labels of the train-
ing data were randomized. All experiments used fixed
random seeds to preserve reproducibility.

Due to the immense computational effort, a set
of 100 test samples was selected to evaluate the at-
tribution methods. In addition, these samples pre-
serve the class distribution of the test set. In Table 3
the weighted f1 scores are shown. The differences in
the weighted-f1 scores between the original data and
the subsets are less than 5%. Only the FaceDetec-
tion dataset shows a difference of 19%. This differ-
ence does not hinder the analysis as those two sets are
never compared.

5.1 Impact on the Accuracy

To evaluate the performance of the attribution meth-
ods, the drop in accuracy under the addition and oc-
clusion of the data points was inspected. To oc-
clude the data, the points were set to zero as this
is the mean of the data corresponding to the base-
line. Respectively, the start point is zero when adding
points step-wise. This experiment was performed
in both directions adding important points and in-
significant data. In Figure 1 the results show that

most of the methods were able to correctly iden-
tify the data points that have the most influence on
the accuracy. Intuitively, data points that have a
higher impact on accuracy should be ranked higher.
The top row shows the accuracy increase adding the
most significant points step-wise. The bottom row
shows the behavior of adding the insignificant data
points first. Ultimately, reading each plot starting
from 100 to 0 percent results in excluding the least
important ones for the top row and most important
ones for the bottom row. The experiments high-
light that for most datasets, namely Anomaly, Char-
acterTrajectories, ECG5000, and UWaveGestureLi-
braryAll, a small number of data points is enough
to recover the accuracy. Surprisingly, adding unim-
portant data points resulted in higher accuracy val-
ues. Examples of this behavior are the Lime, Saliency,
and Dynamask approach. This behavior appears in
the ECG5000, FordA, and UWaveGestureLibraryAll
datasets. Saliency has shown to suffer from the noisy
backpropagation. The drawbacks of Lime and Dyna-
mask are their hyperparameters. These are the num-
ber of neighborhood samples for Lime and the area
size and continuity loss for Dynamask.

5.2 Prediction Agreement

In addition to the accuracy drops, the agreement with
the original data was computed. Therefore, In Table 4
the percentage of data required to produce a similar
prediction as with the original sample are shown. To
do so, data points are included step-wise based on
their importance. Initially, all data samples start with
zeros. In every step, the next most important data
point was added. The results show that the required
data for an agreement of 90% of the predictions is
in most cases reached with far less than 50% of the
data. The results show that the perturbation-based ap-
proaches overall performed better. In addition, the
results show that the required amount of data highly
differs based on the dataset. Intuitively, Dynamask
did not perform well on this task as it provides only a
binary decision on whether a feature is significant or
not. Besides Dynamask, the Saliency and KernelShap
have shown a worse performance too. On the other
side, the FeatureAblation, FeaturePermutation, Guid-
edBackProp, and ShapleyValueSampling approaches
have shown superior performance to the other meth-
ods using the data suggested to be important by those
methods resulted in a much earlier agreement of the
prediction. Interestingly, the point anomaly dataset
has shown that highlighting only one percent of the
data is enough to reach a 90% agreement. In addition,
getting to a similar prediction for the UWaveGesture
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Figure 1: Impact on accuracy. Shows the impact when adding points to the baseline signal using the attribution scores as
sequence order. Top: Shows the increase adding the most important points. Bottom: Shows the increase adding the least
important points. Precisely, each plot read from 100 percent used data to 0 shows the impact removing the least important
points for the top row, respectively the most important for the bottom row. The values show the weighted-f1 scores. Except
Dynamask, Saliency, and KernelShap the performances of the approaches are similar.

Table 4: Prediction agreement. Evaluation of how many data points are required to reach a specific agreement between the
original and modified input. All numbers are in percentage, and lower numbers are better as less data was needed to restore
the ground-truth predictions. The numbers in each cell show the percentage of data points added to the baseline to achieve the
required agreement concerning the prediction. Perturbation-based approaches have shown a significantly better performance.

Method Anomaly CharacterTraj. ECG5000 FaceDetection FordA UWaveGesture
Req. Agreement in [%] 90 95 100 90 95 100 90 95 100 90 95 100 90 95 100 90 95 100
Gradient-based
GradientShap (Lundberg and Lee, 2017) 111 44 97 111555 18 32 15 20 75 60 71 98 69 77 999666 111222 38 100
GuidedBackprop (Springenberg et al., 2014) 111 76 98 17 27 45 13 111444 83 222 222 555 333333 61 98 111111 111666 100
InputXGradient (Shrikumar et al., 2016) 111 51 92 16 21 222999 18 24 444222 26 36 55 69 81 98 111222 38 100
IntegratedGradients (Sundararajan et al., 2017) 111 333 99 111222 111555 31 11 18 333888 63 81 97 70 79 98 111222 39 100
Saliency (Simonyan et al., 2013) 111 76 97 34 41 48 32 37 75 48 51 54 88 93 100 20 53 100
Perturbation-based
Dynamask (Crabbé and van der Schaar, 2021) 111 5 100 55 72 92 18 31 100 100 100 100 50 71 100 61 74 999888
FeatureAblation (Zeiler and Fergus, 2014) 111 222 444888 111555 20 222888 666 999 60 222555 333000 333555 444444 555222 888222 26 55 999999
FeaturePermutation (Fisher et al., 2019) 111 222 444888 111555 20 222888 666 999 60 222555 333000 333555 444444 555222 888222 26 55 999999
Occlusion (Zeiler and Fergus, 2014) 111 3 83 19 20 222999 9 15 444666 111666 47 87 43 555555 999666 33 68 100
Others
KernelShap (Lundberg and Lee, 2017) 111 58 100 111555 22 43 888 15 84 70 84 99 90 94 98 16 34 100
Lime (Ribeiro et al., 2016) 111 90 100 111555 111777 49 888 17 75 49 52 81 79 86 99 13 111777 100
ShapleyValueSampling (Mitchell et al., 2021) 111 30 555111 111222 111333 30 10 18 71 68 90 93 65 79 97 999 111555 100

dataset required every method to include almost every
point.

5.3 Infidelity & Sensitivity

The Infidelity measurements provide information
about the change concerning the predictor function
when perturbations to the input are applied. The met-
ric derives from the completeness property of well-
known attribution methods and is used to evaluate
the quality of an attribution method. In the results
in Table 5 the Infidelity represents a mean error us-
ing 100 perturbed samples for each approach. A
lower Infidelity value corresponds to a better attribu-
tion method, and the optimal Infidelity value should
be zero. The results show that the tested methods do
differ by a large margin of less than 7.2% on average,
and in addition, the Infidelity values strongly depend
on the dataset. Neither the gradient-based approaches

nor the perturbation-based or other approaches are su-
perior. The mean increase of the worst-performing
and the best method was 7.2%. The experiments iden-
tified the highest increases for the CharacterTrajec-
tories dataset (15.8%) and the lowest for the FordA
(3.4%).

Further, the Sensitivity of the methods for a sin-
gle sample was compared. Computationally, the Sen-
sitivity is much more expensive but provides a good
idea about the change in the attribution when the in-
put is perturbed. Using the Sensitivity the robustness
against of the methods concerning noise was evalu-
ated. Ultimately, an attribution method tends to show
low Sensitivity, although this depends on the model
itself. In Table 6 the results of the Sensitivity for all
methods are presented. The results show that Dy-
namask has a Sensitivity of zero. Dynamask by de-
sign forces the importance values to be either one or
zero. Although this is a benefit concerning the Sen-
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Table 5: Infidelity comparison. Computed values show the average Infidelity over the 100 sample subsets. Results show
differences between the different methods when applied to time series data. No category has shown a superior performance,
although the gradient-based approaches were slightly better.

Method Anomaly CharacterTrajectories ECG5000 FaceDetection FordA UWaveGestureLibraryAll
Gradient-based
GradientShap 2.3803 111...111444000888 000...777888999777 0.0014 1.3734 11.4717
GuidedBackprop 2.4057 1.1665 0.8060 0.0014 1.3782 11.6886
InputXGradient 222...333000555666 111...111444777555 0.8135 0.0014 1.3854 11.5830
IntegratedGradients 2.3594 1.2064 0.8260 000...000000111333 111...333555333777 111111...333777666333
Saliency 2.3788 111...000999222111 0.8174 0.0014 111...333666333666 11.7546
Perturbation-based
Dynamask 2.4382 1.2650 0.8271 000...000000111333 1.3806 11.6034
FeatureAblation 2.3859 1.1513 0.8459 0.0014 1.3869 11.5511
FeaturePermutation 2.4015 1.1654 000...777999444999 0.0014 1.3991 11.5112
Occlusion 222...333444333000 1.2078 0.8107 0.0014 1.3752 111111...333555666999
Others
KernelShap 2.4115 1.1802 0.8288 0.0014 1.3785 11.6568
Lime 2.4259 1.1584 000...888000444000 0.0014 111...333777333222 11.6323
ShapleyValueSampling 222...333333555222 1.1671 0.8153 0.0014 1.3745 111111...444666222555

Table 6: Sensitivity comparison. Computed values show the Sensitivity of a sample. Results show larger values for Lime
and Shap-based approaches. Overall the performance of the perturbation-based approaches was superior to most of the other
approaches.

Method Anomaly CharacterTrajectories ECG5000 FaceDetection FordA UWaveGestureLibraryAll
Gradient-based
GradientShap 0.9364 0.6610 0.9149 0.9764 1.0369 1.0347
GuidedBackprop 0.1324 0.1531 0.0562 0.1339 000...000333999888 0.2057
InputXGradient 0.1890 0.1017 0.0709 0.0952 0.0924 0.1927
IntegratedGradients 0.1166 0.1144 0.0458 000...000444111999 0.0906 0.2086
Saliency 0.1902 0.1126 0.1841 0.0995 0.0762 0.2220
Perturbation-based
Dynamask 000...000000000000 000...000000000000 000...000000000000 000...000000000000 000...000000000000 000...000000000000
FeatureAblation 000...000444111444 000...000333666000 000...000333555000 0.0581 0.0463 000...000444444444
FeaturePermutation 000...000444111444 000...000333666000 000...000333555000 0.0581 0.0463 000...000444444444
Occlusion 0.0645 000...000111666777 000...000333000555 000...000555000666 000...000222555444 000...000333555222
Others
KernelShap 1.0908 0.9405 0.2162 0.9248 0.8876 1.0283
Lime 0.8221 0.4986 0.1408 1.5613 0.6974 0.6378
ShapleyValueSampling 0.9132 0.3917 0.1852 0.5938 0.5536 0.3458

sitivity it results in a drawback when ranking the fea-
tures as shown in the accuracy drop experiment. In
addition, perturbation-based approaches have shown
30.9% better results on average concerning their Sen-
sitivity across all datasets. The FordA dataset has
shown the most significant difference between the
attribution methods (42.1%), while the Character-
Trajectories dataset has shown the lowest (26.1%).
Besides, the impressive performance of Dynamask,
the Occlusion, FeatureAblation, and FeaturePermuta-
tion have shown results underlining their robustness
against permutations.

5.4 Runtime

The runtime and resource consumption are important
aspects. Even though, the availability of resources
increases, they are not unlimited. Depending on the
throughput of the approach real-time interpretability
can be possible. For mobile devices, the computation
capacity is limited, and low resource dependencies are
beneficial. A Quad-Core Intel Xeon processor, Nvidia

GeForce GTX 1080 Ti, and 64 GB memory were used
to compare the methods concerning their computa-
tional effort. The attribution and execution time for a
single sample of each dataset was computed. In Fig-
ure 2 shows that especially the simple gradient-based
methods like the Saliency, IntegradtedGradients, and
InputXGradient show a low computation time. On the
other side methods like KernelShap and ShapleyVal-
ueSampling have shown increased time consumption.
There is always the trade-off between how many sam-
ples are processed and the computational costs using
SVS and KernelShap. During The analysis, the de-
fault values suggested in the corresponding papers of
the methods were used. In the case of the FaceDetec-
tion dataset, the computational overhead of the Fea-
tureAblation, FeaturePermutation, and Occlusion in-
creased a lot as they strongly depend on the number
of features. The FaceDetection dataset needs 41 times
longer than the anomaly dataset. Overall the compu-
tation time of the FaceDeteciton dataset is four times
longer than the aggregated computation of all others.
The characteristics of the FaceDetection dataset favor
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Figure 2: Time comparison. Shows the time spend to com-
pute the attribution of a single sample. Note that some bars
are not visible due to their fast computation time compared
to the other methods and the time of Dynamask is lowered
by parameter optimization due to the otherwise unsuitable
time consumption. Hardware: Quad-Core Intel Xeon pro-
cessor, Nvidia GeForce GTX 1080 Ti, and 64 GB memory.

methods that are independent of the number of fea-
tures. The high number of channels and time-steps
when every data feature gets evaluated separately in-
creases up to an unacceptable point. In addition, it
has to be mentioned that only 100 epochs instead of
the default 1,000 for each optimization of Dynamask
were used to lower the computation times. The re-
sults show that this does not change the overall results
of Dynamask but lowers the computational time by a
factor of ten. Using the default 1000 epochs would
not be suitable in any case as the computation time
would increase by a factor of ten.

5.5 Attribution Correlation

Another aspect is the correlation of the different
attribution maps. Therefore, different correlation
measurements were used, namely the Pearson cor-
relation (Benesty et al., 2009), Spearman correla-
tion (Myers and Sirois, 2004) and Jaccard Similar-
ity (Niwattanakul et al., 2013). The Pearson correla-
tion measures the correlation between two series con-
cerning their values. Spearman correlation is a ranked
measurement that compares the ranks for each of the
features. Finally, the Jaccard Similarity is used as a
set-based measurement. During this experiment, the
similarity of the attributions computed over the 100
test sample subsets was evaluated. Ultimately, only
the important points matter concerning a correct attri-
bution. That means intuitively, the similarity of the
methods concerning irrelevant points. To consider
that, percentile subsets of the important features were
selected for the Jaccard Similarity to understand the
agreement of the methods concerning those features.
Summarizing the different similarity and correlation
metrics, the absolute correlation using the Pearson
correlation, the ranking using the Spearman correla-
tion, and the important set of features using the Jac-
card similarity were used.

Figure 3 shows the results. The correlation ma-
trices for the CharacterTrajectories and FordA dataset

(a) CharacterTrajectories

(b) FordA

(c) FaceDetection

Figure 3: Attribution correlation Shows the average cor-
relation/similarity of over 100 attributions. The ten percent
most important features were selected for the Jaccard simi-
larity. The method names are shortened using only the cap-
ital characters. KernelShap shows a significantly lower cor-
relation to other methods compared to all others. Feature
Ablation and FeaturePermutation have shown a high corre-
lation.

as the other datasets have similar show results. Over-
all every matrix shows the same behavior. Feature-
Ablation (FA) and FeaturePermutation (FP) are very
similar. In addition, the Dynamask (D) approach and
KernelShap (KS) are different from any of the others.
This difference is the case for Dynamask, as the tech-
nique only makes a binary decision if a feature is sig-
nificant or not. Intuitively, this should result in a high
similarity for the Jaccard measurement. However, this
is not the case as the attribution of Dynamask has an
internal smoothing based on the loss used to optimize
the mask. This smoothing will include less important
features in the important feature set to preserve a con-
tinuous mask. Furthermore, Lime (L) and KernelShap
(KS) seemed less similar to the other approaches.

5.6 Dependency on Model Parameter

Attribution methods should depend on the model
parameter and the labels of the data. Therefore,
the impact of label permutation and parameter ran-
domization of the model was evaluated. The paper
only shows the results using the CharacterTrajectories
dataset as the results on the other datasets are similar.

The idea of the label permutation is that attribu-
tion methods should depend heavily on the labels.
Good results in this experiment show a high intrin-
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Figure 4: Attribution comparison. Shows the Spearman
correlation (rank correlation) of the attribution methods
evaluated on the same model architecture using randomized
training labels using the CharacterTrajectories dataset. The
method names are shortened using only the capital charac-
ters. Dynamask, KernelShap, and Saliency show a signifi-
cantly lower dataset dependence.

sic data characteristic dependence which is not a de-
sired feature of an attribution method. The models
were trained similar to the baseline model on the same
training data but permuted the labels. This permuta-
tion results in a model that does not generalize well
but learns to replicate the training set. In addition,
this approach did not require the validation dataset.
The accuracies of those models are very high for the
training set. Nevertheless, they fail on the test set.
Precisely speaking, these models do not have a label
dependence. All models reached a near-perfect per-
formance on the training set. Figure 4 highlights that
the correlation drops down to values between 0.05 and
0.2. Based on the overall low correlation, the attribu-
tion methods highly depend on the labels rather than
dataset characteristics. GradientShap, GuidedBack-
prop, InputXGradient, and IntegratedGradients have
shown three times larger correlations in contrast to
Dynamak, KernelShap, and Saliency. However, their
correlation is still low enough to justify the label de-
pendency.

In addition to the label permutation, layers of a
correctly trained network were systematically ran-
domized to understand the dependency concerning
the model parameters. To understand the impact of
the layers, each layer was randomized independently.
Further, the model was randomized starting from the
bottom to the top and vice-versa. The results in Fig-
ure 5 show all three approaches. Interestingly, the
correlation of GuidedBackprop stays high when ran-
domizing the top layers but significantly drops when
randomizing the bottom layers. Randomizing the up-
per layers, the correlation of Guidedbackprop is close
to the original attribution map, whereas the correla-
tion of the other methods drops by 0.5 or more. That
suggests that this method is more based on the values
of the first few layers. In addition, the results show
that for all attribution techniques, a single random-
ized layer is enough to get an attribution that is no
longer related to the original attribution map. This

Figure 5: Correlation to original attribution. Shows the
Spearman correlation of the attribution methods evaluated
on the trained model and randomized layer weights using
the CharacterTrajectories dataset. Weights are either ran-
domized for each layer independently, from top to the bot-
tom layer or vice versa. Only layers with trainable param-
eters (conv, batchnorm, dense) are included when counting
the number of randomized layers. The method names are
shortened using only the capital characters. GuidedBack-
prop shows significant correlations when only the upper
layers are randomized. The correlation of all other meth-
ods drops significantly.

high dependency on the model parameter is the de-
sired property. The top to bottom randomization fur-
ther shows that except for the Dynamsk approach, the
correlation continuously gets smaller when random-
izing more layers. Finally, the bottom to top random-
ization highlights that the randomization of the first
layer of the network is enough to produce attribution
maps that are not related to the original.

5.7 Visual Attribution Comparison

Figure 6 shows all computed attribution maps for a
reference sample. Due to interpretability reasons, an
anomalous instance of the anomaly dataset was se-
lected. The example in the top left corner contains a
single anomaly in one channel that is important for
the classification. The rest of the figure shows the
different attribution maps and the impact of random-
ization on the methods. The figure shows the robust-
ness to randomized parameters. In the second col-
umn, the Integrated gradients approach was able to
find the peak. This column corresponds to a model
trained on randomized labels. Therefore, the model
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Figure 6: Visual comparison. Shows all attributions for a selected anomaly sample. The important part is the peak of the
sample. ’Ri’, ’Rb’, ’Rt’, ’D’, and ’B’ correspond to the independent, bottom to top, top to bottom randomization, label
randomization, and original attribution map. Only conv, batchnorm, and dense layers are counted. Changing the data labels
during training significantly worsens the performance of all approaches except IntegratedGradients for the anomaly dataset.
Overall randomizing lower layers resulted in much more noise compared to randomization in the upper layers.

used in column two is not generalized and learned
only to map the training data. Columns three to seven
show a model randomization starting from the bottom
layers. The results show that some methods still per-
form well when only one or three layers starting from
the bottom are randomized other attribution methods
directly collapsed. Columns eight to twelve show
the independent layer randomization. Except for Dy-
namask, the attribution techniques were able to deal
with up to handle the layer randomization in the up-
per layer of the network quite well, whereas all attri-
bution methods collapsed when the lower layers were
randomized. Columns thirteen to seventeen show the
randomization starting from the top of the network.
Most attribution methods were able to recover from
the randomization for a high number of randomized
layers. Overall the randomization of the lower lay-
ers changed the attribution much more concerning the
noise. Interestingly, changes in the upper layers did
not affect the attribution methods that much.

5.8 Continuity

One aspect that is missing most times is attribution
continuity. In the image domain, the use of superpix-
els solves this problem. However, in the time series
domain, it is not that easy. Most of the attribution
methods do not consider groups of values. In Table 7
shows the evaluation of the continuity. The continuity
calculates the absolute difference between the attribu-

tion value of a point t and t +1 for each time-step and
each channel. Using the mean across a sample pro-
vides a value that indicates how continuous the ex-
planation is. Lower values correspond to an explana-
tion that does not contain many switches from impor-
tant to not important features. This measurement was
computed over the 100 attributed samples and took
the mean for each dataset. The results indicate that
the perturbation-based approaches favor continuous
explanations. Gradient-based methods overall have
shown the worst performance. One reason for this
is the noisy gradients used to compute the attribution
maps.

6 DISCUSSION

A summarization and discussion in a detailed man-
ner is offered to provide on choosing an attribution
method. The different aspects and application scenar-
ios are described below. First, it has to be mentioned
that every attribution method has shown satisfying re-
sults. However, the choice of an attribution method
should depend on the required characteristics. The
overall results are presented in Table 8. Teh resuls
highlight that choosing an attribution method can be
very important, as mentioned by Vermeire et al. (Ver-
meire et al., 2021).

Starting with the accuracy drop, the evaluation
shows to which extend the methods rank the most
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Table 7: Continuity comparison. Computed values show the mean continuity of the attribution maps. Lower values cor-
respond to continuous maps. Continuity was calculated by shifting the attribution map, subtracting if from the original one,
taking the absolute values, and computing the mean. Lower values are better. Perturbation-based methods have been shown to
outperform gradient-based with respect to the continuity on almost all datasets. Specifically, Dynamask and Occlusion have
been shown to perform well across all datasets.

Method Anomaly CharacterTrajectories ECG5000 FaceDetection FordA UWaveGestureLibraryAll
Gradient-based
GradientShap 0.0947 0.0368 0.0616 0.0613 0.0813 0.0543
GuidedBackprop 0.1201 0.0537 0.0913 0.0957 000...000888000111 000...000555222666
InputXGradient 0.0801 0.0390 0.0508 0.0620 0.0855 0.0537
IntegratedGradients 0.0864 0.0369 0.0609 0.0632 0.0858 0.0508
Saliency 0.1176 0.0748 0.1439 0.1170 0.1229 0.0842
Perturbation-based
Dynamask 000...000222888222 000...000000111444 000...000222555222 000...000111000777 000...000111555999 000...000000111555
FeatureAblation 0.0784 0.0395 0.0584 0.0624 0.0815 0.0601
FeaturePermutation 0.0784 0.0395 0.0584 0.0624 0.0815 0.0601
Occlusion 000...000666222333 000...000111888333 000...000444111999 000...000333666777 000...000555333555 000...000222888444
Others
KernelShap 0.1423 0.1086 0.0641 0.1671 0.1973 0.1795
Lime 0.1122 0.0496 000...000444999888 000...000000111000 0.0883 0.0928
ShapleyValueSampling 000...000777777333 000...000333666555 0.0505 0.0583 0.0885 0.0713

Table 8: Overall Evaluation. Overall results with respect
to the different aspects evaluated in this paper. A = Accu-
racy Impact / Agreement, I = Infidelity, S = Sensitivity, R =
Runtime, Ld = Label dependency, Md = Model Parameter
Dependency, C = Continuity.

Method A I S R Ld Md C
Gradient-based
GradientShap ⊕ ⊕
GuidedBackprop ⊕ ⊕ 	
InputXGradient ⊕ ⊕
IntegratedGradients ⊕ ⊕
Saliency 	 ⊕ ⊕ ⊕
Perturbation-based
Dynamask 	 ⊕ 	 ⊕ ⊕
FeatureAblation ⊕ ⊕ 	
FeaturePermutation ⊕ ⊕ 	
Occlusion ⊕ ⊕ 	 ⊕
Others
KernelShap 	 	 ⊕
Lime ⊕ ⊕ ⊕ ⊕
ShapleyValueSampling ⊕ 	 ⊕

and least significant features based on the impact on
the accuracy. Most of the methods were able to
show high-quality results across all datasets. How-
ever, there were some outstanding performances.
Specifically, the perturbation-based were able to per-
form slightly better than the other methods on some
datasets. Saliency and Dynamask have shown some
weaknesses for some datasets, such as the Character-
Trajectories and FordA. Both methods require further
adjustments and knowledge about the data to achieve
good results. One example is the ratio of significant
points for the Dynamask approach to select the cor-
rect number of features. If additional information is
available, such as the ratio of selected features, meth-
ods like Dynamask can express their full potential.
The attribution agreement shows similar results.

Concerning Infidelity and Sensitivity, every
method performed well, and no approach suffered
more. The results show that gradient-based meth-
ods obtained the best Infidelity results. It was
the opposite for the Sensitivity. Especially, Gradi-
entShap, InputXGradient, and Saliency approaches
are robust against significant perturbations in the in-
put space (Infidelity). On the other side, the Dyna-
mask, FeaturePermutation, and Occlusion approaches
have shown good robustness concerning changes in
the attribution when small perturbations to the input
are applied (Sensitivity). Dynamask has a loss that
forces a binary decision whether a feature is selected
or not ensures this behavior. Using attribution meth-
ods with low Sensitivity values in cases where adver-
sarial attacks can occur is suggested.

The runtime aspect gets critical when the use case
requires near real-time explanations. In addition, the
results have shown that the dataset characteristics are
relevant. The findings show that approaches based on
the sequence length and number of channels suffer
from very high runtimes for single samples. These
runtimes make it impossible to use them in a real-
time scenario. However, if the time consumption is
not of interest, this aspect is not relevant. Further-
more, gradient-based methods are less dependent on
the dataset characteristics and very suitable when time
matters. Contrarily, besides Dynamask and Lime, the
perturbation-based approaches suffer from the num-
ber of features. In the case of Lime, the number of
samples required to populate the space to train the
surrogate model increases with a higher number of
features. Dynamask does not suffer from the feature
number. However, the approach needs an additional
training phase. This training requires multiple epochs
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and in addition repetitions based on the different ar-
eas checked during the training. Ultimately, the back-
propagation needs resources and time. Based on the
computational times, the use of ShapelyValueSam-
pling and KernelShap in real-time scenarios is nearly
impossible. For completeness, it has to be mentioned
that it is possible to tweak hyperparameters.

The label permutation and layer randomization
provided insights concerning the role of the model
parameters during the attribution computation. Intu-
itively, all methods have shown a high dependency
on the labels of the data. Training a model with ran-
domized targets has shown, the attributions depend on
the labels as they should. Although all methods have
shown this dependency, the Saliency, Dynamask, Ker-
nelShap, and Lime have shown more dependence on
the targets. Concerning the model parameters, the
results show that randomizing any layer results in
changes of the attribution maps. Besides, the Guided-
Backprop attribution maps significantly change after
any modification. Specifically, Lime collapses com-
pletely. This collapse emphasizes that Lime directly
depends on the model, and GuidedBackprop is rely-
ing more on data. An explanation for this behavior is
that some methods detect dataset differences. Espe-
cially in the image domain, it was shown that some
attribution methods can act like an edge detectors.

Finally, continuity plays a pivotal role in human
understanding. In use cases that include human eval-
uation, it is beneficial to have continuous attribu-
tion maps. Imagine there is a significant frame with
many important but some less important features. It
might be superior to mark the whole window as im-
portant, although this covers some insignificant fea-
tures. In the time series domain, the context mat-
ters, and continuous attribution maps are easier to un-
derstand. The results show that the Dynamask ap-
proach, Lime, Occlusion, and ShapleyValueSampling
are superior concerning their continuity. Intuitively,
the attribution maps produced by gradient-based tech-
niques look noisy, whereas permutation-based look
smoother. Dynamask includes a loss term that ensures
a smoother attribution map. Lime and ShapleyValue-
Sampling produce smoother maps. The results sug-
gest using a perturbation-based approach if a human
inspection is relevant.

Comparing the gradient-based, perturbation-
based, and other approaches, every category has
shown advantages over the other category in some
aspects. Generally, gradient-based methods are fast,
show high Infidelity, label dependency but are noisy,
not continuous, and suffer concerning the Sensitivity.
In contrast to gradient-based methods, perturbation-
based approaches produce continuous maps, shine

concerning the Sensitivity, label dependency but suf-
fer when it comes to the runtime.

7 CONCLUSION

A comprehensive evaluation of a large set of state-of-
the-art attribution methods applicable to time series
was performed. The results show that most attribu-
tion methods can identify significant features with-
out prior knowledge about the data. In the evalua-
tion, the perturbation-based approaches have shown
slightly superior performance in the data occlusion
game. In addition, the results are validated by mea-
suring the agreement of the methods using differ-
ent correlation and similarity measurements. Except
for Dynamask and KernelShap, the correlation be-
tween the attribution methods showed high values.
Further experiments were conducted to highlight the
high dependence of the attribution methods on the
model and the target labels. Only Guided-Backprop
has shown lower reliance on the top layers of the
network. Concerning Infidelity, the gradient-based
attribution methods showed superior performance.
The perturbation-based attribution methods are su-
perb concerning Sensitivity and continuity. Continu-
ity is an important aspect when it comes to human
interpretability. The results hold across a set of dif-
ferent tasks, sequence lengths, feature channels, and
the number of samples. Furthermore, the results show
that the choice of an attribution method depends on
the target scenario, and different aspects like runtime,
accuracy, continuity, noise are indispensable.
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