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Abstract: Upon the dominant accomplishments of deep neural networks, recent studies have scrutinized a robust model
under the inherently ambiguous samples. Prior works have achieved superior performance under these am-
biguous samples through label distribution approaches, assuming the existence of multiple human annotators.
However, the aforementioned problem setting is not generally feasible due to resource constraints. For a gener-
ally applicable solution to the ambiguity problem, we propose Uncertainty-Guided Pseudo-Labeling (UGPL),
a proof-of-concept level framework that leverages ambiguous samples on elevating the image recognition per-
formance. Key contributions of our study are as follows. First, we constructed synthetic ambiguous datasets
as there were no public benchmark dataset that deals with ambiguity problem. Given ambiguous samples,
we empirically showed that not every ambiguous sample has meaningful knowledge consistent to the ob-
vious samples at the target classes. We then examined uncertainty can be a possible proxy for measuring
the effectiveness of ambiguous sample’s knowledge toward the escalation of image recognition performance.
Moreover, we validated pseudo-labeled ambiguous samples with low uncertainty better contributes to the test
accuracy elevation. Lastly, we validated the UGPL showed larger accuracy elevation under the small size of
obvious samples; thus, general practitioners can be widely benefited. To this end, we suggest further avenues
of improvement practical techniques that resolve the ambiguity problem.

1 INTRODUCTION

Deep neural networks have achieved significant ac-
complishments in various computer vision applica-
tions such as image recognition (Nath et al., 2014)
and object detection (Sukanya et al., 2016) under the
large-scale annotated dataset. In image classification,
especially, conventional problem settings assume that
each image corresponds to a particular class. How-
ever, the aforementioned assumption is not always
valid in the real world. There frequently exists some
samples that are inherently ambiguous to be assigned
to a particular class. In Figure 1, we illustrated sev-
eral ambiguous images. Considering images shown
in Figure 1 (a), conventional human annotators may
feel confused to annotate given images between the
Bagel and the Donut as they have inherently similar
characteristics to both classes. It is also challenging
to classify given images at Figure 1 (b) between the
Frog and the Tadpole. Considering that multiple an-
notators should be involved to annotate large datasets,
it is difficult for them to apply a consistent standard

∗Denotes equal contribution

for samples with inherent ambiguity, leading to unre-
liable labels. We refer to the samples with clear dis-
crimination as obvious samples and the samples with
inherent ambiguity as ambiguous samples. Follow-
ing the significance of the ambiguity problem, prior
studies also tackled it down to construct deep neu-
ral networks with better representation power (Rup-
precht et al., 2017; Otani et al., 2020; Gao et al., 2017;
Hüllermeier and Beringer, 2006). In this paper, we
seek to exploit them to improve classification perfor-
mance in low data regimes.

Pursuing classification models robust under am-
biguous samples, previous studies have proposed ap-
proaches with label distributions, assuming the cir-
cumstance where multiple human annotators exist
(Geng, 2016; Gao et al., 2017) and each annotator
assigns a label to a single sample, producing multi-
ple weak labels. Although the aforementioned label
distribution approaches contribute to the robustness
of the image recognition model under ambiguity, it
is generally not feasible to the practitioners due to the
resource constraints. Instead, it is more practical for
them to separate ambiguous samples into a distinct
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(a) Bagel v. Donut (b) Frog v. Tadpole

Figure 1: Examples of ambiguous samples in the ImageNet dataset. Due to its inherent ambiguity, human labelers’ subjec-
tiveness is highly reflected during the annotation.

Figure 2: Simplied illustration of the proposed Uncertainty-Guided Pseudo-Labeling (UGPL). Referring to the figure at the
left, an initial decision boundary (established with obvious samples only) could not classify particular validation samples
precisely. The proposed UGPL acquires confident samples from the ambiguous dataset, makes pseudo-labels on them, and
updates the decision boundary. As ambiguity at the embedding space is particularly unveiled, the updated decision boundary
improves the misclassified results, as shown in the figure at the right.

class and simply training the model only on the obvi-
ous samples. To this end, we set a real-world circum-
stance where a single sample has a single label, and
ambiguous samples are isolated into a separate class.

One very presumable solution is applying label
propagation (Iscen et al., 2019), regarding the am-
biguous samples as the samples without labels under
the semi-supervised paradigm and producing pseudo-
labels for them from the obvious samples. However,
in our problem setting, it is not reasonable to produce
pseudo-labels on every ambiguous samples due to the
inherent ambiguity. Indeed, we showed that updating
the training set with every pseudo-labeled ambiguous
data does not contribute to the elevation of test ac-
curacy. The pseudo-labeled ambiguous samples can
escalate the classification performance if it includes
knowledge consistent with the target classes. We em-
pirically unveiled that not every ambiguous sample
has consistent knowledge of the target classes. In
other words, we inferred not every pseudo-labeled
ambiguous samples support learning discriminative
knowledge on the target classes; thus, there rises a ne-

cessity of effective pseudo-labeling designed for am-
biguous samples.

To this end, we propose a Uncertainty-Guided
Pseudo-Labeling (UGPL) to maximize the deep
neural network’s image recognition performance with
ambiguous data. As shown in the Figure 2, our ap-
proach resolves the ambiguity problem by creating
pseudo-labels on the ambiguous data and estimating
uncertainty. An underlying belief of our study is that
some pseudo-labels on ambiguous samples help im-
proving the performance and others do not, and uncer-
tainty of the pseudo-labels can be used for the distinc-
tion. Accordingly, we sort the ambiguous samples by
their uncertainty in increasing order and include the
samples with lowest uncertainty in the dataset to up-
date the model. The UGPL consists of several steps.
First, our approach trains an initial classifier with the
obvious data to train base representations regarding
the target classes. Second, we provide ambiguous
data to the trained initial classifier and acquire un-
certainty estimates. We expected the initial classifier
to yield a low uncertainty on ambiguous samples if

ICAART 2022 - 14th International Conference on Agents and Artificial Intelligence

542



it includes knowledge consistent to what the model
learned from the obvious data. If the initial classifier
infers a particular ambiguous sample with low uncer-
tainty, we expect adding the ambiguous data would
contribute to the representation learning. Thus, we
sampled several ambiguous data with low uncertainty
estimates and merged them with the initial obvious
dataset. Lastly, we retrain the classifier with an up-
dated training set and measured the performance ele-
vation derived from the training set update.

In our study, key contributions are as follows.

• We defined a label ambiguity problem at the
image classification problem, and figured out
that not every ambiguous sample has consis-
tent knowledge of the obvious samples. To this
end, we designed UGPL, a proof-of-concept level
framework to elevate the image classification per-
formance leveraging ambiguous data based on es-
timated uncertainty.

• Leveraging well-known benchmark datasets
(AFHQ (Choi et al., 2020) and CelebA-HQ (Kar-
ras et al., 2017)), we constructed two synthetic
datasets named synthetic-AFHQ and synthetic-
CelebA-HQ. Both synthetic datasets consist of
obvious data and ambiguous data simultaneously.
As there’s no widely-utilized benchmark dataset
that deals with ambiguity, we proposed how
further researchers can create ambiguous data to
examine their solution to the ambiguity problem.
Specifically, we employed StyleMapGan (Kim
et al., 2021) to create contextually ambiguous
data given obvious images of given classes.

• We experimentally examined the UGPL frame-
work contributes to the elevation of test accu-
racy. Under the synthetic-AFHQ and synthetic-
CelebA-HQ datasets, our approach commonly
showed the escalation of test accuracy rather than
training the model only with obvious data. Based
on the proof-of-concept level validation of our ap-
proach, we illustrate further room for improve-
ment for the sake of robust image recognition re-
search.

2 RELATED WORKS

2.1 Semi-Supervised Learning

Semi-supervised learning (SSL) is a paradigm that
trains deep neural networks with both labeled and un-
labeled data. The SSL aims to improve the learning
performance by adding unlabeled data compared to

the supervised learning approaches, which only uti-
lize labeled data (Yang et al., 2021). There exist vari-
ous studies on SSL such as consistency regularization
methods (Zhou et al., 2020; Berthelot et al., 2019;
Berthelot et al., 2019), graph-based approaches (Liu
et al., 2019; Yang et al., 2016; Jiang et al., 2019),
generative approaches (Denton et al., 2016; Odena,
2016; Rezagholiradeh and Haidar, 2018) and pseudo-
labeling approaches (Arazo et al., 2020; Pham et al.,
2021). Our study focused on the pseudo-labeling ap-
proaches as it is one of the presumable solutions to the
ambiguity problem. The pseudo-labeling approaches
create pseudo-labels on unlabeled data following the
prediction of deep neural networks trained with la-
beled data. The recent pseudo-labeling methods add
more training data by merging the labeled data and
pseudo-labeled unlabeled data. Due to its simplicity
and generality, numerous studies have actively scruti-
nized pseudo-labeling approaches on SSL.

A recent state-of-the-art study (Rizve et al.,
2021) proposed an uncertainty-aware pseudo-labeling
method that constructs pseudo-labels following the
model prediction’s confidence. The work trained a
model with the labeled data and measured an uncer-
tainty at unlabeled data to create both positive and
negative pseudo-labels at each class. They dropped
pseudo-labeled data if the model yielded low confi-
dence on it, and iterated the aforementioned proce-
dures until the number of selected pseudo-labels con-
verges. They insisted conventional pseudo-labeling
methods were ineffective due to the noises in pseudo-
labels; thus, applying an uncertainty threshold could
sanitize noises and elevated learning performance.
While our study shares a common intuition with them,
we tackle different problem: the unlabeled samples
have inherent ambiguity which prevents assigning a
particular label to them. The work created both pos-
itive and negative pseudo-labels simultaneously as
they assumed an unlabeled sample at least has suffi-
cient knowledge similar to one of the target classes.
However, in the ambiguity problem setting, we as-
sumed that not every unlabeled, ambiguous sample
has meaningful knowledge consistent with the obvi-
ous samples. Therefore, we only acquired a positive
pseudo-label on an ambiguous sample because confi-
dence in one class does not guarantee the sample does
not belong to the other class. Accordingly, we mea-
sured uncertainty with the positive pseudo-label only
while the work (Rizve et al., 2021) captured uncer-
tainties at both positive and negative pseudo-labels.
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2.2 Uncertainty Estimation

Uncertainty estimation aims to measure how the deep
neural networks made a confident decision at a given
data (Abdar et al., 2021). The prior studies have
actively scrutinized uncertainties in the deep neural
networks through various approaches. Early studies
employed a Bayesian analysis for uncertainty esti-
mation. Given a prior distribution over the trained
model’s weights, Bayesian approaches estimated un-
certainty capturing how much these weights vary
given a particular data. (Gal and Ghahramani, 2016)
proposed a Monte Carlo (MC) dropout, which em-
ploys a Dropout as a regularization term for comput-
ing an uncertainty at the model’s decision. Various
studies have shown the effectiveness of MC dropout
in uncertainty estimation for various computer vision
applications (Wang et al., 2019; Nair et al., 2020; Do
et al., 2020). On the other hand, (Lakshminarayanan
et al., 2016) also proposed a non-Bayesian approach
to the uncertainty estimation by assembling multiple
models. While the Bayesian approaches accompanied
large computation overhead for uncertainty estima-
tion, the proposed assembling approach could have
efficiently yield uncertainties under the distributed
computing environment. The recent progress in un-
certainty estimation has been brought under the prob-
lem setting of out-of-distribution detection (OOD de-
tection) (Bulusu et al., 2020). (Hendrycks and Gim-
pel, 2016) suggested a concept Maximum Softmax
Probability (MSP), which is a simple but effective
method for estimating uncertainty. Given a model
trained with in-distribution data, the work figured out
the model yielded low softmax probabilities at out-
of-distribution data (which is unknown to the model);
thus, the higher MSP implies higher confidence in the
model’s decision. Among various approaches in es-
timating uncertainties of deep neural networks, our
study employed the MSP method considering its sim-
plicity of implementation and lightweight resource
consumption. Refer Section 4.3 for a detailed elab-
oration on the takeaway behind this selection.

3 CREATING SYNTHETIC
AMBIGUOUS DATASET

The foremost challenge in examining our approach
is the lack of benchmark datasets regarding the am-
biguity. We tried to retrieve a particular amount
of both obvious and ambiguous samples from the
publicly-available natural image datasets (i.e., Ima-
geNet (Deng et al., 2009), SUN(Xiao et al., 2010))
but failed to figure them out. Therefore, given obvi-

ous samples (which are easily acquired), we decide
to create ambiguous synthetic samples with genera-
tive models (Goodfellow et al., 2014; Creswell et al.,
2018; Karras et al., 2019). We fully acknowledge
that it would become a more precise study to validate
our approach’s effectiveness with real-world samples.
Note that the use of ambiguous synthetic samples is
one of the improvement avenues of our work.

The ambiguous synthetic samples are designed to
have attributes of multiple classes so that they have
inherent ambiguity; they are somewhere in-between
samples. To create the aforementioned ambiguous
data, we utilize StyleMapGAN (Kim et al., 2021)
which can combine multiple images with predefined
masks. Given a pair of two images at the target
classes, we generate a mixed image that contextually
mingles characteristics of the given two images fol-
lowing a preset ratio 1:1 to maximize ambiguity. We
primarily employed two widely utilized benchmark
datasets with well-aligned images to produce realistic
from StyleMapGAN: AFHQ and CelebA-HQ. We set
the scope of analyses to solve two image classification
tasks: classifying cat and wild animals’ images from
the AFHQ dataset and classifying male and female
celebrities’ face images from the CelebA-HQ dataset.
We assumed images in the original datasets are obvi-
ous data without any ambiguity. Figure 3a,c and Fig-
ure 4a,c shows obvious images of the AFHQ dataset
and CelebA-HQ dataset, respectively. In pursuit of
creating ambiguous data, we randomly selected 500
obvious images from each class and provide them
to the StyleMapGAN model to acquire synthetically
mixed ambiguous images. For masks, we use simple
half-and-half vertical or horizontal splits. The exam-
ples of ambiguous images at both the AFHQ dataset
and CelebA-HQ dataset are illustrated in Figure 3b
and Figure 4b, respectively. In the following sections,
we use the original names to denote the synthesized
datasets and present our method.

4 UNCERTAINTY GUIDED
PSEUDO-LABELING

In this section, we illustrated UGPL, which is our ap-
proach to utilize ambiguous data to escalate the image
classification performance. The overall architecture
of our framework is described in Figure 5. Note that
we focus on binary classification for simplicity with-
out loss of generality.
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(a) Obvious Cat (b) Ambiguous (c) Obvious Wild

Figure 3: Examples of Synthetic-AFHQ dataset, which is synthetically created examples of two obvious data and one am-
biguous data from AFHQ dataset.

(a) Obvious Male (b) Ambiguous (c) Obvious Female

Figure 4: Examples of Synthetic-CelebA-HQ dataset, which is synthetically created examples of two obvious data and one
ambiguous data from CelebA-HQ dataset.

4.1 Initial Training with Obvious Data

First, we trained an initial classifier with obvious data.
We aim to let the deep neural networks learn pri-
mary representations of the obvious classes during
the initial training stage. The trained initial classi-
fier becomes a baseline for examining the effective-
ness of UGPL. Our framework aims to improve im-
age classification performance from the initial clas-
sifier. Throughout the study, we employ randomly
initialized ResNet-18 (He et al., 2016) architecture
and added a single fully connected layer to perform
binary classification. We set the loss function as a
categorical cross-entropy loss and optimized the net-
works’ parameters with a stochastic gradient descent
optimizer. We set the batch size as 64, the learning
rate as 0.0001, and applied weight decay with the pa-
rameter 0.0005.

4.2 Pseudo-label Generation

With the initial classifier trained on the obvious sam-
ples, we created pseudo-labels on the ambiguous data.
Given the initial classifier, we provided an ambigu-

ous image x(i) to the classifier and extracted a logit
vector v, a network prediction. As we set the im-
age classification task as a binary classification, the
logit vector v is composed of pc1 and pc2 where c de-
scribes the target class satisfying c ⊂ (0,1), and pc
implies the probability that a given data belongs to the
class c following the knowledge learned by the initial
classifier. We created a pseudo-label ˆy(i) of ambigu-
ous data x(i) following the class with higher probabil-
ity. In other words, the ambiguous samples will have
pseudo-labels based on the knowledge learned from
the obvious data. If the initial classifier observes sim-
ilar characteristics of the given ambiguous data to a
particular target class, it will result in a higher proba-
bility at that class. However, it is not robust enough to
use all pseudo-labels. We describe a solution below.

4.3 Uncertainty-guided Sampling

We additionally measured an uncertainty on the net-
work prediction of the ambiguous sample x(i). While
we share a common intuition with the approach
(Rizve et al., 2021), we further cast doubt whether
every ambiguous data with pseudo-labels contribute
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Figure 5: The overall structure of Uncertainty-Guided Pseudo-Labeling (UGPL) framework.

to improving performance. Suppose an ambiguous
data inherently does not include much discriminative
knowledge on the given classes. In this case, we ex-
pect the ambiguous data would not have many con-
tributions to the representation learning. Our study
exploit uncertainty as a proxy to estimate the amount
of knowledge the ambiguous data contains. Specifi-
cally, we suppose that the classifier would fail to pro-
duce enough activation for a particular class and end
up at high uncertainty if the input has ambiguity. On
the other hand, we expect the classifier would yield
a confident decision if the given ambiguous image in-
cludes any meaningful knowledge similar to the target
classes.

Briefly, our framework establishes a barrier that
blocks uncertain samples from participating in the
training procedure. Among various approaches of un-
certainty estimation on neural networks, we employed
the MSP method as it is widely utilized as a baseline
in various uncertainty-related domains (Hendrycks
and Gimpel, 2016; Gal and Ghahramani, 2016; Ha-
rang and Rudd, 2018; Hendrycks et al., 2018; Kabir
et al., 2018). Note that we did not choose the
MC-Dropout and its derived versions (which are a
state-of-the-art approach to the uncertainty estima-
tion) as they require comparatively-heavy computa-
tion resources during the uncertainty estimation. Our
approach measures uncertainty following the MSP
method, selects ambiguous data with low uncertainty
order, and merges them with obvious data following
their pseudo-labels. Note that a high MSP value at
a particular sample implies that the neural network
confidently made a prediction with low uncertainty
on the sample. Lastly, we established a final classi-
fier by training the network with the updated training
set. Note that we employed the same architecture and
other configurations with section 4.1 to eliminate the

effect of other factors on the image recognition per-
formance. Throughout experiments illustrated in Sec-
tion 5, we empirically examined how uncertainty can
be a proxy for measuring the amount of knowledge
that ambiguous data has.

5 EXPERIMENTS

5.1 Experiment Setup

In this section, we aimed to examine UGPL’s effec-
tiveness in the elevation of image classification per-
formance. Throughout the experiments, we scruti-
nized answers to the following research questions de-
scribed below sections.

5.1.1 Does Every Ambiguous Sample Have
Knowledge Consistent to the Obvious
Samples?

First and foremost, we tried to examine that not ev-
ery ambiguous sample has meaningful knowledge to
discriminate the target classes. For the experiment
setups, we trained the initial classifiers with 400 ob-
vious images per target class at both the synthetic-
AFHQ dataset and synthetic-CelebA-HQ dataset. We
then prepared three types of validation subsets: Am-
biguous set and two obvious sets from each class used
to generate the ambiguous subsets. We extracted the
distribution of uncertainty estimates at each set and
examined whether the ambiguous set shows a partic-
ular amount of uncertainty compared to the obvious
sets. Note that we constructed validation sets with
500 samples. Suppose that the ambiguous set shows
higher uncertainty compared to obvious sets. In this
case, we would make a naive discovery that ambigu-
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ous data do actually show higher uncertainty rather
than obvious data. Therefore, we would experimen-
tally examine that not every ambiguous sample has
consistent knowledge of the obvious samples. The
experiment results are shown in Figure 6 and Figure
7.

5.1.2 Does UGPL Achieves Better Image
Classification Performance?

We then examined whether UGPL contributes to the
escalation of image recognition performance. We em-
ployed an evaluation metric as Top-1 Accuracy and
scrutinized the relationship between a performance
escalation and selected ambiguous samples’ uncer-
tainties. During the uncertainty-guided sampling il-
lustrated in Section 4.3, we extracted ambiguous sam-
ples’ MSP values and sorted them in increasing order.
We divided uncertainties into four windows based on
quartile values as follows: Q1 (0% to 25%), Q2 (25%
to 50%), Q3 (50% to 75%), Q4 (75% to 100%). A
sampling strategy Q1 implies that we selected am-
biguous samples where their MSP values lie lower
than 25% at total MSP distribution; thus, it selects
ambiguous samples which is the most ambiguous
with high uncertainty. Note the lower MSP denotes
less confidence in the network’s prediction, which de-
scribes a high uncertainty. On the other hand, the
sampling strategy Q4 denotes that selected ambigu-
ous samples yield low uncertainty estimates as the
initial classifier confidently decided. To ensure that
the experiment result is not affected by the number of
ambiguous data at each class in the training set, we
sampled 100 ambiguous samples for each target class
(200 images in total) to be updated into the training
set. Lastly, we set the upper bound on the elevation of
the test accuracy by adding the same number of ob-
vious samples to each target class. As obvious sam-
ples presumably have consistent knowledge with the
trained samples, we evaluated it as an upper bound
for the proposed UGPL framework. Throughout ex-
periments, we tried to examine whether ambiguous
samples with low uncertainties contributed more to
the test accuracy escalation.

5.1.3 Is UPGL Still Valid under the Small Size of
Obvious Samples?

Lastly, we aimed to validate whether UGPL is valid
under the different sizes of obvious samples. If our
approach achieves meaningful test accuracy escala-
tion under the small size of obvious samples, we ex-
pect UGPL can benefit general practitioners under
resource constraints. We set the number of obvi-
ous samples per target class at Synthetic-AFHQ and

Synthetic-CelebA-HQ as (100, 400) and (150, 600),
respectively. Note each target class has the same num-
ber of obvious data to maintain a class balance at
the initial training set. We set the former experiment
setup to illustrate the circumstance where the initial
classifier did not learn sufficient characteristics of the
target classes. On the other hand, the latter setup
implies the model learned more about target classes
compared to the former setup.

5.2 Analogy 1: Not Every Ambiguous
Samples Bear Consistent
Knowledge to the Obvious Samples

Referring the experiment results described in Figure
6 and Figure 7, we discovered estimated uncertain-
ties vary among ambiguous samples. Following Fig-
ure 6a, 6c and 7a, 7c, the classifier resulted in low
uncertainty in most of validation obvious sets. We
reconfirmed a common notion that obvious samples
share a consistent knowledge to understand the target
class. However, the initial classifier showed different
uncertainty distribution in ambiguous validation sets
as shown in Figure 6b and 7b. Compared to obvi-
ous validation samples, there existed more uncertain
samples in ambiguous validation sets. The initial clas-
sifier cast doubt on particular ambiguous samples as
they do not seem to have similar knowledge to the
obvious data. In a nutshell, we could have discovered
not every ambiguous sample has meaningful knowl-
edge similar to the obvious data by unveiling uncer-
tainty distribution at ambiguous sets.

5.3 Analogy 2: Ambiguous Samples
with Low Uncertainty Accomplish
Higher Test Accuracy

Following the experiment results shown in Figure 8
and Figure 9, we examined UGPL achieves better im-
age recognition performance rather than utilizing ob-
vious data only. Regardless of datasets and the size
of the initial training set, our approach (UGPL-4Q)
achieved the most similar test accuracy to the upper
bound. We also discovered a positive relationship be-
tween ambiguous samples’ uncertainty and accuracy
elevation; the lower uncertainty in ambiguous sam-
ples correlates to the higher test accuracy escalation.
From the experiment results, we could examine our
proof-of-concept level statements regarding the am-
biguity. As ambiguous samples with low uncertainty
escalated the test accuracy at most, uncertainty can be
a possible proxy for measuring the ambiguous sam-
ple’s knowledge. Specifically, low uncertainty im-
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(a) Obvious Cat (b) Ambiguous (c) Obvious Wild

Figure 6: The distribution of uncertainty at validation sets of obvious cat images, ambiguous images, and obvious wild images
on the synthetic-AFHQ dataset. The ambiguous set included particularly many uncertain data compared to others; thus, we
resulted in ambiguous samples do not always bear the knowledge similar to the obvious samples.

(a) Obvious Male (b) Ambiguous (c) Obvious Female

Figure 7: The distribution of uncertainty at validation sets of obvious male images, ambiguous images, and obvious female
images on the synthetic-CelebA-HQ dataset. The ambiguous set included particularly many uncertain data compared to
others; thus, we resulted in ambiguous samples do not always bear the knowledge similar to the obvious samples.

plies an ambiguous sample includes similar knowl-
edge to the obvious samples. Last but not least, we
validated UGPL can be an effective method to fig-
ure out meaningful ambiguous samples and elevate
the test accuracy without further resource consump-
tion on acquiring additional obvious data.

5.4 Analogy 3: UGPL Is More Effective
When There Exists Small Obvious
Samples

Lastly, we figured out UGPL elevated larger test accu-
racy under the small initial training set. In Figure 8a,
our approach UGPL-Q4 escalated the test accuracy
for 0.479 (+6% from the initial classifier’s test accu-
racy) at the synthetic-AFHQ dataset. Our approach
also elevated the test accuracy for 0.469 (+5.8%) at
the synthetic-CelebA-HQ dataset as shown in Figure
9a. On the other hand, UGPL improved the test ac-
curacy at both datasets, but the impact was compara-
tively small. Our approach contributed to the accu-
racy escalation of 0.039 (+4.28%) at the synthetic-
AFHQ dataset, and increased the performance by
0.028 (+3.1%) at the synthetic-CelebA-HQ dataset.
Considering the experiment results, we interpret the
UGPL’s effectiveness is not depreciated under the
small size of obvious samples at the initial training

set. We discovered the UPGL even achieved a larger
escalation of test accuracy in a small size of the ini-
tial training set. Thus, general practitioners can utilize
our approach even if they do not have a large number
of obvious samples at very first. Still, we could not
propose a clear, definite analysis of the discovery, and
it remains room for improvement for a deeper under-
standing of our approach.

6 DISCUSSIONS AND
CONCLUSION

Throughout the study, we described the UGPL frame-
work and examined that our approach escalates image
classification performance with ambiguous samples.
Although we validated the UGPL’s effectiveness at
a proof-of-concept level, we fully acknowledge that
there shall be more strict and various experiments
to unveil the mechanism of our approach’s effective-
ness. Our approach should be examined with more
diverse experiment setups such as real-world datasets,
the size of initial training size, the number of sampled
ambiguous data, and various uncertainty estimation
methods. While our baseline work limited the scope
of analysis into binary image classification, further
studies shall tackle the ambiguity problem on multi-
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(a) Small Initial Training Set (b) Large Initial Training Set

Figure 8: Experiment result on the synthetic-AFHQ dataset. Initial implies the test accuracy with the classifier trained by
obvious samples only. UGPL-Q1 to UGPL-Q4 describes the test accuracy from the classifier trained with ambiguous samples
as well as obvious samples. UGPL-Q1 option added the most uncertain ambiguous samples, and the UGPL-Q4 option, which
is our approach, merged the least uncertain ambiguous samples to the updated training set. Upper Bound represents the test
accuracy with the classifier trained by an updated training set where obvious samples are additionally merged into the initial
option. Following the result, our approach UGPL-Q4 escalated the test accuracy at most from the Initial.

(a) Small Initial Training Set (b) Large Initial Training Set

Figure 9: Experiment result on the synthetic-CelebA-HQ dataset. Initial implies the test accuracy with the classifier trained by
obvious samples only. UGPL-Q1 to UGPL-Q4 describes the test accuracy from the classifier trained with ambiguous samples
as well as obvious samples. UGPL-Q1 option added the most uncertain ambiguous samples, and the UGPL-Q4 option, which
is our approach, merged the least uncertain ambiguous samples to the updated training set. Upper Bound represents the test
accuracy with the classifier trained by an updated training set where obvious samples are additionally merged into the initial
option. Following the result, our approach UGPL-Q4 escalated the test accuracy at most from the Initial.

class image classification or object detection tasks.
If further studies revisit the aforementioned points, it
will become a meaningful breakthrough to elevate the
image recognition performance with ambiguous sam-
ples in the computer vision domain.

Throughout the study, we proposed an ambiguity
problem in the computer vision domain that inquires
an answer to the following question: How can we
leverage the ambiguous samples to escalate the im-
age recognition performance rather than solely using
obvious samples? One of the presumable approaches
to this ambiguity problem is pseudo-labeling un-
der the semi-supervised learning paradigm. How-
ever, our study proposes a doubt on pseudo-labeling
at every ambiguous sample because applying confi-
dent pseudo-labels at inherently ambiguous, which
might not have sufficient knowledge on the target
class, is not reasonable. To this end, our study il-
lustrated a series of analyses to establish a practi-

cal pseudo-labeling framework under the ambiguous
samples and suggest several proof-of-concept level
validations. First, we utilized a generative neural
network (StyleMapGAN) to create synthetic ambigu-
ous data based on two widely-used datasets (AFHQ,
CelebA-HQ) due to the lack of a benchmark dataset
that deals with ambiguity. Second, we empirically
showed that not every ambiguous sample bears sim-
ilar knowledge to obvious samples. We further il-
lustrated the uncertainty can be a possible proxy for
describing the effectiveness of ambiguous sample’s
knowledge toward the escalation of image classifi-
cation performance. Third, we designed the UGPL
framework, which selects ambiguous samples with
low uncertainty to update the training set. We ex-
perimentally examined UGPL contributes to the el-
evation of image classification performance. Lastly,
the UGPL accomplished higher performance eleva-
tion under the small size of the initial training set.
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Therefore, general practitioners can be widely bene-
fited from our approach, although they did not acquire
a particular amount of obvious samples as an initial
training set. Based on our study’s proposition and
further revisits on the aforementioned avenues of im-
provement, we expect upcoming studies can provide
an effective solution to leverage ambiguous samples
on escalating the image recognition performance.
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