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Abstract: The "schemaless" property, common to most NoSQL systems, means the absence of a data schema when 
creating a database (DB). This property brings an undeniable flexibility by allowing the schema to evolve 
during the use of DB. However, the absence of a schema is a major obstacle for developers and decision 
makers. Indeed, the expression of queries (of SQL type) requires a precise knowledge of this schema. In this 
paper, we propose an automatic process to extract the logical schema of document-oriented NoSQL DBs. We 
chose the OrientDB NoSQL system which appeared to be the most suitable for the application in our project, 
because of its ability to express rich data structures and a diversity of links between data: association, 
composition and inheritance links. Our solution, based on the MDA architecture, proposes to metamodel a 
NoSQL DB and its schema. From these metamodels, transformation rules allow to extract the schema of the 
DB. The implementation of this process on an OrientDB DB allows users to have all the necessary elements 
(class names, properties, data types and links) for the elaboration of queries. An experimentation of the process 
was carried out on three test-DBs as well as on two massive industrial DBs. 

1 INTRODUCTION 

For several decades, the volume of digital data has 
increased dramatically due to the multiplicity of 
computing devices present in all areas of our 
professional, public and personal lives. Massive DBs 
or "Big Data" contain several terabytes of data from 
different sources and in various formats such as text, 
tables, documents... Currently, relational DBMS 
dominate the storage market; they require that data 
respect a schema provided before that is fed (Elmasri 
& Navathe, 2011). Big Data has favored the 
emergence of NoSQL systems that provide great 
flexibility in data management while offering good 
access performance to large volumes of data. This 
flexibility is notably allowed by the Schemaless 
property which does not require schema specification 
before data entry; thus, the rows of a table can contain 
different attribute names and values of various types. 
Thus, most NoSQL systems of document, column or 
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graph-oriented types (MongoDB, CouchDB, 
OrientDB, HBase, Neo4j) are schemaless.  

In the absence of a schema, writing queries on a 
NoSQL DB needs to be entrusted to a developer: 
either who participated in the creation of the DB and 
therefore who implicitly knows its schema, or who 
will manually extract the schema by an often-random 
consultation of the content. A more rational solution 
is to use a process that automatically extracts the 
schema from the NoSQL DB and, in recent years, 
several mechanisms have been proposed to extract the 
schema from a NoSQL DB (Frozza, Jacinto and al., 
2020), (Wang and al., 2015), (Cánovas Izquierdo and 
Cabot, 2016) and (Frozza, Defreyn and al., 2020). 

In this paper, we propose a new process for 
extracting the logical schema of a document-oriented 
NoSQL DB called ToOrientDBSchema; the 
originality of our proposal lies mainly in the diversity 
of the semantic links considered. The choice of a 
document-oriented DB is related to the requirements 
of our case study presented in section 2. Once 
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extracted, the schema will allow users (developers or 
decision makers) to easily formulate queries on the 
DB. This paper is organized as follows: Section 2 
presents the medical application that justifies the 
interest of our work. Section 3 presents an overview 
of our solution and Section 4 reviews the state of the 
art. Section 5 presents our process by highlighting (i) 
the source metamodel, (ii) the target metamodel and 
(iii) the transformation rules. Section 6 describes the 
experimentation of our process on 3 test-DBs based 
on the medical application and on two massive 
industrial DBs. Section 7 positions our process to 
those proposed in related works. Finally, the 
conclusion in Section 8 presents perspectives to our 
work. 

2 MOTIVATION 

Our work is part of a medical application developed 
for an industrial project. 

2.1 Medical Data 

The application we are interested in concerns the 
implementation of scientific programs dedicated to 
the follow-up of rare pathologies on hospitalized 
patients. Each program may involve up to 50 
European institutions (hospitals, clinics and 
specialized care centers). The main objective of a 
program is to collect significant data on the evolution 
of the disease over time, to study its interactions with 
other relevant diseases and to evaluate the influence 
of its treatments in the short and medium term. The 
duration of a program is determined when it is 
launched and can be between three and ten years. 
Data collected by multiple institutions in a multi-year 
program have generally the accepted characteristics 
of Big Data (the 3 Vs) (Laney, 2001). Indeed, the 
volume of medical data collected daily from patients 
can reach, for all establishments and over three years, 
several terabytes. On the other hand, the nature of the 
data entered (constant measurements, radiography, 
scintigraphy, etc.) is diverse and may be different 
from one patient to another depending on his state of 
health. Finally, some data are produced continuously 
by sensors; it must be processed in real time 
(measurements crossing a threshold that would 
involve the urgent intervention of a practitioner, for 
example). Patients follow-up requires the storage of 
various data such as the record of consultations 
carried out by practitioners, the results of analyses, 
prescriptions for medicine and specific treatments. 
We therefore stored all this data in the multi-model 

OrientDB NoSQL system. Due to the nature of data 
to be stored, we use the schemaless document-
oriented model of OrientDB (OrientDB, 2021 April). 

One of the problems we are facing in this project 
is related to the manipulation of data stored in NoSQL 
schemaless systems. Indeed, the absence of a clearly 
identified data schema constitutes a major difficulty 
for writing queries. Thus, in order to formulate their 
queries, developers (computer scientists) and 
decision-makers (doctors, managers, etc) have to 
search empirically for the schema that is integrated in 
the stored data. 

Our problem consists in developing a schema 
extraction process from a massive DB managed by a 
NoSQL schemaless system. 

2.2 Application Development 

Our application aims to develop a software 
environment for medical staff to (1) collect patients 
‘data and (2) query and analyze the history of this 
data.  

To store this large and complex data of varying 
types and formats, the NoSQL OrientDB system 
offers advanced functionalities that are well suited to 
our application. However, the lack of data schema in 
this system represents a major obstacle for writing 
queries on the DB. Indeed, the expression of a query 
requires knowing the names of the classes as well as 
the names of the properties and their types. For 
example, let's consider the query asked by a doctor 
participating in a program: Obtain the reference of 
medicines prescribed by doctors to patients suffering 
from Creutzfeldt-Jacob disease. The translation of 
this query with an SQL type language could be as 
follows (extract): 

Select tuple (x.name, m.ref)  
From d in Diseases, x in Doctors,  
p in Prescribe, m in Medicines 
Where d.name = "Creutzfeldt-Jacob" 
and … 
Group By x.name; 
We can see in this example of a query expressed 

by a doctor (through an appropriate graphical 
interface) the need to know the schema of the DB, 
mainly the names of the classes and the names and 
types of the properties. We therefore developed a 
process to extract a logical data schema from an 
existing DB. 
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3 SOLUTION OVERVIEW 

We have a DB managed by the NoSQL OrientDB 
system. Our process consists of extracting the logical 
schema from the DB and presenting it in a form that 
can be read by users (developers and decision-
makers). We used the ModelToModel transformation 
approach of MDA (OMG, 2021 April) to generate the 
logical schema. We therefore present successively the 
characteristics of the OrientDB system, the principles 
of MDA and an overview of our process. 
OrientDB is a multi-model NoSQL data storage and 
manipulation system in the sense that it supports 
several data organizations. Given the specificities of 
our application, we chose the document-oriented 
model whose records (i.e. objects) contain a set of 
properties (Key, Value); the values of the properties 
can belong to all types of data (atomic, structured and 
multivalued). One of the particularities of OrientDB 
system is the possibility of expressing association 
links in the form of pointers (reference values) 
according to the ODMG DB standard (ODMS, 2021 
April). In addition, OrientDB is schemaless because, 
for a given class, the schema of the records is not 
provided when the class is created. 

MDA is a branch of model-driven engineering 
(MDE) proposed by the OMG (OMG, 2021 June). It 
is a software development architecture that 
distinguishes several levels of description making it 
possible to disregard the technical characteristics 
(PIM, CIM, PSM) of an application. Thus, the PSM 
(Platform Specific Model) corresponds to 
descriptions taking into account the technical 
characteristics of an implementation platform. In 
addition, MDA offers model transformation 
principles and techniques for generating code or, 
inversely, extracting the model from existing code. 
This involves applying transformation rules on 
metamodels describing the starting point (the source) 
and the arrival (the target). The Eclipse Foundation 
(Eclipse, 2021 April) has developed implementation 
tools in accordance with MDA. The objective of our 
work is to obtain the (unique) schema of an OrientDB 
schemaless DB. MDA offers us extraction principles 
consisting in metamodeling the source (DB) and the 
target (schema) and then applying rules of passage 
from the source to the target.  

This solution has the advantage of being able to 
be applied to different document-oriented NoSQL 
DBs (managed by OrientDB or by other systems 
accepting this model). However, it faces some 
difficulties related mainly to the detection of data 
types and links; we therefore made some initial 
assumptions in section 5.1.  

4 RELATED WORKS 

Several NoSQL DB schema extraction softwares 
have been proposed by software publishers such as 
"Spark Dataframe" (Apache Spark, 2021 Oct), 
"Schema-guru" (SnowPlow Analytics, 2021 Oct) and 
"Mongodb-schema" (Peter Schmidt, 2021 Oct). 
These softwares extract the class schema (designated 
also by tables or collections) from a DB in JSON 
format; but these softwares do not extract the 
semantic relationships between objects.  

In addition, research works proposed extracting 
more complete schemas from NoSQL DB. In 
(Baazizi and al., 2017), the authors propose a process 
of schema extraction from a JSON dataset using the 
Map-reduce system. This process can be summarized 
in 2 phases: the first consists in applying the Map 
transformation to each record of a class in order to 
deduce the pairs (key, type) from the pairs (key, 
value). The result of this step allows to obtain several 
schemas specific to each record. The Reduce phase 
consists of merging these schemas in order to provide 
a global schema for each class. This process was 
extended by the same authors by integrating the 
parameterization in the 2nd phase Reduce (Baazizi 
and al., 2019b); this allows the user to infer the 
schemas produced in the Map phase at different levels 
of abstraction. 

Another process of schema extraction from an 
extended JSON dataset has been proposed in (Frozza 
and al., 2018). Extended JSON records support, in 
addition to standard types, other data types like the 
DBRef type allowing to express links between 
objects, Date, Long, Timestamp, Binary… The 
extraction process consists in realizing 3 successive 
steps: i) creation of schemas for each record, ii) 
grouping of raw schemas in order to obtain a unique 
class of JSON objects, iii) unification of schemas and 
iv) construction of the global schema for all records 
of a class. The processes presented in (Frozza and al., 
2018), (Baazizi and al., 2019b) and (Baazizi and al., 
2017) provide some answers to our problem. 
However, the DBs to which they apply to contain a 
unique class of objects; they therefore do not deal 
with the links between classes. 

In (Aftab et al., 2020), an automatic process for 
transforming document-oriented NoSQL DB 
(MongoDB) into relational DB has been presented. It 
is summarized in three steps: extracting the schema 
from the source DB, analyzing and converting it into 
SQL query according to the format of the target DB 
and finally launching ETL processes. The latter 
extract the data from the NoSQL DB, process it to 
create the SQL queries and then load it into the target 
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DB. The presented process extracts the schemas of 
the classes with the names and types of the properties 
however it does not identify the semantic links 
between the classes. 

Our work aims to provide a process for extracting 
the schema from a document-oriented NoSQL DB; 
this process is able not only to extract the descriptions 
of the objects but also to identify the links between 
these objects. In the OrientDB system, a DB consists 
of classes containing records describing objects. Each 
record consists of a set of properties (key, value). A 
property can represent either an attribute 
characterizing an object or a link to another record.  

In section 5 we present our process and we detail 
the steps for extracting the schema. 

5 EXTRACTION OF LOGICAL 
SCHEMA 

In this section, we present our process 
ToOrientDBSchema which aims to extract the 
schema from an OrientDB DB. This schema 
describes the structure of the stored data, including 
the name of each class, the names of its properties and 
their types. The development of our process is based 
on the MDA architecture (Model Driven 
Architecture) (Bézivin and Gerbé, 2001) defined 
previously in section 3. The advantage of using this 
architecture lies in the generalization of our process. 
Indeed, the formalization of the input and the output 
by metamodels (sections 5.1 and 5.2) ensures that our 
process is applicable to any NoSQL DB of document 
type.  

Figure 1 describes the inputs/outputs of our 
process. Based on the source and target metamodels 
and by applying transformation rules to an OrientDB 
DB, the process produces a schema that conforms to 
the target metamodel describing the structure of the 
data stored in this DB. 

 

Figure 1: The ToOrientDBSchema process of schema 
extraction. 

5.1 Source Metamodel 

We have an existing document-oriented NoSQL DB. 
Many works studied design “drifts” in such DBs, for 
example the existence of a single unique class 
grouping together different types of entities or the 
presence of synonymous property names in records of 
the same class (Ruiz and al., 2015), (Klettke and al., 
2015) and (Baazizi and al., 2019a). These issues have 
been addressed elsewhere; we made the following 
starting assumptions to focus on other issues. 

H1: a class of the DB represents entities 
semantically homogeneous having a unique 
identifier; for example, employees and cars are stored 
in distinct classes and have their own identifiers. 
However, entities can also be embedded in a class in 
the form of a property; it is a choice of conceptual 
representation of reality. For example, cars can be 
seen as properties characterizing objects used; in this 
case, only "Employees" appears as a class. 

H2: Records within the same class can contain a 
variable number of properties. The extraction of a 
unique schema for a class involves grouping together 
properties with the same name and type. For example, 
the two properties phone and telephone of type String 
will not be grouped together; they will generate two 
distinct properties. 

H3: In the records of a class, properties of the 
same name and of different types have been 
previously processed by a specific process applied to 
the source DBs. This processing detects 
inconsistencies in the format of values and then 
harmonizes properties of the same name, either 
automatically or with the intervention of an 
administrator. Thus, in two records of the same class, 
we cannot find a client# property of type Number and 
a client# property of type String.  

These three assumptions allow to obtain schemas 
excluding certain modelling anomalies of reality; 
indeed, these could compromise the validity of the 
extracted schemas. However, it should be noted that 
these three reducing assumptions do not alter the 
interest of our proposals since, on the one hand, 
processing solutions exist elsewhere and, on the other 
hand, our process and our models are not impacted. 
However, the non-respect of these assumptions would 
lead to the production of a schema that does not 
conform to reality and could cast doubt on the validity 
of our process. 

To describe the source metamodel presented in 
Figure 2, we used the Ecore language (Eclipse, 2021 
Oct); it is a formalism close to UML with which we 
implemented our solution (section 6: 
Experimentation). 
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Figure 2: Metamodel describing the source of our process. 

 

Figure 3: Metamodel describing the resulting schema of our process. 

 

Figure 4.a: Extract from the ATL translation of R3. 
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According to Ecore, a rectangle represents an 
object class and an arc corresponds to an association, 
composition or inheritance relationship. Thus, in 
Figure 2, an OrientDB DB (Source) is identified by a 
name and contains a set of classes. Each class is 
referred by a name and groups together a set of records. 
Each record contains a set of properties (key, value). 
Note that two records belonging to the same class can 
contain different properties. The value of a property 
can be primitive or complex (structured or 
multivalued). A primitive value of reference ensures a 
link between two classes; this value contains the rid 
("record identifier") of a record of the referenced class.  

This metamodel allows to describe any DB that 
conforms to a document-oriented NoSQL model, i.e., 
supported by a system such as MongoDB, OrientDB 
or CouchDB. The ToOrientDBSchema process will 
analyze the DB by applying to it the metamodel of 
figure 2 and will extract a schema that conforms to 
the target metamodel presented in the next section. 

5.2 Target Metamodel 

The target metamodel formalized with the Ecore 
language is illustrated in Figure 3. It represents the 
structural characteristics of an OrientDB DB: the 
existing classes and their properties, the data types as 
well as the links (monovalued and multivalued) 
between the classes. 

The root element "Target" corresponds to the 
schema of an OrientDB DB grouping together a set of 
class descriptions. Each class contains properties; 
each of them is associated with a couple (Name, 
Type). The type of a property can be primitive, 
structured (i.e. made up of other properties), or 
multivalued (made up of several values). In the 
OrientDB system, the links between classes are 
expressed by object identifiers (references); the value 
of a link-property points to a record in a class. 

5.3 Schema Extraction by 
Transforming the DB 

After formalizing the source and target metamodels, 
we describe how the extraction of logical schema is 
performed through the use of transformation rules. 
The rules are first expressed in natural language and 
then in ATL language (Eclipse, 2021 July). They are 
considered as a function which, applied to a DB, 
produces the DB schema: ATL-Rules (DB) = DB-
Schema. 

R1: An OrientDB DB from the source is 
transformed into a schema with the same name in the 
target. 

R2: Each input class is transformed into a class 
type with the same name. 

R3: For all the records of a class, each property of 
the form (Name, Value) is transformed into a couple 
(Name, Type). For an atomic value (other than a link), 
we associate the "Primitive" constructor with the type 
of the value. For example, if the value of a property is 
a string surrounded by the characters "", then the 
generated type is "Primitive EString". Our process 
applies R3 on all the records of the same class and 
generates a unique model for this class. 

In figure 4.a, we expressed the rule R3 using the 
ATL language and we present an example in figure 
4.b. Note that R3 is made up of a number of ATL sub-
rules equal to the number of primitive types. 

R4: A value corresponding to a link of the form 
"#xx:xx" (prefixed by the xmi tag "Reference") is 
transformed into type "ERef". Figure 5.b shows an 
example of the application of R4 to a record 
containing a link to the Doctors class. 

R5: A structured value is transformed into a 
structured type; thus the “Structured” constructor is 
associated with all the sub-properties and their 
respective types. The previous rules are applied 
recursively on each sub-property. Figure 6.a and 6.b 
shows the ATL expression of R5 and an example of 
application. 

 

Figure 4.b: Example of application of R3. 

 

Figure 5.a: The rule R4 formalized in ATL language. 

 

Figure 5.b: Example of application of R4. 
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Figure 6.a: The rule R5 formalized in ATL language. 

R6: The value of a multivalued property is 
transformed by associating the "Multivalued" 
constructor with the type of the component values. 
The determination of the type results from the 
application of one of the previous rules. We present 
an example of application of this rule in figure 7.  

We presented in this section the 6 rules of our 
transformation process expressed in ATL language. 
In the next section, we will show how this process has 
been experimented. 

 

Figure 6.b: Example of application of R5. 

 

Figure 7.a: The rule R6 formalized in ATL language. 

 

Figure 7.b: Example of application of R6.  

6 EXPERIMENTATION 

We present the experimentation of our process on 
three test-DBs based on the medical application 
described in section 2.1 and on two massive industrial 
BDs. First, we implemented our process on a dataset 
with twelve classes taken from the DB of scientific 
programs and representing a little less than a 
gigabyte. The purpose of this test is to verify the 
proper functioning of our process without taking into 
account the performance of extracting a schema from 
big data. Then, we applied our process on three test-
DBs created from their previously known schemas. 
The goal is to ensure that for each test-DB, the 
schema generated by our process correctly describes 
the data stored in the DB. Finally, to confirm the Big 
Data aspect of our work, we experimented our 
process on two massive industrial DBs. 

6.1 Technical Environment 

For our test, we used a metamodeling and model 
transformation platform conforming to the MDA 
architecture. The Eclipse Modeling Framework 
platform (EMF) (Eclipse, 2021 June) includes a set of 
tools among which we implemented: 

- Ecore: a metamodeling language (Eclipse, 2021 
Oct) that allowed to define the source and target 
metamodels (figure 2 and 3). 

- XMI: a format used to present instances of 
metamodels (OMG, 2021 July). 

- ATL: a model transformation language that 
provides a high level of abstraction and 
expressiveness by describing the transformation of 
elements from the source model to the target model 
(Allilaire and al., 2006). This language, inspired by 
the QVT formalism, has a level of execution 
performance suitable for large volumes of data (Van 
Amstel and al., 2011). 

6.2 Test Case 

To test our process on the medical DB and generate 
its schema, we implemented the following steps. 

Step1: Conversion of the OrientDB DB into the 
XMI format required by the Eclipse platform. We 
developed a software in Java language to convert the 
Json code of a DB by introducing the specific XMI 
tags of the OrientDB syntax such as <classes>, 
<records> and <properties>. Figure 8 shows an 
example of the input/output of our software. This 
software scans the entire source DB and creates a new 
DB in XMI format that will serve as the source for 
our ToOrientDBSchema process. The execution time 
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of the conversion is important and proportional to the 
volume of the DB. At the present stage of our work, 
the conversion software must be executed each time 
a new schema extraction is requested (due to data 
update). But we are currently studying the possibility 
to reflect each update of the source DB in the XMI 
DB; in this case, only one conversion of the DB into 
XMI will be necessary. 

Step 2: Application of the transformation rules 
defined in section 5.3 on the instance of the source 
metamodel created in step 1 (BD/XMI). Figure 9 
shows an extract of the transformation rules 
expressed with ATL. This operation automatically 
generates the DB schema according to the concepts 
of the target metamodel. In figure 10, we present an 
extract of the generated schema. It describes the 
structure of each class ("Patients" for example): the 
properties it contains and their types. The schema 
shows monovalued and multivalued links. Figure 10 
contains the two properties "practioner" and 
"antecedents" which are of type "ERef" and represent 
respectively a monovalued link to the class "Doctors" 
and a multivalued link to the class "Pathologies". 

Now, it is necessary to verify that the schema 
generated by our process corresponds to the 
description of the data contained in the DB. To do 
this, we manually created three separate test-DBs on 
which we applied our extraction process. 
Specifically, the approach of verification used for 
each DB was as follows.   

1. Manual elaboration of an (initial) DB schema 
inspired by the application of medical programs (cf. 
section 2). Each schema had between 8 and 10 classes 
and between 4 and 7 inter-class links.  

2. Creation of a DB under the OrientDB system 
following the previous schema. This was done using 
suitable software for entering attribute values and 
storing them under OrientDB.  

3. Implementation of our automatic schema 
extraction process on the DB.  

4. Visual comparison of the extracted schema and 
the initial schema. 

The experimentation carried out on the three test-
DBs made it possible to verify the correct functioning 
of the ToOrientDBSchema process. Thus, Each DB 
has been developed to take into account (and test) the 
full diversity of types of data and links that a DB may 
contain. Figures 11 and 12 show an extract from a 
test-DB and its generated schema by our process. 

We completed this experiment by applying the 
ToOrientDBSchema process on two massive 
industrial DBs (with the help of the company 
Trimane), one used in a legal application and the 
other containing financial data. Each of these 
OrientDB DBs has a volume between one and two 
terabytes. The extracted schemas have been visually 
validated by developers with in-depth knowledge of 
these DBs. 

 

Figure 8: Conversion of OrientDB data to XMI. 

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

68



 

Figure 9: Extract from the transformation rules expressed with ATL. 

Table 1: Comparison with the processes presented in Related works section. 

Process 
 

Criteria 

(Baazizi and 
al., 2017) 

(Baazizi 
and al., 
2019b) 

(Frozza and al., 
2018) 

(Aftab and al., 
2020) 

Our process 
ToOrientDBSchema 

Dataset format JSON datasets JSON 
datasets 

Extended JSON 
(MongoDB)

JSON 
(MongoDB) 

Extended JSON 
(OrientDB)

Schema format JSON JSON JSON JSON XMI 

Number of 
classes 

1 1 1 n n 

Links No No No No Yes 

 
7 DISCUSSION 

In this section, we compare the ToOrientDBSchema 
process that we proposed to the processes of schema 
extraction cited in the related works (section 4). This 
comparison is summarized in Table 1. We focus on 
the following criteria: i) the format of the data stored 
in the dataset, ii) the format of the schema generated 
by the proposed process, iii) the number of classes in 
the dataset and iv) the existence of association links 
in the dataset. Table 1 shows that the major 
contribution of our process is the processing of 
association links (monovalued and multivalued) in 
the form of references as they occur in standard object 
systems (ODMS, 2021 June).  
 
 

8 CONCLUSION 

This article proposes the ToOrientDBSchema process 
for extracting the schema from an OrientDB 
conforming to the document-oriented model. This 
process based on the MDA architecture comprises 3 
steps: the modeling of the source and the target 
through metamodels and the formalization of the 
transformation rules. The source metamodel 
describes the content of any DB to which our process 
is applied and the target metamodel models the result 
of the process, i.e. the schema of the DB. This one 
describes the classes, properties and their types as 
well as the semantic links contained in the DB. The 
transformation rules allow to make a transition from 
a DB to its schema in accordance with MDA 
principles. This process has been tested on three test-
DBs based on the medical application as well as on 
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two massive industrial BDs. It should be noted that 
the proposed solution applies to a massive DB; the 
execution time of the process, even optimized, can 
last several minutes. However, as it is the case in our 
application, the stored data can evolve quickly and 
make the extracted schema obsolete. We have 
therefore developed another process to update the 
schema as the DB evolves; this process is not tackled 
in this article. 

We are currently working to complete the 
ToOrientDBSchema process. Indeed, the OrientDB  
system makes it possible to express inheritance links 
between classes. Consequently, the source and target 
metamodels could be extended to take into account 
this type of link (Chillón and al., 2021). On the other 
hand, our process generates a unique schema for each 
class, however it does not check whether there are 
properties of different names with the same semantics 
(assumption 2 in section 5.1). For example, the 
"address" and "adr" properties. All of these 
characteristics could be integrated into our process to 
generate a more complete schema.  

 

Figure 10: Extract from the medical DB schema generated 
by our process. 

 

Figure 11: Extract from a test-DB. 

 

Figure 12: Extract from the logical schema obtained. 
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