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Abstract: Vaccination has been proven to be the most effective method to prevent infectious diseases, specially nowadays
with the global pandemic of CoViD19. Millions of people are not immunized yet in various countries because
of low vaccine availability resulting from inefficiencies and/or lack of access to the vaccines. We propose a
constraint programming model, kwnown as Constraint Satisfaction Problem (CSP) as a distribution model for
vaccination to address the unique characteristics and challenges facing vaccine dose assignation. This CSP
model capture the uncertainties of demand for vaccinations such as the age range of the vaccination campaign
and the location of vaccination centers. The objective is to maximize the percentage of fully immunized people
facilitating the access by location and capacity of the vaccination centers while respecting the health ministry
dispositions (e.g., age range, number of doses, etc.). Our research examines how these can be optimized with
a constraint optimization problem in a single objective function. We tested the model using Peru open data on
vaccination planning of their national health ministry. We make many experiments to show the feasibility of
our proposal to increase their immunization coverage.

1 INTRODUCTION

Due to the fact that a pandemic was generated by the
CoViD19, in order to retain its transmission, many
countries had to enter a situation of social isolation.
This isolation brought with it many problems such
as the closure of different public areas and negative
effects on the country’s economy. At present, after
various months, a vaccine was developed that allows
us to fight this virus, thus, vaccination centers need
to organize themselves to be able to attend to unvac-
cinated people, therefore, a method is needed that re-
lates these people, distributed in 5 different districts of
Lima with the respective vaccination centers. Even-
more, Data about the vaccination process, such as
vaccine identification and the number of persons who
have been vaccinated, is crucial for vaccine manufac-
ture and distribution in order to reach the target level
of immunization in a country (Carniel et al., 2021).

Constraint Programming (CP) is a paradigm that
allows solving combinatorial problems based on dif-
ferent techniques and that its success is based on its
simple formulation, since it describes the problems in
the form of decision variables where values are as-
signed and restrictions are established to find assign-
ments to the variables with the established rules. For
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example, the solution of an optimization problem be-
gins with a conversion of said problem to an appropri-
ate CSP, which treats the objective function as one of
the constraints, which after that evaluates the value of
said function with all feasible solutions, and choose
the best solution found.

Apart from this, another of the important char-
acteristics of CP is its expressive modeling power
and its great capacity to guarantee the determination
of optimal solutions. That is, expressive modeling
would help to create compact models that adapt to
each different type of problem, while domain reduc-
tion through constraint propagation ensures the de-
termining optimal global solutions, without getting
caught up in local solutions. Besides, there are al-
ready various applications of CP for problems related
to the Pandemic (Manlove et al., 2017; Nasrabadi
et al., 2020; Ugarte, 2020).

From all that has been said previously, in this work
we are going to rescue the main theories in order to
create a CSP model in which it will be focused on vac-
cinations to Peruvian people in various regions. Thus,
accelerating the vaccination process of the entire pop-
ulation, considering the distance of the patients to the
vaccination centers, the age of the patients and the ca-
pacity of patients that a hospital has.

Our contribution are as follows:
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• We propose that the challenge of assigning vac-
cinations to people be formulated as a Constraint
Satisfaction Problem (CSP). The CSP model de-
scribed here is simple to comprehend, and when
combined with a CP toolkit1, it produces an ideal
outcome utilizing real data from Peruvian people.

• We illustrate how the CSP model can be used as
a foundation for imposing additional restrictions,
allowing us to handle versions of the bed assign-
ment problem that may arise naturally in practice
but are difficult to solve with existing algorithms.

• We show that CSPs are a simple paradigm that
does not need training a model or obtaining any
previous data, and that they are an elegant solution
to address this type of problem by explaining the
results.

This paper is organized as follows. Section 2 dis-
cusses related work. Section 3 introduces the rele-
vant concepts and defines the problem formally, then
presents our approach and our development. This is
evaluated in Section 4 after which we show the results
of our experiments, and finally we conclude.

2 RELATED WORKS

As various studies reveal, the majority of efforts on
perishable inventory deal with food, particularly fresh
produce (Bakker et al., 2012; Goyal and Giri, 2001;
Li, 2010; Gregor et al., 2018). Although the study is
based on public health, it is comparable to our envi-
ronment in that it only evaluates one party, not the full
supply chain.

In (Duijzer et al., 2018), the authors survey the
literature on vaccine supply chains. The majority of
these research focus on supply chain issues for one of
two types of vaccinations: seasonal vaccines like in-
fluenza and non-seasonal vaccines like pediatric im-
munizations. Only a few studies in the literature
present models for designing a cold supply chain net-
work for influenza vaccines (Hovav and Tsadikovich,
2015). Some research look into the supply chain con-
tracting issue with influenza vaccines (Chick et al.,
2008; Dai et al., 2012). In contrast, our work does
not aim to tackle the supply chain of vaccination, but
rather its assignment process for the people.

Other research look at vaccine allocation deci-
sions during pandemics (Westerink-Duijzer et al.,
2017; Westerink-Duijzer et al., 2020). The focus of
our research is only for CoViD vaccines.

1OR-tools - https://developers.google.com/
optimization

Other methodologies, such as lean, simulation,
and Markov decision process (MDP) models, have
been employed in recent research on relevant topics in
addition to these mathematical modeling approaches.
In (Mofrad et al., 2014), the authos recently devel-
oped a Markov Decision Process model that calcu-
lates the best time to preserve vials based on the cur-
rent vial inventory, time of day, and remaining clinic
days until the next refill. The authors provide a re-
alistic strategy for minimizing open-vial waste while
giving sufficient vaccines. Based on this finding,
the authors of (Mofrad et al., 2016) compared opti-
mum and heuristic policies in the presence of random
vial yield and examined numerous operational tech-
niques to maximize coverage while controlling open
vial waste. A simple-to-use decision-making tool was
also created and made available online.

Patient scheduling duties fall into three categories,
according to (Cardoen et al., 2010; Marynissen and
Demeulemeester, 2019): Dynamic patient schedul-
ing, dispersed patient scheduling, and coordinated pa-
tient scheduling. Unlike our strategy, which focuses
on vaccination center assignment during a pandemic,
all of these focus on enhancing hospital resources to
reduce patient waiting times (Vermeulen et al., 2009).

There are numerous options for resolving the as-
signment dilemma. As an example, treating this prob-
lem with mixed integer-programming (Ben Bachouch
et al., 2012; Turhan and Bilgen, 2017). In real-world
scenarios, though, it’s occasionally permissible to ig-
nore some restrictions in order to cover others that are
more important to their model. Hence the importance
of soft constraints.

Contrarily, a few publications have attempted to
solve this problem using different types of optimiza-
tion techniques (e.g., genetic algorithms, local search,
. . . ). In (Demeester et al., 2010), for example, the au-
thors suggest a hybrid tabu search method that assigns
patients to hospital beds automatically. Another ex-
ample of a two-level metaheuristic to handle the op-
erating room scheduling and assignment problem is
described in (Aringhieri et al., 2015). They, on the
other hand, interpret all patient requests as hard limits,
whereas our approach incorporates preferences into
the objective function.

To the best of our knowledge, none of these sys-
tems deal with simultaneous geolocation for multiple
vaccination centers; rather, they employed it to locate
people within a single health center or medical facil-
ity in order to optimize resources and reduce waiting
times.
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(a) Map of regions of Peru (b) Corresponding graph (c) Colored map of regions of Peru

Figure 1: Map of regions of Peru.

3 CP FOR VACCINATION
PLANNING

Now, we introduce the main notions for defining the
problem formally, for the sake of presenting our mod-
eling in CP and its development.

3.1 Preliminary Concepts

Many countries’ health systems are currently failing,
particularly their capacities, due to a lack of coop-
eration and other issues. This problem is exacer-
bated for third-world countries, such as Peru, because
their health systems were under-prepared and under-
funded prior to the pandemic.

3.1.1 Problem Statement

Given the current scenario, it is critical to prepare a
vaccination campaign with the goal of vaccinating the
majority of the population in the event of a COVID-
19 pandemic. Assigning people to vaccination centers
is a difficult task that necessitates meeting a number
of criteria. Like the number of dosages available at
each site, the age of the individual, the location of the
people, and the location of the centers are all factors
to consider. With the aforementioned criteria, it is re-
quired that as many people as possible be assigned to
vaccination centers as soon as possible. This problem
can be simplified to two principles:
1. People should be assigned to the nearest center.
2. Older people should be assigned earlier than the

rest.

3.1.2 Constraint Programming

Definition 1 (Constraint Satisfaction Problem
(CSP) (Rossi et al., 2006)). A Constraint Satisfaction
Problem (CSP) P = (X ,D,C ) is defined as:

• a finite set of variables X = {x1,x2, . . . ,xk},
• a set of domains D , mapping every variable xi ∈

X to a set of values D(xi),
• a finite set of constraints C .

The goal is to find a variable-to-value mapping
that maps each variable xi to a value in its domain
D(xi) while meeting all of the C constraints. A solu-
tion to the CSP is the name given to this mapping.

Example 1 (Graph Coloring). Graph Coloring is
the process of coloring the vertices (vi) of a graph
G = (V,E) so that no two neighboring vertices are
the same color. The following CSP (see Definition 1)
can be used to model this problem:

• X = {c1,c2, . . . ,ck}, where ci is the color variable
for each node vi in G.

• D = {1,2, . . . ,m}, where each number represents
a label for a color (e.g., 1 is blue, 2 is red, . . . ).

• C = {ci 6= c j,∀(i, j) ∈ E}, where each inequality
ensures having no two adjacent vertices are of the
same color.

Fig. 1a depicts a map of Peru divided into regions.
This map can be represented by a graph, as shown
in Fig. 1b. The colored map matching to the Graph
Coloring of 25 locations is shown in Fig. 1c.
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Definition 2 (Constraint Optimization Problem
(COP) (Chen et al., 2020; Rossi et al., 2006)). A
constraint optimization problem (COP) is defined as
P′ = P∪{ f}, where P is a constraint solving problem
(CSP) (see Definition 1) and f is the objective func-
tion to be optimized (either maximized or minimized).

Apart from identifying mappings from variables
to values, the task is to optimize (either maximize
or minimize) these mappings in order to discover the
best mapping based on an objective function f .
Example 2. Example 1 is being continued. Consider
the graph G = (V,E) and the COP (see Definition 2)
for Graph Coloring. P = (X = {c1,c2, . . . ,ck},D =
{1,2, . . . ,m},C = {ci 6= c j,∀(i, j) ∈ E}) and f =
#o f colors are defined as P′ = P∪{ f}.

Figure 1c shows the Graph Coloring of 25 regions
with only 4 colors. This result is optimal since, it can-
not be done with fewer colors.

3.2 CP Model

To model our problem as a CSP, we must first define a
triplet (X ,D,C ) that a solver will process and solve.

3.2.1 Variables

Let C a set of vaccination centers, Vi the set of avail-
able vaccine doses in center i and P be the set of peo-
ple. The set of variables is defined as:

xi jk ∈ {0,1} where (i, j,k) ∈C×Vi×P(1)
ndk ∈ {0,1,2} where k ∈ P (2)

agek ∈ [0..100] where k ∈ P (3)
If at the center i, the vaccination dose j is taken

by the person k, then xi jk = 1. ndk is the number of
doses received by the person k. agek is the age of the
person k. The goal is to develop a set of variables that
satisfy all of our requirements in order to correlate
each vaccine dose of a center with a matching person.

3.2.2 Constraints

Constraints are crucial in a CSP model because they
determine whether or not a variable assignment is
possible and whether or not the problem can be ad-
dressed.

The following are the essential principles (i.e.,
hard limitations) that vaccination centers must follow
in order to solve this problem:

• There Must Be at Most a Single Person As-
signed to Each Vaccine Dose. This can be mod-
eled as:

∀i ∈C,∀ j ∈Vi, ∑
k∈P

xi jk ≤ 1 (4)

• There Must Be at Most a Single Vaccine Dose
Assigned to Every Person. This can be modeled
as:

∀k ∈ P,∑
i∈C

∑
j∈V j

xi jk ≤ 1 (5)

• If the Person is Already Vaccinated, He/She
Must not Be Assigned to Any Center. This can
be modeled as:

∀i ∈C,∀ j ∈Vi,∀k ∈ P,xi jk⇐⇒ (ndk < 2) (6)

• If the Person Is Not in the Age Range for Vac-
cination, He/She Must not Be Assigned to Any
Center. This can be modeled as:

∀i∈C,∀ j ∈Vi,∀k ∈ P,xi jk⇐⇒ (agek >= minage)
(7)

Therefore, the CSP Pvacc = (X ,D,C ) for this
problem is defined as:

• X =


{xi jk | ∀(i, j,k) ∈C×Vi×P}⋃

{ndk | ∀k ∈ P}⋃
{agek | ∀k ∈ P}


• D =

 xi jk ∈ {0,1} ∀(i, j,k) ∈C×Vi×P}
ndk ∈ {0,1,2} ∀k ∈ P

agek ∈ {0, ..,100} ∀k ∈ P



• C =



{∑k∈P xi jk ≤ 1 | ∀(i, j) ∈C×Vi}⋃
{∑i∈C ∑ j∈V j xi jk ≤ 1 | ∀k ∈ P}⋃

{xi jk⇐⇒ (ndk < 2) | ∀(i, j,k) ∈C×Vi×P}⋃
{xi jk⇐⇒ (agek >= minage) | ∀(i, j,k) ∈C×Vi×P}


3.2.3 Preferences

Preferences, also known as soft constraints (Bistarelli
et al., 1995; Cooper et al., 2010), are highly desired;
in other words, a solution to this problem should aim
to fulfill them as much as feasible, but they are not re-
quired to find a solution. These are some of the rules:

• Ideally, every person should have access to a vac-
cination center if necessary. This can be modeled
as:

max
sol

∑
i∈C

∑
j∈Vi

∑
k∈P

xi jk (8)

• If possible, everyone should be vaccinated at the
closest vaccination center. This can be modeled
as:

min
sol

∑
i∈C

∑
j∈Vi

∑
k∈P

(
xi jk×distance(i,k)

)
(9)

where distance(i, j) is the distance from center i
from patient k.
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• Mostly, elder people should be prioritized when
there are not enough vaccines. This can be mod-
eled as:

max
sol

∑
i∈C

∑
j∈Vi

∑
k∈P

(
xi jk×agek

)
(10)

Preferences are not treated as a (in)equality, but
as a maximization (resp. a minimization), because
we prefer to satisfy them as much (resp. as least) as
possible. These three preferences can be combined
into a single goal function that can be optimized as
follows:

f = ∑
i∈C

∑
j∈Vi

∑
k∈P

(
xi jk

(
1− distance(i,k)

maxdist
+

agek

maxage

))
(11)

The objective function (11) requests that the over-
all patient attention be maximized. It’s worth not-
ing that if xi jk = 0, the person isn’t counted in the
total. The distance distance(i,k) (resp. the age
agek) must be normalized by dividing it by the maxi-
mum value maxdist (resp. maxage), yielding distance(i,k)

maxdist

(resp. agek
maxage

). Nonetheless, because the distance
should be minimized and f is maximized, the dis-
tance is negative. Therefore, the COP is defined as:
P′vacc = {Pvacc∪max( f )}.

4 EXPERIMENTS

In this section, experiments will be carried out to
show the feasibility of our approach, starting from the
experimental protocol and the results, as well as its
discussion.

4.1 Experimental Protocol

All of the tests were carried out on a personal
computer with a Linux operating system, an i5-8600
CPU core processor running at 3.10 GHz, and 16GB
of RAM. The implementation was carried out in
OR-tools1. All source codes and data sets are pub-
licly available at https://colab.research.google.com/
drive/13ndIi8BsgoY9gQrwpq YcO s-uTTwvVh?
usp=sharing.

Data. In this case, two main sources of information
were needed:

• Vaccination Centers: The informa-
tion on vaccination centers in Peru, and
their geographical location were found at
https://www.datosabiertos.gob.pe/dataset/
centros-de-vacunacion then exactly plotted with

Figure 2: Example of people Distribution.

geojson with the Polygonal District Map of Peru
at https://github.com/juaneladio/peru-geojson/
blob/master/peru distrital simple.geojson.
For instance, for districts of Cieneguilla, Ate,
Chaclacayo, Lurigancho and La Molina, the 8
principal health centers are listed in Table 1.

• People: For defining the quantity of peo-
ple per district, information was used
from the 2017 census of National Insti-
tute of Statistics and Information (INEI)
at https://www.inei.gob.pe/estadisticas/
indice-tematico/poblacion-y-vivienda/. Fi-
nally, for the vaccination capacity at the district
level, we used statistics from the National Min-
istry of Health at https://www.minsa.gob.pe/
reunis/data/vacunas-covid19.asp.
The National Authority of Personal Data Pro-
tection protects people’s geolocation data un-
der Peru’s National Law on Personal and Health
Data (see http://bvs.minsa.gob.pe/local/MINSA/
5118.pdf).
Lacking real information about the location of in-
fected people, it was required to generate loca-
tions following their pupulation distribution (see
Fig. 2).

4.2 Results

Now, we report and discuss the numerical results on
synthetic problems when comparing vaccination as-
signments of various combinations of districts.

Figures 3a and 3b show the location of vaccina-
tion centers for some districts in Lima, Peru, the lo-
cation of people as colored points (red points are as-
signed according to their distance to the vaccination
center and the age range allowed by the ministry,
green points are people already vaccinated and blue
points are people that are infected, and thus must wait
in quarantine before vaccination).

Now, two test scenarios will be described. For the
first one, only the districts of Cieneguilla, Ate, Cha-
clacayo, Lurigancho and La Molina will be consid-
ered, while in the second one, only the districts of
Surco, San Isidro, San Borja, Surquillo y Miraflores
will be considered.
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Table 1: Lisf of 8 health centers.

Id District Name Latitude Longitude

C1 La Molina La Molina Center -12.090 - 77.017
C2 Cieneguilla Loza Deportiva Municipal -12.092 - 77.070
C3 Cieneguilla Tambo Viejo -12.106 - 77.046
C4 Lurigancho Mall Santa Anita -12.101 - 77.035
C5 Chaclacayo Pachacutec Stadium -12.106 - 77.055
C6 Ate Wholesale Market -12.128 - 77.017
C7 Ate Elitte -12.103 - 77.029
C8 Ate District Health Center -12.115 - 77.033

Scenario 1 (See Figure 3a):

For this case, only the districts of Cieneguilla, Ate,
Chaclacayo, Lurigancho and La Molina will be con-
sidered. Ten execution tests were performed. An av-
erage execution time of 12.2 seconds was achieved,
managing to assign 1,500 people.

Scenario 2 (See Figure 3b):

For this case, only the districts of Surco, San Isidro,
San Borja, Surquillo y Miraflores will be considered.
Ten execution tests were performed.

An average execution time of 36.1 seconds was
achieved, managing to take 10,000 people. Also in
Figure 3b, we can see that most of the centers have as-
signments from people nearby. Contrarily, some cen-
ters take assignments further, even if this might seem
counter-intuitive, it may indicate that any of those
center has a limited capacity. This happens because
the objective function (see Equation (11)) tries to min-
imize distance and simultaneously maximize the at-
tention.

Time Analysis

The typical execution times for allocating vaccination
locations for a certain number of centers at a specific
percentage of capacity with an age range are shown
in Table 2.

For instance, in Scenario 1, it takes 0.79 (resp.
1.71) seconds for 20% (resp. 100%) of centers to as-
sign the people older than 60 years. For instance, in
Scenario 2, it takes 2.41 (resp. 4.32) seconds for 20%
(resp. 100%) of centers to assign the people older than
40 years.

Table 2: Times for assignments (in seconds).

% of Centers

20% 40% 60% 80% 100%

Scenario 1

minage = 60 0.79 0.99 1.29 1.36 1.71

minage = 50 1.17 1.29 1.49 2.16 2.83

minage = 40 1.45 1.49 1.69 2.34 3.11

minage = 30 1.57 1.67 1.90 2.67 3.33

minage = 18 1.78 1.90 2.14 2.76 3.78

Scenario 2

minage = 60 1.67 1.93 2.33 2.46 2.81

minage = 50 2.25 2.36 2.47 3.26 3.93

minage = 40 2.41 2.45 2.65 3.43 4.32

minage = 30 2.48 2.64 2.99 3.72 4.45

minage = 18 2.67 3.88 3.21 3.86 4.87

5 CONCLUSIONS

Throughout the development of this work, we have re-
alized that it is possible to solve current problems us-
ing the CP paradigm, with useful information in Peru,
that is easy to access. In addition, on the subject of
heuristics, we have been able to observe that, through
a good modeling of our exercise, it can be simplified
to a few steps, which gives us to understand the im-
portance of using Constraint Programming, which al-
lows us to, both in the execution time and in the cod-
ing part, it provides us with great ease. This includes
the use of objective functions, as we have seen in the
part of restrictions, which we have been able to use as
minimum objectives.
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(a) Scenario 1

(b) Scenario 2

Figure 3: Comparison of vaccination assignments for Scenario 1 (a) and Scenario 2 (b).
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On downfall, if this kind of problem is tackled
with machine learning, is that it needs a lot of data to
train, in Peru and in general, many times there is not
enough (available) data. In contrast, CP works to find
solutions from the data set that must respect given re-
strictions, optimizing an objective function with sim-
ple heuristics, without training or a lot of data.

As a future work, we would like to scale our ap-
proach, with more instances, or evenmore with new
constraints that appear on the fly, for instance now
some countries have a booster shots policies, that re-
quire to rethink some of the constraints, such as Dy-
namic CSPs (Verfaillie and Schiex, 1994)
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