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Abstract: For accomplish automatic solving, the capacity to comprehend problems of 3D analytic geometry formulated
in natural language is a laborious and stimulating open research theme. For this reason, this research work
attempts the achievement of a parser compounded of two important parts: the parsing module and the learning
module. The accomplishment of the parsing module requires the design of a method for engendering the series
of actions required to acquire the UCCA graph correspondingwith a phrase from a 3D analytic geometry
problem. In order to design the learning module, is used a recurrent neural network of the Stacked Long
Short-Term Memory category, thereby being realized an automatic parsing system. To achieve this goal, the
proposed novel solution is accomplished through the usage of Python programming language.

1 INTRODUCTION

Currently there are several software used for the auto-
matic solution of geometry problems (Botana et al.,
2015; Iordan et al., 2010), but they accept the hy-
pothesis and the conclusion in a specific format. Im-
proving them would mean that the automatic solution
would start from the statement of the geometry prob-
lem in natural language.

Most systems in the Natural Language Text Pro-
cessing (Nadkarni et al., 2011; Viani et al., 2021) ca-
tegory take text expressed in natural language and aim
to transform it into a structured format. Parsing accu-
racy has been strongly influenced by statistical parsers
(Bose et al., 2020; Du et al., 2020).

Due to the many methods of expression in natural
language and the complexity of vocabulary, it is prac-
tically impossible to develop a deterministic parsing
system (Borsotti et al., 2021). For this reason, proba-
bilities are used in the design of parsers to predict
translation steps. Machine learning algorithms (Cz-
ibula et al., 2013) have had a strong influence in the
development of statistical parsing systems.

Statistical methods need the most accurate predic-
tion of probability distributions, and, by using ma-
chine learning algorithms (Balyan et al., 2020; Jain
et al., 2021), it is learned from the training data set,
thus increasing the accuracy of predictions.
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The most important semantic representations are
AMR and UCCA. Abstract Meaning Representation,
abbreviated AMR (Banarescu et al., 2013), is a repre-
sentation of natural language text that uses a structure
with labeled graph to store information. A common
feature between AMR and syntactic representations is
that the vertices in the AMR graph do not contain all
the words from the sentence. The edges between the
nodes are labeled and are used to identify the relation-
ships between concepts.

Universal Conceptual Cognitive Annotation, ab-
breviated UCCA (Hershcovich et al., 2017), is a new
approach that seeks to abstract syntactic constraints
in order to obtain a grammatical representation, us-
ing oriented acyclic graphs (Chen and Huo, 2021) for
information storage. Through this representation the
text expressed in natural language is transformed into
a structured and uniform form, thus allowing easier
processing of information.

UCCA graphs contain units that encapsulate
meaning in terminal vertices, being seen as a co-
llection of scenes. Each word in the input phrase is
mapped to a terminal vertex, and the rest of the ver-
tices in the graph are used to identify the dependen-
cies between them. The relationships between the el-
ements of the graph are marked by edge labels so that
the edge label indicates the role of the destination ver-
tex in the formation of the parent vertex semantics.
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2 PARSING SYSTEM
OBJECTIVES

The main objective of this research work is to develop
a transition-based parser (Yang and Deng, 2020) that,
for a 3D analytic geometry problem expressed in nat-
ural language (English language), provides the appro-
priate UCCA graph representation with the highest
possible predictive accuracy. To achieve this goal, the
following steps will be followed:

• Data extraction - The first step in parsing is to ex-
tract the relevant information from the dataset in-
stances and store it in the data structures that will
be used in the following steps.

• Generating of the actions sequence - It involves
the development of an algorithm capable of gen-
erating the sequence of actions to be applied to
obtain the representation of UCCA graph as input
data.

• Evaluating the correctness of the strategy for gen-
erating the sequence of actions - Correctness as-
sessment metrics will be generated for action se-
quence generation strategies.

• Development of a pattern for parsing - To allow
automatic parsing of sentences it is necessary to
form a pattern by applying a learning procedure.

• Pattern evaluation - In order to be able to evalu-
ate the performance of the obtained model, it is
necessary to use some metrics to evaluate the cor-
rectness of the predictions, such as accuracy, loss
and f1 score.

Based on the aforementioned functionalities, the
following use cases of the parser have been identified:

• Generating action sequences and associated met-
rics for a dataset - It illustrates the correctness of
the algorithm for generating the sequence of ac-
tions for a certain dataset.

• Obtaining performance metrics associated with
predicting of a test instance parsing.

• Prediction of a UCCA graph representation for a
test instance.

• Pattern training with another dataset - Due to the
fact that new datasets can be annotated in the fu-
ture, the pattern can be retrained, obtaining both
performance metrics for training and testing.

3 RELATED WORKS

Understanding of 3D analytic geometry problems de-
scribed in natural language is a significant stage of

several automatic solvers (Seo et al., 2015; Wang and
Su, 2015). Developing automated solutions to 3D an-
alytic geometry problems is a complicated research
problem because it is a base technology in build-
ing intelligent education systems that guide learning
(Aleven et al., 2016). Using a new neural network de-
sign, in paper (Jayasinghe and Ranathunga, 2020) it
was introduced a two-step memory network used in
process of deep semantic parsing.

Other approach, presented in (Gan et al., 2019),
uses a supervised learning model based on relation
extraction for comprehension of geometry problems.
The purpose was to create a cluster of relations to em-
blematize the given geometry problem. Supervised
investigations into the collection of tested problems
presented that the suggested model obtains geometric
relationships at raised F1 scores. In paper (Quaresma
et al., 2020) was presented an adaptive filtering tech-
nique for extracting geometric information.

The research work (Iordan, 2021) it is proposed
the addition of a new feature to an existing transition-
based AMR parser that constructs AMR graphs from
statement of geometry problems described in English
language. The new feature consists in explicit embed-
ding of the coreference detection into the parser.

As it results from these mentioned works, research
for understanding 3D analytic geometry problems has
made remarkable progress, but it is still an open re-
search problem.

4 DETAILED ANALYSIS OF
PROPOSED SOLUTION

The UCCA parser (Hershcovich et al., 2017)
overview may give the impression that the function-
ality of the system is trivial, but the problem of trans-
lating the text into another representation is a com-
plex one. If the parsing system is viewed as a black
box, it can be said that it receives as input data a
phrase from a 3D analytic geometry (Casillas-Perez
et al., 2021) problem expressed in English language
and forms the corresponding UCCA graph. A fea-
ture that increases the complexity of parsing is the fact
that the 3D analytic geometry problem (Iordan et al.,
2009) received at the input is not limited to a single
sentence, its size being variable. Another challenge
is the treatment of coreferences, both those explicitly
mentioned in the text and those implicit that are de-
duced from the context. Fig. 1 contains an example
of a UCCA graph containing an explicit coreference
(Kottur et al., 2018). The coreference is found at the
terminal node containing the word “ellipsoid” and in-
dicates that both scenes in the sentence have “ellip-
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soid” as the subject.
The proposed solution contains 2 main compo-

nents: the component responsible for parsing and the
training component of the pattern. The responsibil-
ity of the parsing component is to generate the corre-
sponding UCCA graph for a sentence belonging to the
statement of a given geometry problem given as the
input. In order to be able to perform parsing automat-
ically, by generating the sequence of actions needed
to get from an initial state to a final state, the learning
component is required.

4.1 Parsing Component

For the development of the parsing procedure, the
syntactic parsing systems based on transitions and the
state-of-the-art parser for the representation of UCCA
graph, called TUPA (Hershcovich and Arviv, 2019),
were used as inspiration.

Figure 1: UCCA graph.

The similarity between the features of UCCA
graphs and syntactic trees allows the use of certain
common strategies between the two representations.
Unlike syntactic trees, UCCA representation can con-
tain cycles due to coreference relationships. The cur-

rent state of the solution includes the treatment of both
primary and remote relations.

The primary relations in the graph store the se-
mantic information, and through a secondary relation
the dependence between two vertices is represented,
created by a coreference from the input text. Two
types of coreferences can be found in the input data:
explicit, these being mentioned in the text, and im-
plicit ones that are not mentioned in the text and must
be deduced from the context.

4.2 Learning Component

To turn the system into an automatic parser requires
a learning procedure capable of generating the se-
quence of actions needed to get from an initial state
to a final state with the highest possible accuracy. The
proposed learning algorithm is a supervised one, pro-
viding for the training data and the correct solution.

Conceptually, the learning component receives
as input a triplet with structure (geometry-problem,
action-sequence, UCCA-graph) and uses a recurrent
neural network to develop a pattern capable of per-
forming parsing with high action prediction accuracy.
The concepts used in the learning procedure are:

• The training set consists of the triplet of form
(geometry-problem, action-sequence, UCCA
graph), where action-sequence represents the
sequence of actions necessary to reach the UCCA
graph performance metrics associated with
predicting of a test instance parsing.

• The validation set consists of a triplet with the
same structure as the training set but is used to
evaluate the pattern from one epoch to another.

• The testing set consists of a triplet with the same
structure as the training set but is used to evaluate
the pattern performance.

• The loss function whose value associated with a
pair of shares indicates the correctness of the pre-
diction. The goal of the learning algorithm is to
minimize the loss by pattern updating.

• Weights are the parameters that initiate a specific
model and represent the values that are updated
during the learning process to minimize the value
of the loss.

4.3 Functional Description of the
Modules

In addition to the parsing component and the learning
component, several modules are required to achieve
the functionality of the proposed parsing system.

Usage of Stacked Long Short-Term Memory for Recognition of 3D Analytic Geometry Elements

747



Also, you can see the differences between the steps
taken to perform the training and testing of the parser,
respectively. The training steps represent the path to
follow to generate a pattern capable of parsing new
texts, while the test steps show the path followed to
test the performance of the pattern generated by the
training steps. The data extraction module links the
external and internal representation of the data, be-
ing responsible for extracting the information from
the data collection files. The action sequence genera-
tion module generates actions for all instances of the
dataset.

The training module uses the dataset and the infor-
mation generated in the previous components creates
a model by training the recurrent neural network. The
evaluation module is responsible for evaluating the
model by comparing the predicted graphs with those
provided and using performance metrics.

4.4 Pattern Training

Pattern training was performed using a Stacked Long
Short-Term Memory recurrent neural network. The
main feature of LSTM networks is their ability to
treat the gradient vanishing problem that accompanies
recurrent neural networks (Poon et al., 2019; Mus-
calagiu et al., 2015). LSTM cells (Laghrissi et al.,
2021) used in architecture are specializations of the
recurrent normal RNN cells. At each step, RNN cells
read input vectors aj and form a hidden state bj .

The state bj is obtained by applying a non-linear
sigmoid function to the input vector aj concatenated
with the hidden state of the previous step bj-1. Al-
though RNN cells can manage long-term dependen-
cies, their training is difficult due to the exponential
increase in error. This increase is caused by the re-
peated application of a non-linear function to the data.

LSTM cells address this problem by introducing
a new dj memory state that is constructed by linearly
combining the previous state with the input signal. In
this way, LSTM cells process the input data through
three multiplicative gates, which control the propor-
tion in which the current input is transmitted to the
dj storage state and which proportion of the previous
dj-1 storage state is forgotten. The value of the hidden
state bj is composed of the third gate by applying a
non-linear function to the value contained by the stor-
age state dj . Using this architecture, the global state
of the parser is formed using three stack-type LSTM
cells (Liu et al., 2020): one for the buffer, one for the
stack, and one for the actions list.

The parser is initiated by entering the phrase in the
buffer so that the first word from the phrase is the first
element in the buffer, the stack containing only the

root node and the list of applied actions is empty. At
each step, the parser state is formed by combining the
state of the LSTM cells and is used to predict the next
action, which updates the state of the cells.

The parsing process is complete when the stack
contains only the root node, the buffer is empty, and
the list of applied actions contains the history of the
applied transitions to get from the initial state to this
final state. The parser state at a given time j is given
by the following formula:

sj = max(0,w
{

x j ,y j ,zj
}

+ t) (1)

where w represents the weight matrix learned through
the training process, yj is the LSTM encoding of the
buffer, xj is the LSTM encoding of the stack, zj is the
LSTM encoding of the actions list, and t is the bias.
The state thus obtained is then used to calculate the
probability for each action at time j:

p(c j |sj) =
exp( f T

sj
·sj +hcj )

∑c′∈M exp( f T
sj
·sj +hc′j

)
(2)

where fc represents the encoding for action c, hc is
the bias term associated with action c, and M is the
set of actions valid for the current state of the stack
and buffer.

5 DETAILED DESIGN AND
IMPLEMENTATION

Due to the fact that the main purpose is data process-
ing and not user interaction, the system architecture
is pipeline type. The detailed system architecture,
shown in Fig. 2, allows the visualization of the fact
that each component either modifies the input data or
adds additional information to them, information that
was obtained by processing the input data. By choos-
ing this type of architecture the following characteris-
tics are obtained:

• Flexibility - Due to the fact that each component is
isolated, the internal details can be modified with-
out influencing the other components.

• Extensibility - New features can be easily added
by changing the sequence of processing steps.

The Python programming language (Awar et al.,
2021) is used to implement the parser. Among the
libraries associated with this language, TensorFlow
(Jha et al., 2021) is used to implement the recur-
rent neural network, and MathPlotLib (Hunt, 2019)
to generate graphs based on the results obtained after
training.
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Figure 2: Detailed architecture of the parser.

6 PARSER VALIDATION

6.1 Validation of the Parsing Procedure

The parsing component aims to obtain the sequence
of actions necessary for the formation of the UCCA
graph associated with a sentence from the statement
of a problem of 3D analytic geometry. During the pro-
cess of generating the sequence of actions, the UCCA
graph is also generated so that it can be compared later
with the standard graph of that phrase. The degree
of similarity between the two graphs (standard and
predicted) indicates the correctness of the generated
sequence of actions. Due to the fact, that the action
sequences generated by this pattern are subsequently
used to train the model, only the correct parsing were

considered, which built a graph identical to the stan-
dard one.

The process of developing the algorithm for gen-
erating the sequence of actions was composed of sev-
eral stages, and the results presented below are associ-
ated with them, dealing with the following 3 variants:

• V1 - The algorithm contains the general rules for
applying the transitions, not treating the default
coreferences or link vertices.

• V2 - To the first variant is added the identifica-
tion and treatment of the default coreferences, the
connection vertices not being treated.

• V3 - The algorithm contains both the management
of the link vertices and the treatment of the default
coreferences.

In Fig. 3 is illustrated the evolution of the perfor-
mance of the actions sequence generation mode de-
pending on the variant of the algorithm following the
application of these variants on the training data. It
can be seen the treatment of coreferences and link ver-
tices (V3) brings an improvement of 4.55% relative
to the initial variant (V1). Analogically, Fig. 4 con-
tains the evolution of the mode performance using the
testing dataset. For this set, the treatment of corefer-
ences and link vertices induces a 9.58% improvement
in performance relative to the first variant.

Figure 3: Error rate associated with the development steps
of the algorithm for generation of the actions sequence for
the training set.

6.2 Validation of the Learning
Procedure

Within the learning component are used those in-
stances from the data set for which the sequence of
actions was generated that leads to the exact obtain-
ing of the desired graph (score f1 equal to 1) both for
training and for testing. The performance of the train-
ing procedure can be followed by the evolution of ac-
curacy and loss. Due to the fact that during the train-
ing the applied actions are the standard ones (with
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Figure 4: Error rate associated with the development steps
of the algorithm for generation of the actions sequence for
the testing set.

score f1 equal to 1), the score f1 cannot be consid-
ered a representative metric.

The notations used to identify the different tech-
niques involved are described in Table 1. By training
the T1, T2 and T3 models, the effect of the number of
cell levels on the performance was monitored, and the
T1, T4, T5 and T6 models follow the effect of chang-
ing the coding size.

Fig. 5 illustrates the accuracy and Fig. 6 illustrates
the loss for the 6 techniques in the case of the train-
ing process. The analysis of the results for the first
3 patterns shows that the loss undergoes an increase
directly proportional to the number of levels of the
cells. At the same time, the accuracy of the train-
ing decreases for models that have a higher number of
levels. Instead, changing the coding dimension of the
elements for the last three patterns brings improve-
ments in both accuracy and loss.

Fig. 7 and Fig. 8 illustrate the performance of the
patterns on the testing set. The metrics used in this
situation are accuracy and f1 score. Some patterns
have higher prediction accuracy, but the f1 score is
limited. These patterns (T2, T3) teach the prediction
of actions sequences that do not form correct UCCA
graphs. Both the accuracy and the f1 score are im-
proved by increasing the coding size of the elements
(T4, T5, T6), the amount of information stored being
higher.

TUPA (Hershcovich and Arviv, 2019) being the
state-of-the-art parsing system for UCCA representa-
tion, the use of the f1 score as the main model evalua-
tion metric, the comparison between the parsing sys-
tems can be made. The f1 score obtained by TUPA is
62.92%, and the score of the best model developed in
this situation is 47.39%, the performance obtained be-
ing high. The result of a parsing is strongly influenced
by each precise action.

Fig. 9 illustrates the evolutions of accuracy and
Fig. 10 illustrates the evolutions of loss over the 20
training epochs. It can be seen that the loss contin-

Figure 5: Accuracy for training process.

Figure 6: Loss for training processs.

Figure 7: Accuracy for testing process.

Figure 8: F1 score for testing process.
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Table 1: Training Patterns.

Techniques Cells Number LSTM Levels/Cell Coding size
T1 2 1 80
T2 2 3 80
T3 2 5 80
T4 2 1 100
T5 2 1 200
T6 2 1 300

ues to decrease until the last epoch, and the accuracy
of the patterns increases from one epoch to another,
suggesting that the model improves. Thus, it is possi-
ble that the extension of the training dataset will help
to achieve a higher performance of the system, as it
would also increase the number of states learned by
it.

Figure 9: Accuracy evolution for training case.

7 CONCLUSIONS

The objective of this research work was to develop a
parsing system composed of two major components:
the parsing component and the learning component.
A parser based on transitions was defined for the pars-
ing component. The development of this component
involved the construction of an algorithm for generat-
ing the actions sequence necessary to obtain a UCCA
graph. The algorithm was developed in three major
stages: identifying the general rules, treating the link
vertices, and treating the default coreferences, each
step reducing the error rate of the algorithm.

At the same time, a learning procedure based on
Stacked Long Short-Term Memory recurrent neural
networks was proposed, thus building an automatic

Figure 10: Loss evolution for training case.

parsing system. For this component it was necessary
to build the network architecture, identify the neces-
sary recurrent cells and choose the features used for
learning. The evolution of the pattern performance
according to the characteristics of the cells was fol-
lowed.
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