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Abstract: Colonoscopy is a screening and diagnostic procedure for detection of colorectal carcinomas with specific 
quality metrics that monitor and improve adenoma detection rates. These quality metrics are stored in 
disparate documents i.e., colonoscopy, pathology, and radiology reports. The lack of integrated standardized 
documentation is impeding colorectal cancer research. Clinical concept extraction using Natural Language 
Processing (NLP) and Machine Learning (ML) techniques is an alternative to manual data abstraction.  
Contextual word embedding models such as BERT (Bidirectional Encoder Representations from 
Transformers) and FLAIR have enhanced performance of NLP tasks. Combining multiple clinically-trained 
embeddings can improve word representations and boost the performance of the clinical NLP systems. The 
objective of this study is to extract comprehensive clinical concepts from the consolidated colonoscopy 
documents using concatenated clinical embeddings. We built high-quality annotated corpora for three report 
types. BERT and FLAIR embeddings were trained on unlabeled colonoscopy related documents. We built a 
hybrid Artificial Neural Network (h-ANN) to concatenate and fine-tune BERT and FLAIR embeddings. To 
extract concepts of interest from three report types, 3 models were initialized from the h-ANN and fine-tuned 
using the annotated corpora. The models achieved best F1-scores of 91.76%, 92.25%, and 88.55% for 
colonoscopy, pathology, and radiology reports respectively. 

1 INTRODUCTION 

Colonoscopy plays a critical role in screening of 
colorectal carcinomas (CC) (Kim et al., 2020). 
Although it is a most frequently performed procedure, 
the lack of standardized reporting is impeding clinical 
and translational research. Vital details related to the 
procedure are stored in disparate documents, 
colonoscopy, pathology, and radiology reports 
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respectively. The established quality metrics such as 
adenoma detection rates, bowel preparation, and 
cecal intubation rate are documented in endoscopy 
and pathology reports (Anderson & Butterly, 2015; 
Rex et al., 2015). Procedure indicators, medical 
history require review of clinical history and 
radiology reports. A comprehensive study of quality 
metrics often involves labour-intensive chart review, 
thereby limiting the ability to report, monitor, and 
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ultimately improve procedure quality (Syed et al., 
2021).  

Natural language processing (NLP) has been used 
as an alternative to manual data abstraction (Syeda et 
al., 2021). Most studies to date, built NLP based 
solutions to extract limited clinical concepts from 
unconsolidated colonoscopy documents, with limited 
data extraction, which is inadequate to provide a 
complete clinical picture (Harkema et al., 2011; J. K. 
Lee et al., 2019; Nayor, Borges, Goryachev, Gainer, 
& Saltzman, 2018; Patterson, Forbush, Saini, Moser, 
& DuVall, 2015; Raju et al., 2015). Manual chart 
review is often still required to collect other 
procedure metrics embedded as free text in disparate 
colonoscopy related documents. Early studies 
adopted rule-based NLP algorithms to extract 
procedure metrics (Mehrotra et al., 2012; Raju et al., 
2015), but these algorithms have limited applicability 
to diverse health care settings. A recent study by Lee 
et al. (J. K. Lee et al., 2019) addressed the 
generalization problem by employing traditional ML 
technique to extract procedure findings from varying 
colonoscopy report formats. To improve model 
performance a dictionary of terms and phrases that 
identify procedure metrics was created in addition to 
annotations. The application of their proposed 
solution is subject to the availability of a large 
annotated clinical corpus and semantic and lexical 
features manually crafted by domain experts. 

With the emergence of deep learning (DL) 
techniques, research on clinical concept extraction 
has shifted from traditional ML to DL as DL 
techniques eliminate the need for feature 
representation (i.e. word embeddings) by domain 
experts (H. Liang, Sun, Sun, & Gao, 2018; Yang, 
Bian, Hogan, & Wu, 2020). These algorithms are 
trained and evaluated in the general English domain 
and later applied to cross-domain settings (X. Jiang, 
Pan, Jiang, & Long, 2018; Malte & Ratadiya, 2019; 
Schmidt, Marques, Botti, & Marques, 2019). Such 
off-the-shelf models perform poorly when 
identifying clinical concepts due to the presence of 
domain specific abbreviations and terminologies 
(Griffis, Shivade, Fosler-Lussier, & Lai, 2016; K. 
Huang, Altosaar, & Ranganath, 2019; J. Lee et al., 
2019). Training the ML models on large annotated 
clinical corpora can improve performance, but 
availability of such corpora is rare due to legal and 
institutional concerns arising from the sensitivity of 
clinical data (Abdalla, Abdalla, Rudzicz, & Hirst, 
2020; Caufield et al., 2018). 

Contextual language representation models such 
as Embeddings from Language Models (ELMO) 
(Peters et al., 2018), Bidirectional Encoder 

Representations from Transformers (BERT) (Devlin, 
Chang, Lee, & Toutanova, 2018), and Flair (Akbik, 
Blythe, & Vollgraf, 2018), can mitigate the 
bottleneck of requiring a large annotated clinical 
corpus (K. Huang et al., 2019; M. Jiang, Sanger, & 
Liu, 2019; Si, Wang, Xu, & Roberts, 2019). These 
LMs adopt semi-supervised learning, where the 
models are trained to learn domain linguistics (i.e., 
clinical context-sensitive embeddings or clinical 
embeddings) using a large volume of Unlabelled 
clinical texts, commonly referred as “pre-training” 
(M. Jiang et al., 2019; Sharma & Daniel, 2019). The 
LMs need to be pre-trained on clinical texts only 
once, then they can be adapted to various NLP tasks 
using small, labelled corpora (referred as fine-
tuning). Thus, the time-consuming task of expert-
annotation to create large training datasets is 
significantly decreased. 

Using clinical embeddings, several studies 
reported performance improvement across all NLP 
tasks (Alsentzer et al., 2019; K. Huang et al., 2019; Si 
et al., 2019; Yang et al., 2020). However, very few 
studies have explored the full potential of combining 
the clinical embeddings from multiple language 
representation models. Jiang et al. (M. Jiang et al., 
2019) investigated the effects of combining 
contextualized word embeddings (ELMO + FLAIR) 
with classic word embeddings, Word2Vec (Mikolov, 
Chen, Corrado, & Dean, 2013). Similarly, Boukkouri 
et al. (El Boukkouri, Ferret, Lavergne, & 
Zweigenbaum, 2019) studied the combination of 
ELMO and Word2Vec. Both studies either pre-
trained or fine-tuned embeddings on clinical 
narratives, and the trained-concatenated embeddings 
were used to enhance downstream Name Entity 
Recognition (NER) accuracies. However, compared 
to ELMO, BERT has been found to have superior 
performance on various NLP tasks due to its deep 
bidirectional architecture (Alsentzer et al., 2019; Si et 
al., 2019). The self-attention mechanism of BERT 
efficiently models long-term dependencies, but 
clinical feature representation is curtailed by its fixed 
vocabulary (Bressem et al., 2021; J. Lee et al., 2019). 
In contrast, FLAIR generates strong character-level 
features and is independent of tokenization and 
vocabulary (Akbik et al., 2018). Combining BERT 
and FLAIR embeddings can improve word 
representations and further boost the performance of 
the clinical NLP systems. The objective of this study 
is to extract comprehensive clinical concepts from the 
consolidated colonoscopy documents using 
concatenated clinical embeddings. In our previous 
work, we built an automated algorithm that links 
colonoscopy related documents (Syed et al., 2021). 
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Leveraging this work done, main contributions of this 
study are as follows, 1) Built high-quality annotated 
corpora for the three document types (~ 425 reports 
each). 2) We present a hybrid Artificial Neural 
Network (h-ANN) architecture with concatenated GI 
domain-trained BERT and FLAIR embeddings as the 
input layer followed by BiLSTM and CRF layers. 3) 
Using fine-tuned h-ANN models, we extracted 
comprehensive clinical concepts from the three 
colonoscopy document types with relatively small 
annotated corpora. We evaluated the model’s 
performance against manual chart review. 4) We 
conducted a systematic evaluation of the effects of 
combining clinical embeddings from multiple word-
based LMs on the downstream NLP tasks. 5) We 
compared model performance across the three 
document types. 

2 METHODS 

2.1 Dataset - Annotation 

For this study, we used colonoscopy related 
documents of patients undergoing the procedure at 
the University of Arkansas for Medical Sciences 
(UAMS) from May 2014 to September 2020. The 
original dataset included 16,900 colonoscopy, 11,182 
pathology, and 7,364 radiology reports respectively.  
From the dataset, a random sample of 1,281 reports 
were selected for annotation. The unlabeled corpus 
contains 34,165 notes from the three document types, 
and was used to pre-train LMs. We will refer to the 
unlabeled corpus as “Un-GIC”. 

To identify clinical entities that are essential to 
improve procedure quality and to facilitate 
colonoscopy research, we did an extensive literature 
review and interviewed a panel of domain experts. 
We identified 74 unique entities from colonoscopy 
report, this includes scope times, quality of bowel 
preparation, size and location of polyps, and findings 
etc. From pathology reports, we identified 61 entities 
including specimen type, type of polyp, location, and 
pathological classifications (benign and malignant) 
etc. Similarly, from radiology reports 47 entities were 
identified, this includes diverticulosis, inflammation, 
mass, haemorrhage, and stricture etc.  

Several studies have been done to understand 
factors effecting the annotation time and the quality 
of clinical corpora (Fan et al., 2019; Roberts et al., 
2007; Wei, Franklin, Cohen, & Xu, 2018). Roberts et 
al. (Roberts et al., 2007) and Wei et al. (Wei et al., 
2018) identified number of entities to annotate and 
long term dependencies between the entities as the 

key factors hindering clinical text annotations. Use of 
standard terminologies to annotate clinical narratives 
reduces entity identification ambiguities and 
improves syntactical relation accuracies, allowing for 
high inter-annotator agreement (Fan et al., 2019). 
Taxonomies facilitate injecting domain knowledge 
into ML models and improve clinical concept 
extraction accuracy (M. Jiang et al., 2019; Wu et al., 
2018). However, colonoscopy documents are 
annotated to identify specific procedure metrics and 
employing generic terminologies will not be 
beneficial. To address this problem, for each 
document type, we built taxonomies by classifying 
the identified entities into various classes, as shown 
in Figure 1, 2, and 3 respectively. Using the domain 
specific taxonomies and adopting standard annotation 
guidelines we built three high-quality annotated 
corpora, 1) Colonoscopy Corpus (CC): containing 
442 labelled colonoscopy reports, 2) Pathology 
Corpus (CP): containing 426 labelled pathology 
reports, and 3) Radiology Corpus (CR): containing 
413 labelled radiology reports that are associated with 
the colonoscopy procedure. The CC, CP, and CR 
contain a total of 10,672, 4,136, and 3,071 
annotations respectively. As shown in Table 1, for 
downstream clinical concept extraction tasks, the 
annotated corpora were split into train, test, and 
validation sets (70%-20%-10% respectively) for each 
of the three document types. 

2.2 Concept Extraction Architecture 

To extract clinical concepts, we followed the 
following procedure: 1) Clinical Embedding 
Generation: pre-train LMs BERT and FLAIR on Un-
GIC; 2) Hybrid Artificial Neural Network (h-ANN) 
creation: build a h-ANN network to concatenate and 
fine-tune clinical embeddings; 3) Concept Extraction: 
to extract concepts from the 3 report types, initialize 
three models with the same h-ANN architecture and 
fine-tune each model with CC, CP, and CR 
respectively. The overall process of training LMs, 
concatenating embeddings, and initializing and fine-
tuning downstream h-ANN models is shown in 
Figure 4. 

2.3 Clinical Embedding Generation 

To generate clinical embeddings, we pre-trained 
BERT and FLAIR models on Un-GIC.  

Devlin et al. (Devlin et al., 2018) introduced the 
language representational model BERT, based on a 
Transformer architecture. BERT learns contextual 
representations using two unsupervised tasks, masked 
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language model (MLM) and next sequence prediction 
(NSP). During pre-training, the MLM randomly 
masks some of the tokens from the input sequence 
and then predicts the original masked word based on 
its surrounding context. To learn relationships 
between sentences, NSP predicts whether the second 

sentence is likely to follow the first. Devlin et al. 
(Devlin et al., 2018) pre-trained BERT on English 
text, BooksCorpus (800M words) and Wikipedia 
(2,500M words) and open sourced the model 
(BERTBase). To generate GI domain specific  
 

 

Figure 1: Colonoscopy taxonomy depicting clinical entities and their classifications. Colonoscopy reports were annotated for 
entities mentioned in the taxonomy. 

 

Figure 2: Pathology taxonomy depicting clinical entities and their classifications. Pathology reports were annotated for entities 
mentioned in the taxonomy. 
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embeddings, we initialized the general-purpose 
language representation model BERTBase and pre-
trained the model on Un-GIC. As clinical narratives 
are not always well formatted, we performed sentence 
segmentation on the entire corpus and delimited 
documents by empty lines. About 12% of the 
sentences in the corpus were longer than 128 tokens. 
To limit the input sentence length to 128 tokens, we 
split longer sentences.  As clinical documents contain 
numerous domain-specific words which were not 
present in the vocabulary files of the BERTBase, we 
replaced 80 unused tokens from the vocabulary with 
GI specific concepts. These concepts included 
various disease names, pathological classifications, 
and procedure names found in the colonoscopy 
corpus. The vocabulary size remained the same 
(28,996 tokens) to match the original configuration 
file of BERTBase. For the hyperparameters, we used 
the recommended settings and pre-training was 
carried out using the TensorFlow library (Abadi et al., 
2016).  

 

Figure 3: Radiology imaging taxonomy depicting clinical 
entities and their classifications. Radiology reports were 
annotated for entities mentioned in the taxonomy.  

Akbik et al. (Akbik et al., 2018) proposed novel 
contextual string embeddings also known as FLAIR 
embeddings. During pre-training, each sentence is 
passed as a sequence of characters to a bidirectional 
character-level neural network language model. The 
internal states of the forward and backward character 
LMs are concatenated to generate contextualized 
word-level embeddings. To train FLAIR embeddings 
on the GI domain, we leveraged ‘pubmed-X’ 
embeddings (Sharma & Daniel, 2019). The pubmed-

X embeddings were generated by instantiating a 
character-level LM (trained on the general English 
domain), and further training the model using 5% of 
PubMed abstracts (~ 1.2 million abstracts published 
on or before 2015). To learn GI linguistics, we 
initialized the pubmed-X LM and bi-directionally 
trained the model using Un-GIC. Documents from the 
Un-GIC were randomly split into train (80%), 
validation (10%) and test (10%) sets. For the 
hyperparameters, we used the recommended settings 
and training was carried out using the Pytorch 
framework (Paszke et al., 2019). 

2.4 Hybrid Artificial Neural Network 
(h-ANN) Architecture 

To concatenate and fine-tune embeddings, we 
designed our h-ANN model based on a BiLSTM-CRF 
(Bidirectional long-short-memory-conditional 
random fields) sequence labelling architecture 
proposed by Huang et al. (Z. Huang, Xu, & Yu, 
2015). The BiLSTM-CRF model has been found to 
have superior performance on part of speech tagging 
(POS), chunking and NER tasks (M. Jiang et al., 
2019). Figure 5 shows the architecture of the h-ANN; 
the input embedding layer combines GI domain 
trained BERT and contextual string embeddings. The 
concatenated embeddings are used as input features 
to the BiLSTM layers. Based on the forward and 
backward output states, the CRF layers compute the 
final sequence probability. The h-ANN was 
implemented using the FLAIR framework described 
in Akbik et al. (Akbik et al., 2019). 

2.5 Concept Extraction 

To extract clinical entities from colonoscopy reports, 
we trained the h-ANN model on CC and named the 
model as h-ANNcol. Similarly, we fine-tuned the 
other two h-ANN models on CP and CR respectively 
and named them as h-ANNpath and h-ANNrad. For 
fine-tuning the models, we used the recommended 
FLAIR framework hyperparameter settings, learning 
rate as 0.1, and mini batch size as 32. The maximum 
epoch was set to 250. We integrated the 3 fine-tuned 
models (h-ANNcol, h-ANNpath, and h- ANNrad) 
into one toolkit and named it GIN (Gastroenterology 
NLP toolkit). 

2.6 Evaluation 

The three models (h-ANNcol, h-ANNpath, and  
h-ANNrad) were trained on 80% of the annotated 
corpus and evaluated on the remaining 20%. To avoid 
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Table 1: Distribution of documents, sentences, and clinical entities in train, test, and validation sets across the three corpora. 

Document Type Subset Avg. Number of 
Notes 

Avg. Number of 
Sentences 

Avg. Number of 
Clinical Entities 

Colonoscopy Train 309 13,862 7,467 
Test 89 3,967 2,145 

Validation 44 1,998 1,060 
Pathology Train 299 2,896 2,900 

Test 85 851 825 
Validation 42 412 411 

Radiology Train 289 3,387 2,192 
Test 83 952 606 

Validation 41 461 273 

 

Figure 4: Workflow depicting training of language models, concatenating embeddings, instantiating and fine-tuning h-ANN 
models to extract clinical concepts from colonoscopy related documents. GI: Gastroenterology, h-ANN: Hybrid artificial 
neural network. 

sample bias, we used a 5-fold cross-validation 
technique and each document was used only once in 
the test set. Performance of these models was 
measured by the following metrics: precision, recall 
and F1 scores. 

3 RESULTS 

For Pre-training BERT and FLAIR embeddings on 
the Un-GIC (34,165 unlabeled notes) took 
approximately 8 and 14 days respectively using an 
NVidia Tesla V100 GPU (32GB) (NVIDIA, Santa 
Clara, CA). The 14 days training for FLAIR is the 
sum of the time taken to forward and backward train 
the RNN based LM on the Un-GIC.  It took 
approximately 4, 5, and 7 hours to fine-tune the 
models h-ANNpath, h-ANNcol, and h-ANNrad 
respectively. For the three models, Figure 6 shows the 
test F1 scores computed after completion of each 

training epoch. The range of accuracies achieved by 
the 3 models during 5-fold cross validation on the test 
set is shown in Table 2. The h-ANNpath achieved the 
best overall F1-score of 92.25%, followed by h-
ANNcol (91.76%), and h-ANNrad (88.55%). For the 
best performing h-ANNcol model on the colonoscopy 
narratives, Table 3 lists precision, recall, and F1 score 
of each entity. Similarly, the results from the best 
performing models on pathology and radiology notes 
are shown in Table 4 and Table 5 respectively. The h-
ANNpath achieved F1 scores of 0.950 and 0.937 for 
identifying neoplastic and malignant polyps which 
are the confirmatory findings for colorectal cancer in 
pathology reports. The best performing h-ANNcol 
model achieved over 95% accuracy to identify scope 
times and 92.63% accuracy in extracting polyp 
findings from the colonoscopy reports. Similarly, h-
ANNrad achieved F1 score of over 95% for 
identifying entities like hemorrhage, abscess, 
steatosis, and stones from the radiology reports. 
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Figure 5: The h-ANN architecture depicting embedding, 
Bi-LSTM, and CRF layers. Concatenated BERT and 
FLAIR embeddings are given as input features to the Bi-
LSTM layer. BERT: Bidirectional Encoder 
Representations from Transformers.  

 

Figure 6: Training curves for h-ANNpath, h-ANNcol, and 
h-ANNrad models. F1 score on the test set was measured 
after completion of each epochs.  

We further validated GIN’s accuracy to extract 
clinical concepts from the three document types using 
manual medical record abstraction. We randomly 
selected 300 (N=16,900, confidence interval = 90%, 
ε = 5%) colonoscopy procedures for chart review. For 
the 300 procedures, 219 associated pathology, and 
123 radiology notes were identified respectively. The 
three document types (642 total) were chart reviewed 
for 15 entities as shown in Table 6. These variables 
were selected based on the quality metrics published 
by the American College of Gastroenterology and 
recommendations from a panel of gastroenterologists 
(lead by BT). The entities include type of polyp 
(neoplastic and non-neoplastic) and location, 
pathological classification (benign and malignant 
carcinomas), scope times, quality of bowel 
preparation, and abnormalities found in radiology 

reports (obstruction, tumor, and perforation). These 
concepts are vital to colonoscopy quality 
improvement, care management, and colorectal 
cancers research. The chart review was done by 4 
reviewers (1 medical student and 3 trained data 
warehouse analysts) under the guidance of domain 
expert (BT). Discrepancies between the chart 
reviewers were resolved by the domain expert. We 
extracted the same entities from the evaluation 
sample using GIN. Using findings from manual data 
abstraction as the gold standard, we evaluated 
extraction accuracy of GIN and report the results in 
Table 6. Overall GIN achieved an accuracy of 
91.05%, and the accuracy for extracting entities from 
colonoscopy reports was 94.69%. Similarly, for 
identifying concepts from the pathology and 
radiology reports, the toolkit achieved accuracies of 
92.40% and 86.05% respectively.  

4 DISCUSSION 

In this study, we extracted comprehensive clinical 
concepts from consolidated colonoscopy documents 
using a unique DL model that combines GI-domain 
trained BERT and FLAIR embeddings. Pre-training 
and concatenating embeddings has two main 
advantages: 1) better representation of clinical 
concepts and 2) minimizing annotated corpus size 
required for training. Using relatively smaller 
annotated corpora (~ 430 notes per document type), 
the GIN achieved competitive accuracy (91.05%) in 
extracting an exhaustive list of clinical entities from 
the three document types. The h-ANNcol model 
extracted polyp findings from colonoscopy reports 
with an accuracy of 92.63% which is comparable to 
the results presented by Lee et al. (J. K. Lee et al., 
2019), who trained a traditional ML model on 
approximately 800 annotated documents and 
achieved 92.50% accuracy. Most studies to date have 
extracted few clinical predictors from colonoscopy or 
 

Table 2: Five-fold cross validation results of the three fine-
tuned models on respective documents. 

Fine-tuned 
Models 

Model Performance - F1 Score 
Range (%) Mean Confidence 

Interval (95%) 
Pathology (h-

ANNpath) 
89.66 – 92.25 91.03 ± 1.53 

Colonoscopy 
(h-ANNcol) 

89.42 – 91.76 90.60 ± 1.19 

Radiology (h-
ANNrad) 

85.91 – 88.55 87.22 ± 1.45 
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pathology reports (Nayor et al., 2018; Patterson et al., 
2015; Raju et al., 2015). Moreover, imaging reports 
were not integrated to gather procedure indications 
and other related findings. Leveraging our previous 
work (Syed et al., 2021), in this study, we extracted 
74, 61, and 47 unique entities from consolidated 
colonoscopy, pathology, and radiology reports 
respectively. Integrating these vital concepts with 
discrete EHR data has the potential to decrease or 
altogether eliminate manual data abstraction and 
facilitate colonoscopy quality assessment, treatment 
plan, and colorectal cancer research.  

Table 3: Performance results of the h-ANNcol model on 
identifying clinical entities from colonoscopy reports. 

Colonoscopy Entity Precision Recall F1 
Score

Polyp_Found 0.9178 0.9350 0.9263
Polyp_Size 0.8942 0.9171 0.9055

Qty_of_Polyp 0.8906 0.8706 0.8805 
Location 0.9111 0.8937 0.9023 
Findings 0.8760 0.8834 0.8797 

Scope_Insertion 0.9470 0.9620 0.9544 
Cecum_Reached_Time 0.9520 0.9510 0.9515 

Scope_Withdrawn 0.9670 0.9350 0.9507 
ASA 0.9780 0.9550 0.9664 

Med_Name 0.9650 0.9580 0.9615 
Form 0.9710 0.9540 0.9624 
Dose 0.9450 0.9510 0.948 

Conscious_Sedation 0.8570 0.8710 0.8639 
Deep_Sedation 0.8950 0.8743 0.8845 

Cecum_Reached 0.9368 0.9500 0.9434 
Estimated_Blood_Loss 0.8667 0.8890 0.8777 

Patient_Position 0.8387 0.8667 0.8525 
Patient_Tolerance 0.8989 0.8999 0.8994 

Procedure_Techniques 0.8876 0.8650 0.8762 
Quality_of_Preparation 0.9764 0.9550 0.9656 

Several studies built in-house NLP solutions to 
extract concepts of interests from colonoscopy 
documents (J. K. Lee et al., 2019; Mehrotra et al., 
2012; Raju et al., 2015). But, these solutions used 
either rule based algorithms or proprietary software, 
lacking generalization and applicability to diverse 
health care settings. Pre-training contextual LMs on 
domain-specific corpora and sharing pre-trained 
weights can solve these problems (Alsentzer et al., 
2019; J. Lee et al., 2019). In our study, we pre-trained 
BERT and FLAIR on the Un-GIC (~34,165 notes) to 
learn domain linguistic. The trained LMs can be 
utilized by any healthcare institution with minimal to 
no pre-training efforts. Using institution-specific 
annotated corpora, the models can be fine-tuned for 
various downstream NLP tasks. Moreover, compared 
to pre-training, fine-tuning is relatively less resource 

intensive and can be done in few hours. This can 
eliminate the need for high performance computing 
and the associated technical expertise. 

Table 4: Performance results of the h-ANNpath model on 
identifying clinical entities from pathology reports. 

Pathology Entity Precision Recall F1 
Score 

Location 0.920 0.972 0.945 

Specimen Type 0.911 0.967 0.938 

Neoplastic Polyp 0.971 0.930 0.950 

Non Neoplastic Polyp 0.915 0.870 0.892 

Polyp Like Lesion 0.887 0.875 0.881 

Pathological 
Classification Benign 

0.887 0.964 0.924 

Pathological 
Classification Malignant 

0.924 0.950 0.937 

Table 5: Performance results of the h-ANNrad model on 
identifying clinical entities from radiology reports. 

Imaging Entity Precision Recall F1 Score 

Abscess 0.963 0.911 0.936 

Cirrhosis 0.964 0.958 0.961 

Colitis 0.956 0.917 0.936 

Crohns 0.800 0.812 0.806 

Diverticulosis 0.803 0.837 0.819 

Edema 0.835 0.818 0.826 

Hemorrhage 0.954 0.983 0.968 

Inflammation 0.833 0.821 0.827 

Ischemia 0.944 0.962 0.953 

Location 0.862 0.807 0.833 

Mass or Tumor 0.83 0.882 0.855 

Obstruction 0.843 0.865 0.853 

Perforation 0.863 0.838 0.850 

Tumor Size 0.842 0.862 0.851 

Steatosis 0.964 0.944 0.953 

Stones 0.971 0.954 0.962 

Stranding 0.913 0.921 0.917 

Liver 0.851 0.890 0.870 

Thickening 0.832 0.860 0.845 

Both BERT and FLAIR models have shown 
improved performance on various NLP tasks when 
trained on domain-specific corpora (Alsentzer et al., 
2019; M. Jiang et al., 2019; Sharma & Daniel, 2019). 
During pre-training, BERT learns semantics at both 
word and sentence levels (Kalyan & Sangeetha, 
2021). Moreover, its multi-head self-attention 
mechanism enables the model to capture long-range 
dependencies, often found in clinical narratives  
(K. Huang et al., 2019; Kalyan & Sangeetha, 2021). 
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Table 6: Results of the GIN’s accuracy when compared to chart review based on a list of 15 entities selected from the 
colonoscopy, pathology, and radiology reports. GIN: Gastroenterology NLP toolkit. 

Report Type 
(Sample Size) 

Entity No. of Documents 
in which the Entity 
was Found During 
Chart Review (%) 

GIN Accuracy based 
on Chart Review (%) - 

95% confidence 
Interval 

Colonoscopy (n=300)    

 Presence of Polyp 156 (52.00) 91.82 (87.16 – 96.04) 
 Polyp Location 156 (52.00) 89.13 (84.11 – 94.09) 
 Scope Insertion Time 300 (100.00) 96.82 (94.51 – 98.69) 
 Cecum Reached Time 296 (98.78) 96.50 (94.08 – 98.48) 
 Scope Withdrawn Time 276 (92.00) 96.13 (93.65 – 98.37) 
 Adequacy of Bowel 

Preparation 
298 (99.40) 97.75 (95.89 – 99.41) 

Pathology (n=219)    

 Specimen Type 219 (100.00) 92.80 (89.17 – 96.21) 
 Neoplastic Polyps 45 (20.55) 95.10 (86.00 – 1.00) 
 Non Neoplastic Polyps 31 (14.16) 89.11 (75.06 – 99.14) 
 Malignant 17 (7.76) 93.22 (73.02 – 98.95) 
 Benign 46 (21.00) 91.76 (82.99 – 99.61) 

Imaging (n=123)    

 Mass or Tumor 31 (25.20) 85.83 (70.66 – 97.08) 
 Obstruction 25 (20.30) 86.20 (65.35 – 93.60) 
 Perforation 7 (5.80) 85.14 (48.68 – 97.43) 
 Liver Abnormality 27 (22.00) 86.85 (67.52 – 94.08) 

 

But, the clinical feature representation of BERT is 
curtailed by its fixed vocabulary (Bressem et al., 
2021; J. Lee et al., 2019). Flair models words and 
context as sequences of characters to form word-level 
embeddings, this has the advantages of generating 
strong character-level features, being independent of 
tokenization and vocabulary, and efficiently handling 
rare and misspelled words (Akbik et al., 2018). But, 
character-level representation performs poorly when 
processing long sentences (D. Liang, Xu, & Zhao, 
2017). Due to these characteristics, we specifically 
chose to combine BERT and FLAIR embeddings, this 
generated strong word representations for the 
downstream NLP tasks. Using the best performing 
models on the three document types and the 
associated annotated corpora respectively, we tested 
the performance of 3 model configurations” 1) BERT 
embeddings alone, 2) FLAIR embeddings alone, and 
3) concatenated BERT and FLAIR embeddings. As 
shown in Table 7, for the three document types, the 
models with concatenated embeddings performed 
best compared to models with either BERT or FLAIR 
embeddings alone. 

To validate if the F1-score improvement is 
statistically significant for the three models (h-
ANNcol, h-ANNpath, and h-ANNrad) with concatenated 
embeddings, we conducted a 5x2cv paired t-test 

(Dietterich, 1998). For each report type (colonoscopy, 
pathology, and radiology), we did a pairwise 
comparison between the model with the concatenated 
embeddings (MBERT+FLAIR) and models with 
individual BERT (MBERT) and FLAIR (MFLAIR) 
embeddings respectively. Resulting in 6 pair 
comparisons, 2 for each report type (MBERT+FLAIR vs 
MBERT and MBERT+FLAIR vs MFLAIR). The results show  
 

Table 7: Performance of models with 1) BERT, 2) FLAIR, 
and 3) concatenated BERT and FLAIR embeddings on 
imaging, colonoscopy, and pathology documents 
respectively. 

Model Precision 
(%) 

Recall 
(%) 

F1 Score 
(%) 

Imaging    
MBERT 84.21 82.53 83.36 
MFLAIR 83.32 80.56 81.92 

MBERT+FLAIR 89.18 87.94 88.55 

Colonoscopy    
MBERT 89.79 90.11 89.95 

MFLAIR 91.12 89.86 90.48 

MBERT+FLAIR 91.22 92.32 91.76 
Pathology    

MBERT 89.59 90.41 90.00 
MFLAIR 90.27 92.89 91.56 

MBERT+FLAIR 91.38 93.14 92.25 
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that the improvement of F-measures for all six pairs 
were statistically significant (P value < 0.05). For 
identifying individual entities using concatenated 
embeddings from the three document types, we 
noticed F1score improvement between 3.4% - 7.2% 
compared to using models with individual 
embedding. The most F1-score improvement 
wasseen on radiology concept extraction. 

Of the three report types from which we extracted 
data, colonoscopy and pathology were semi-
structured and radiology reports were unstructured. 
Unsurprisingly, the h-ANNcol and h-ANNpath model 
accuracies were higher than h-ANNrad. Moreover, 
imaging reports are known to be complex, lack 
clarity, and often omit a definitive conclusion (Brady, 
2018). These could be the reasons that the h-ANNrad 
model took relatively more epochs (~215) to 
converge during fine-tuning, as shown in Figure 6. 
Further study is needed to assimilate key information 
from radiology reports and improve information 
extraction accuracy. 

5 CONCLUSIONS 

In Domain-trained contextualized embeddings are 
powerful word representations. Using concatenated 
embeddings, we extracted comprehensive clinical 
concepts from consolidated colonoscopy documents 
with a high degree of confidence (F1 score 91.05%) 
and relatively smaller annotated corpora (~50%). 
Integrating these vital concepts with discrete EHR 
data can eliminate manual data abstraction and 
increase secondary use of information in narrative 
colonoscopy-related reports for colonoscopy quality 
assessment and colorectal cancer research. The NLP 
framework demonstrated here is generalizable and 
can be applied to diverse clinical narratives and 
potentially beyond healthcare to improve NLP 
performance in specialty domains, we extracted 
comprehensive clinical. 
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