
Protecting Shared Virtualized Environments
against Cache Side-channel Attacks

Abdullah Albalawi, Vassilios G. Vassilakis and Radu Calinescu
Department of Computer Science, University of York, U.K.

Keywords: Side-channel Attacks, Cache Attacks, Prime+Probe, Flush+Reload, Flush+Flush.

Abstract: We introduce a side-channel attack detection and protection method that combines dynamic and static analysis.
The dynamic analysis uses Linux Perf to obtain readings from 13 hardware performance counters related to the
shared cache. Based on these readings, the virtual machine (VM) behaviour is then classified into suspicious
or benign using logistic regression classification. As a second step, the static analysis extracts the executable
files from the disk image or the RAM image of the suspicious VM. It then checks whether these files contain
operating codes for side-channel attacks. Based on this, the threat level of these files is determined using the
SoftMax classification algorithm; we have four threat levels in total. After that, VMs that pose a threat to the
shared environment are excluded. As a hypervisor, we employed KVM (Kernel-based Virtual Machine), and
as guest operating systems, we utilized Linux Ubuntu 18.04.5 LTS (64bits). We then conducted experiments
on several host machines, namely Ubuntu 18.04.5 LTS, Debian 10, and CentOS 8, with various processor
models. The accuracy of detecting suspicious behaviour and classifying the threat level was recorded as 96%–
99% with between 0.6%–25% CPU overheads for dynamic and static analysis.

1 INTRODUCTION

Cloud computing offers the advantage of sharing the
computing power of cloud-based hardware and soft-
ware resources. In doing so, cloud computing has
become one of the widely adopted approaches to re-
duce costs for organizations, decrease administrative
procedures for users, and optimise computing power
utilization. However, the shared computing resources
are vulnerable to exploitation by malicious users lead-
ing to confidentiality violations, such as cracking en-
cryption keys and exposing sensitive data (Saxena
et al., 2017). The malicious user can exploit the
shared resources to perform cache side-channel at-
tacks to expose the victim’s sensitive information.

Although several mitigation approaches for cache
attacks have been presented (Irazoqui et al., 2018;
Bazm et al., 2018; Mushtaq et al., 2018; Cho et al.,
2020; Chiappetta et al., 2016), a number of limita-
tions exist. First, since it increases the execution time,
these approaches do not involve precautionary actions
when detecting malicious executable files, particu-
larly when performing static analysis. Some of these
solutions do not have a signal to start for perform-
ing static analysis, which is generally known to cause
significant overload of the system. Additionally, most
of the previous methods are required to enhance per-
formance and detection results. Finally, none of the

most well-known antivirus tools are able to detect the
attacks we have analyzed (i.e., cache side-channel at-
tacks) for protecting shared virtualized environments
(Irazoqui et al., 2018).

In this paper, we introduce a new method that
combines dynamic and static analysis to detect and
defend against cache side-channel attacks. The dy-
namic analysis approach monitors the activities of vir-
tual machines (VMs). It detects suspicious activi-
ties that indicate the presence of cache side-channel
attacks by extracting readings from hardware per-
formance counters using Linux Perf and classifying
them using logistic regression to determine whether
or not this is an attack.

If suspicious activity is detected for one of the
VMs, this is considered the starting signal for op-
erating the static analysis of the executable files of
the suspicious VM. The VM’s executable files are
accessed, disassembled, and analysed to find out if
they contain implicit characteristics and the operation
codes (opcodes) of the attacks. The threat level of
these files is then determined using a neural network
classifier that uses the SoftMax algorithm for classi-
fication. Hence, this paper makes the following pri-
mary contributions:

1. We propose an approach for detecting and pro-
tecting shared virtualized environments against
cache side-channel attacks using dynamic and

Albalawi, A., Vassilakis, V. and Calinescu, R.
Protecting Shared Virtualized Environments against Cache Side-channel Attacks.
DOI: 10.5220/0010897800003120
In Proceedings of the 8th International Conference on Information Systems Security and Privacy (ICISSP 2022), pages 507-514
ISBN: 978-989-758-553-1; ISSN: 2184-4356
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

507

static analysis.

2. We describe the method and results of the mech-
anism design, implementation, and experimenta-
tion.

3. We evaluate our approach in various attacks sce-
narios in terms of detection efficiency and perfor-
mance attributes.

The remainder of the paper is arranged as follows.
Section 2 presents the background information on
cache side-channel attacks. In Section 3, we state
the problem. Section 4 illustrates the proposed de-
tection and protection method. Section 5 describes
the experimental investigations based on the proposed
method. In Section 6, the evaluation of the imple-
mented method is discussed. Section 7 presents a
comparison of the method presented in this paper with
related previous work. Finally, Section 8 provides the
conclusion and directions for future work.

2 BACKGROUND

2.1 Cache Side-channel Attacks

In cache side-channel attacks, the attackers exploit
timing information gathered by identifying the differ-
ence in time between obtaining data from the cache
and memory to attack the shared cache in virtualized
environments (Anwar et al., 2017).

Data can be obtained whether from the memory or
the cache when the CPU searches for it. When data
is retrieved from the cache, it takes very little time or
CPU power to do it. However, let’s say the data is not
stored in the cache, which means the data will be re-
covered from the system’s main memory, which will
require more time and CPU power. The data obtained
from the main memory will be temporarily stored in
the cache to decrease the system degradation if the
same cache line is required later. Thus, the attack pro-
cess relies on the timing information between obtain-
ing data from the cache and the main memory (Irazo-
qui et al., 2014).

Utilizing timing information of retrieving data on
the system, the attackers execute cache attacks on
the victim’s VM in a shared virtualized environment,
measuring the CPU cycles or the time taken for ac-
cessing the cache targeted locations using cache hits
and cache misses measurements. This technique al-
lows the attacker to breach the VM isolation, learn
about the victim’s activities on the shared cache.

The following are the primary methods of ex-
ploiting cache memory and extracting sensitive
data (Yarom and Falkner, 2014; Gruss et al., 2016).

Prime + Probe: The attacker uses this mechanism
to fill the relevant cache lines with data. After that,
the attacker waits for the victim to execute various
encryption procedures on the shared virtualized envi-
ronment. Following then, the attacker measures the
time for recovering previously loaded data. Thus, the
attacker will be aware of the data that has been taken
from the cache memory and will be able to identify
the cache lines that were utilized in the victim’s en-
cryption operations as a result of this. Aside from
the absence of shared libraries and page deduplica-
tion, this strategy is also quite efficient.

Flush + Reload: The attacker begins by flushing
the appropriate memory lines from the cache. After
that, the attacker waits for the victim to complete cer-
tain encryption procedures in the shared virtualized
environment. Following that, the attacker reloads the
flushed lines and records the time it takes them to get
access. Using the timing information, the attacker can
determine whether or not the victim has successfully
retrieved the cache lines during the encryption pro-
cess. This strategy makes use of shared libraries and
memory deduplication to achieve its results.

Flush + Flush: The attacker first clears the rel-
evant cache lines using flush instruction. After that,
waits for the victim to complete specific encryption
procedures on the shared virtualized system. Fol-
lowing that, the attacker flushes the prior cache lines
again and monitors the time for the flush instructions
to be executed, avoiding direct cache accesses. The
attacker can employ this sort of attack to break a
cryptographic key (Gruss et al., 2016). This strategy
makes use of shared libraries and memory deduplica-
tion to achieve its results.

2.2 Cache Side-channel Attacks
Implicit Characteristics

This section addresses the implicit characteristics of
side-channel attacks that reveal the interior design of
these attacks and how they work, as shown in Figure1.
We focus on cache attacks. As (Irazoqui et al., 2016;
Irazoqui et al., 2018) mentioned, there are several
characteristics and instructions involved in the design
of cache attacks.

All cache attacks have three main common char-
acteristics, i.e., high-resolution timers, memory barri-
ers, and cache evictions (Irazoqui et al., 2016; Irazo-
qui et al., 2018; Yarom and Falkner, 2014).

High-Resolution Timers: as shown in Figure 1
(line 7 and line 12), cache attacks depend on the dif-
ference time between retrieving data from the cache
and retrieving data from the RAM, and also between
retrieving data from different cache’s levels. There-

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

508

Figure 1: Attack Characteristics snippet from (Yarom and
Falkner, 2014).

fore, it is necessary to utilize an instruction that reads
the time accurately, such as Time Stamp Counter
(rdtsc), which provides high enough accuracy to dif-
ferentiate between retrieval times.

Memory Barriers: as shown in Figure 1 (line 5, 6,
8, and 11), the file contains two instructions, mfence,
and lfence to serialize all store and load operations
that occurred before the mfence and lfence instruc-
tions in the program instruction stream. These in-
structions can be embedded into the attack scripts
(x86 and amd64 instruction reference, 2019).

Cache Evictions: as shown in Figure 1 (line 14), in
the beginning, the attacker usually evicts the required
cache line out of the cache using clflush instruction
and waits some time to let the victim retrieves this
cache line. Thus, the attacker recognizes that the vic-
tim has used the same cache line by measuring the
cache line retrieval time. Clflush instruction can re-
move the required cache line out of each cache level
(x86 and amd64 instruction reference, 2019).

The presence of all or part of these characteristics
may pose a risk to the shared virtualized environment
in which the cache, some applications, and crypto-
graphic libraries are shared. Therefore, it is essential
to analyze executable files to explore these implicit
characteristics that indicate that these executable files
are malicious and prepared for attack.

3 PROBLEM DEFINITION

Due to increase in security threats to shared virtual-
ized environments, it has become necessary to design
integrated solutions to keep the shared virtualized en-
vironment protected from any cache side-channel at-
tacks that might occur to it. We hypothesize that the

shared virtualized environment needs a combination
of dynamic and static analysis to ensure its safety,
prevent from attacks, hence take advantage of these
different analysis approaches. Static analysis is of-
ten known to produce high false-positive results ,and
since checking the files inside the system requires a
high load, it could affect the performance of the sys-
tem. Therefore, this paper aims to explore a mecha-
nism that supports static analysis by performing a dy-
namic analysis to detect suspicious behaviour within
the virtualized environment and identify the suspi-
cious VM. The static analysis is then performed to
ensure the identification of malicious programs that
could potentially protect side-channel attacks on the
shared virtualized environment.The proposed mech-
anism receives the VM’s ID to extract a set of the
CPU performance counters readings then these read-
ings are analyzed using machine learning classifiers.

If suspicious behaviours are detected then the VM
is identified and the VM’s name is extracted to exam-
ine the VM disk image for potential malicious pro-
grams. After this, the executable files are extracted to
be disassembled and analysed so as to ensure the pres-
ence of the implicit characteristics of side-channel at-
tacks. They are then classified into four classes from
the highest threat to the lowest threat using neural
networks. After these operations, a comprehensive
view of the threat level of the VM is obtained, and
then the malicious VM is then suspended depend-
ing on the neural network’s classification outcome.
These various and sequential analyses are done inside
the host machine which can monitor the live perfor-
mance of the VM, access the VM’s disk image, dis-
assemble, and analyse it to detect malware related to
side-channel attacks. It can also suspend the VM or
even eliminate it, thus ensuring a safe and attack-free
shared virtualized environment. Using different types
of analysis that support each other could potentially
make the results more accurate and reliable.

4 METHOD

The proposed detection mechanism is achieved over
several successive operations and stages.

Stage 1: The proposed mechanism receives the
VM’s process ID. It then utilizes Linux Perf to ob-
tain the performance readings from the performance
counters.

Stage 2: We create and train a logistic regression
model that processes the data extracted from the per-
formance counters and acts as a classifier between
suspicious and normal behaviours.

Stage 3: If there is suspicious behaviour, we ac-

Protecting Shared Virtualized Environments against Cache Side-channel Attacks

509

Table 1: Score-based threat classification.
Characteristics Red Orange Yellow Green

Case1 Case1 Case2 Case1 Case2 Case1 Case2 Case3
Clflush X X X X 7 7 7 7
Rdtsc X X X 7 X 7 7 7

Mfence X X 7 X X X X 7
Lfence X 7 X X X X 7 7

cess the VM’s disk image on the KVM host by using
the Libguestfs tools (libguestfs, 2019) that can also
be used in popular hypervisors such as VMware and
Hyper-V.

Stage 4: We then extract the executable files from
the VM’s disk and store them into a file to be checked
in the stage number 6.

Stage 5: In this stage, we capture the VM’s
RAM status periodically using AVML Framework
(Microsoft/Avml, 2020) and then analyze them from
within the host using the Volatility Framework
(VolatilityFoundation, 2020) to extract the files that
have been stored in the RAM, thus gaining informa-
tion of which files have been accessed recently. We
then filter these files to reduce the number of files ex-
tracted from the disk and obtain more information of
the files, such as files’ paths to be processed later.
This step is optional if only the RAM image of the
VM need to be analysed.

Stage 6: We disassemble using the Objdump com-
mand in Linux and examine the extracted files against
the implicit characteristics of the cache attacks codes.
The implicit characteristics of the cache attacks codes
are clflush, rdtsc, mfence, and lfence, as mentioned
in (Irazoqui et al., 2018; Irazoqui et al., 2016; Yarom
and Falkner, 2014). The result of this stage will be a
dataset that will feed into the next stage.

The result is organized in columns as follows:
File path, cl f lush, rdtsc, m f ence, l f ence, and
T hreatLevel. The value of 1 indicates the existence
of the implicit characteristic, otherwise it is set to 0
for each column. The threat level can take a value
from 0 – 3 based on the combination of characteris-
tics observed. For instance, we know memory bar-
rier instructions (m f ence, and l f ence) are not a threat
if they are not issued together with rdtsc timers or
cl f lush eviction instructions. We have designed the
following score-based threat classification as shown
in Table 1.
• Red: This level is considered the maximum threat

and expresses the presence of all the implicit char-
acteristics.

• Orange: This level is considered a high threat and
expresses the presence of two implicit character-
istics (cl f lush and rdtsc) this may include hav-
ing only one of the memory barrier instructions
(m f ence, and l f ence).

• Yellow: This level is considered a low threat and

Table 2: Intel Architectures Performance Monitoring
Events (Intel, 2017).

Performance Counters
mem load uops retired.l1 miss
mem load uops retired.l2 miss
mem load uops retired.l3 miss

br inst exec.all branches
instructions

L1-dcache-load-misses
L1-icache-load-misses

LLC-load-misses
LLC-loads

cache-missess
cache-references

iTLB-load-misses
iTLB-loads

expresses the presence of only one of the implicit
characteristics of(cl f lush or rdtsc); this also may
include having only one of the memory barrier in-
structions (m f ence, and l f ence).

• Green: This level represents the non-existence of
a threat and indicates the absence of any danger-
ous instructions. At the same time, it may in-
clude memory barrier instructions (m f ence, and
l f ence) that do not represent a threat.

Stage 7: We create and train a neural network
model using the SoftMax algorithm to classify exe-
cutable files based on the previously mentioned threat
levels.

Algorithm 1: Pseudo-code of the Dynamic Analysis.
Input: VM Process ID
Output: Malicious=1 or Benign=0

1: Receive vm process id
2: Model = logistic regression()
3: for In f inite Loop do
4: Pause f or 15 seconds
5: Run per f kvm stat −o out put.txt − e event counters
6: Output = open and read out put.txt
7: while f gets(line,size,Out put)! = Null do
8: Convert counters readings to integers
9: Save counters readings to f ile.csv

10: end while
11: Data = open and read f ile.csv
12: Result = Model← Data
13: if Result > 0 then
14: Detect malicious behavior
15: Stop ksm
16: Start static analysis
17: end if
18: end for

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

510

5 EXPERIMENTAL RESULTS

We executed the experiments using the QEMU-KVM
hypervisor on various hosts; Ubuntu 18.04.5 LTS
had Intel Core i5-4200M CPU, Debian 10 had Intel
Core i5-4200U CPU, and CentOs 8 had Intel Core i5-
5300U CPU. We then created two VMs running an
Ubuntu 18.04.5 LTS OS, one VM running as a vic-
tim VM, and the other running as an attacker VM. We
installed the Libguestfs Tool (libguestfs, 2019), the
Linux Objdump Disassembler, and Volatility Tools
(VolatilityFoundation, 2020) inside the host. For the
guests, we installed AVML (acquire volatile mem-
ory for Linux) (Microsoft/Avml, 2020) to capture the
RAM status regularly. We designed the shared virtu-
alized environment utilizing the QEMU-KVM hyper-
visor’s default settings. The experiment consisted of
two main parts as follows.

5.1 Monitoring Suspicious Behaviours

For monitoring suspicious behaviours, We used the
Mastik framework to carry out the various cache
attacks, such as Flush+Reload, Flush+Flush, and
Prime+Probe attacks. Also, we used the Linux Perf
tool to extract CPU performance counters readings
from 13 counters every 15 seconds as shown in Table
2. We executed the experiments with four scenarios.
The first scenario is normal activities where we con-
sidered the observations without any attacks or back-
ground applications. Secondly, the observations were
taken during the normal noise of background applica-
tions with no attacks performed in this scenario. In the
third scenario, we fetched the readings from the per-
formance counters during the execution of the cache
attacks without any interference from background ap-
plications. Finally, we carried out the attacks with
several applications, and the readings were observed
in this scenario as well.

We gathered the training data from various sce-
narios because other background applications running
on the VMs affect the performance counters. We ac-
quired data during cache attacks, both with and with-
out running multiple background programs. About
3610 samples were collected. Also, a binary classi-
fication model was created using logistic regression
to analyse the input data and categorize whether the
system was under attack or not; 0 indicated a no at-
tack state and 1 indicated an attack state.

We plotted the readings for the various aforemen-
tioned different scenarios. Figure 2 show the clear
variance in instructions counters readings recorded in
all scenarios. Also, all performance counters were
analysed using machine learning to interpret the data

Figure 2: Experiment scenarios of all cache side-channel
attacks in two cases without noise attack and with back-
ground noise. PP represents prime+probe, FF represents
Flush+Flush, and FR represents Flush+Reload.

more accurately and efficiently. We implemented the
logistic regression classification model to analyse and
classify the data based on whether the extracted data
indicated the presence of an attack or not, in-line with
the first step of the proposed detection process. The
model was trained on 70% of the samples collected
and tested on 30% of the samples. The model showed
about 99% accuracy and F1-score 0.99 for the test
case.

5.2 Static Analysis for VMs

Our static analysis involved the Mastik tool designed
by Yarom et al.(Yarom, 2020), Xlate (Chiappetta
et al., 2020), Cache Template Attack source code
represented by Gruss et al.(Gruss et al., 2019b),
and the Flush + Flush attack tool (Gruss et al.,
2019a), as well as other Github repositories inspired
by ”Cache Template Attacks”(Gruss et al., 2015) and
”FLUSH+RELOAD: a High Resolution, Low Noise,
L3 Cache Side-Channel Attack” (Yarom and Falkner,
2014) such as (Nepoche, 2017), (Akash, 2018), (Pa-
sic, 2019), (Park, 2018), and (Nagnagnet, 2018). We
implemented the VM static analysis experiments in
two scenarios as described below.

VM Disk Image Analysis: In this scenario, our
proposed mechanism received the name of the VM.
It created a mount point for the VM using libguestfs
tools (libguestfs, 2019) After that, we extracted the
executable files in both user and kernel space through
command-line tools implemented using the C lan-
guage and stored the resulting files’ paths in a .txt file.
We then used the Linux Objdump tool to disassem-
ble the executable files and display the opcodes of the
executable files in the assembly language. Next, we
made sure of the presence of the attack opcodes that
had implicit cache side-channel attacks characteristics
inside the executable files. Finally, we recorded the

Protecting Shared Virtualized Environments against Cache Side-channel Attacks

511

results of each extracted executable file and stored the
results to be processed in the neural network model
depending on the SoftMax classification to determine
the threat level of these files.

VM RAM Image Analysis: In this scenario, we
analysed the VM’s RAM image. We performed
this experiment in several steps. First, we down-
loaded and installed the AVML (Acquire Volatile
Memory for Linux)(Microsoft/Avml, 2020) to peri-
odically capture the VM’s RAM image. In addi-
tion, we have downloaded and installed the Volatil-
ity Framework (VolatilityFoundation, 2020) to sup-
port analysing RAM images. Using these tools, our
method was able to capture images of the RAM peri-
odically, making it possible to track the operations of
the VM. It was constantly updated during the opera-
tion of the VM. From the host device we were able to
process and analyse the RAM and recognize the files
stored in the RAM making our method more effective
in detecting an attack.

We accessed the VM with suspicious behaviour
inside the shared virtualized environment using the
libguestfs tools (libguestfs, 2019). We then extracted
the executable files in a similar fashion as the first sce-
nario, after which we accessed the RAM image pro-
duced from the AVML (Microsoft/Avml, 2020) pe-
riodically to capture and extract the executable files.
We then filtered the files by comparing the files’
paths elicited from the disk image and the files’ paths
elicited from the RAM image to acquire sufficient in-
formation about the files’ paths. We then analysed
the filtered executable files using the Linux Objdump
tool to convert the executable files into an assembly
language, making it straightforward to investigate the
presence of implicit attributes that comprises a threat
on the system. We then stored the results to be classi-
fied later using the neural network model.

About 4,500 data samples were collected to train
and test the model in two scenarios, namely the case
of no attack files and the presence of a set of attack
files. We used TensorFlow, a Google-provided open-
source framework for machine learning methods, to
develop the SoftMax classification model. We con-
figured the training settings with 200 epochs and 10
as the batch size. In addition, we applied the Adam
optimization algorithm to adjust the weights and min-
imize the loss. Furthermore, we included early stop-
ping in our training through a callback. The model
used as a classifier to classify the executable files ac-
cording to the threat levels and The accuracy of the
model ranged from 96% to 99%. We plotted the vali-
dation and training loss as shown in Figure 3.

Figure 3: Validation and Training loss

6 EVALUATION

We evaluated the proposed method in terms of
overheads and accuracy of detecting suspicious be-
haviours resulting from launching side channels and
measured in different cases with a noise background
from running several applications during the attacks.
In the dynamic analysis, we produced the readings
from the system every 15 minutes to classify them
based on whether they indicated the presence of a
side-channel attack. We then measured the classifica-
tion accuracy while using the Linux Top tool to check
the CPU usage and the system load during operations.

We tested 200 samples for each host involving var-
ious side-channel attacks. The system counters read-
ings were extracted by the Linux Perf to be classi-
fied. We then classified these samples using the logis-
tic regression classification. There were simple dif-
ferences in the accuracy of detecting suspicious be-
haviour ranging from 96% to 99%. The CPU usage
was between 0.11, 0.44 and the load on the system
ranged from 0.6 to 3 for all host devices in the dy-
namic analysis, as shown in the Table 3.

We then conducted several experiments to mea-
sure the accuracy of the static analysis and measured
the CPU usage and the load on the system. Differ-
ent host operating systems were used. In each of
them, we created a set of VMs by downloading and
installing a set of side-channel attacks, tools, and ex-
ecutable files as described in Section 5. Attack files
included a collection of attacks framework tools such
as the Mastik framework, Xlate framework, and other
attack project source codes. After that, we performed
the static detection in two scenarios, the desk analysis,
and the memory analysis. As shown in the Table 3,
the proposed method detected attacks on executable
files with 97-98% accuracy, with between 10–25%
CPU usage, and between 0.85 –1.46 system overhead.

We designed a mechanism that depends on ana-

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

512

Table 3: Experiment results
Dynamic Analysis

Os and CPU Type %CPU Loads Accuracy Time
Ubuntu i5-5200U CPU 0.6 - 3 0.33 - 0.35 %96.00 15 Sec
Debian i5-4200U CPU 1.3 - 2 0.11 - 0.22 %99.00 15 Sec
CentOS i5-5300U CPU 0.6 - 2 0.25 - 0.44 %95.58 15 Sec

Static Analysis
Os and CPU Type %CPU Loads Accuracy Time

Ubuntu i5-5200U CPU 18 - 25 0.85 - 1.25 %97.91 8 - 12 Min
Debian i5-4200U CPU 10 - 24 1.09 - 1.46 %98.31 8 - 12 Min
CentOS i5-5300U CPU 12 -24 1.02 - 1.38 %97.27 8 - 12 Min

lyzing the behaviour of VMs at the beginning of the
approach and then integrating it with static analysis to
ensure good system performance, check the results,
the process of verifying the results of the dynamic
analysis is very important, especially in the case of
false positives and then decide whether to suspend
the VM or not. Based on the obtained results, we
were able to identify suspicious VM behaviors, and
scanned the VM against executable attack files with
high accuracy. Also, this approach is applicable in the
shared virtualized environments to monitor the activ-
ities of the VMs and identify the threat level of the
suspicious VM from within the host machine.

7 RELATED WORK

Several previous approaches have been proposed for
detecting the cache side-channel attacks. This section
discusses the different approaches and identifies their
limitations, inspiring us to address their drawbacks in
our proposed method.

(Irazoqui et al., 2018) presented MASCAT, a
mechanism used for microarchitectural attacks de-
tection by static analysis of attacks’ executable files.
MASCAT utilizes static analysis to scan the attacks’
elf files searching for implicit attacks’ opcodes that
are usually present in their design. However, MAS-
CAT has a set of limitations that may hinder its
adoption as a suitable solution for virtualized envi-
ronments as it contains a high percentage of false
positives. It also creates significant overhead in the
system. Moreover, it is not usually used to detect
and protect against malicious programs in the shared
virtualized environment to scan the VM’s disk and
RAM. Furthermore, (Mushtaq et al., 2018) introduced
a run-time detection mechanism for detecting cache
attacks by monitoring hardware performance coun-
ters using Intel CMT (Intel Cache Monitoring Tech-
nology) to obtain performance readings, then analyz-
ing the readings using a set of machine learning al-
gorithms to classify malicious behavior. Also (Chi-
appetta et al., 2016) presented Flush+Reload attacks
detection methods. Although they produced accurate

findings, they were insufficient for identifying other
types of cache attacks, e.g., the Flush+Flush attack.

(Bazm et al., 2018) presented a detection method
based on Intel Cache Monitoring Technology (Intel
CMT) and Hardware Performance Counters (HPCs).
Moreover, it used the Gaussian anomaly detection al-
gorithm to identify the attack status. Although this de-
tection mechanism produced accurate results, it was
adversely affected if there was noise(Mushtaq et al.,
2018). Another study by (Cho et al., 2020) presented
a machine learning method to monitor and detect the
malicious behaviours of VMs that indicate cache at-
tacks. The approach collected data for the model
by utilizing Intel Performance Counter Monitor (Intel
PCM) and then classified malicious behaviours and
identified the type of the cache attack.

In previous our work (Albalawi et al., 2021) we
have proposed a method for detecting cache side-
channel attacks using memory deduplication. The
method was used inside the VM and then classified
suspicious behaviours using the shared executable file
or shared cryptographic library. Our proposed method
in this paper can also work in conjunction with the
previous method to provide more robust and more
reliable protection. The previous paper method de-
tects the cache attack from within VMs when using
sensitive executable programs such as shared crypto-
graphic libraries.

Although various approaches for malware detec-
tion have been introduced, these approaches have im-
portant limitations. First, they perform static analy-
ses frequently and do not require the start-up condi-
tion, thus increasing the load on the system. More-
over, they are also ineffective in detecting and pro-
tecting the shared virtualized environments against
various side-channel attacks. Additionally, most of
the previous methods need improvement in perfor-
mance and results. Finally, none of the well-known
antivirus tools detect any of the attacks we have anal-
ysed (cache side-channel attacks) (Irazoqui et al.,
2018; Irazoqui et al., 2016). We address the limita-
tions of the current detection methods by proposing
an approach that monitors and detects any abnormal
behavior of VM periodically and then performs static
analysis of the detected VM’s executable files and
then classifying the threat level of VM’s executable
files using neural network classification algorithms,
thus eliminating the malicious VM, and protecting
the shared virtual environment with acceptable per-
formance.

Protecting Shared Virtualized Environments against Cache Side-channel Attacks

513

8 CONCLUSION

We have proposed a mechanism to detect and pro-
tect against Cache side-channel attacks. The pro-
posed mechanism combines dynamic analysis and
static analysis to detect the suspicious behaviour of
the VM and then analyzes the executable files stored
in the disk and RAM of the suspicious VM to rec-
ognize the implicit characteristics of the attacks. Our
proposed mechanism combines the advantages of dy-
namic analysis and static analysis to reduce the load
on a system. The proposed mechanism can detect at-
tacks in the range of 96–99% accuracy and with 0.6–
25% CPU overheads. In future work, we aim to im-
prove and expand the analysis to include the other
microarchitectural attacks to which the shared virtu-
alized environments are exposed. We also plan to in-
tegrate the proposed mechanism with one of the well-
known antiviruses to maintain a shared virtualized en-
vironment guarded against viruses and microarchitec-
tural attacks.

REFERENCES

Akash, K. (2018). Flush-reload-attack. https://github.com/
AkashWorld/Flush-Reload-Attack.

Albalawi, A., Vassilakis, V., and Calinescu, R. (2021).
Memory deduplication as a protective factor in virtu-
alized systems. In Int. Conf. on Applied Cryptography
and Network Security, pages 301–317. Springer.

Anwar, S., Inayat, Z., Zolkipli, M. F., Zain, J. M., Gani,
A., Anuar, N. B., Khan, M. K., and Chang, V. (2017).
Cross-VM cache-based side channel attacks and pro-
posed prevention mechanisms: A survey. J. of Net-
work and Computer Applications, 93:259–279.

Bazm, M.-M., Sautereau, T., Lacoste, M., Sudholt, M., and
Menaud, J.-M. (2018). Cache-based side-channel at-
tacks detection through intel cache monitoring tech-
nology and hardware performance counters. In
3rd Int. Conf. on Fog and Mobile Edge Computing
(FMEC), pages 7–12. IEEE.

Chiappetta, M., Savas, E., and Yilmaz, C. (2016). Real time
detection of cache-based side-channel attacks using
hardware performance counters. Applied Soft Com-
puting, 49:1162–1174.

Chiappetta, M., Savas, E., and Yilmaz, C. (2020). Xlate:.
https://www.vusec.net/projects/xlate/.

Cho, J., Kim, T., Kim, S., Im, M., Kim, T., and Shin, Y.
(2020). Real-time detection for cache side channel
attack using performance counter monitor. Applied
Sciences, 10(3):984.

Gruss, D., Maurice, C., Wagner, K., and Mangard, S.
(2016). Flush+ flush: a fast and stealthy cache at-
tack. In Int. Conf. on Detection of Intrusions and Mal-
ware, and Vulnerability Assessment, pages 279–299.
Springer.

Gruss, D., Maurice, C., Wagner, K., and Mangard, S.
(2019a). Flush + Flush. https://github.com/IAIK/
flush flush.

Gruss, D., Spreitzer, R., and Mangard, S. (2015). Cache
template attacks: Automating attacks on inclusive
last-level caches. In 24th {USENIX} Security Sym-
posium ({USENIX} Security 15), pages 897–912.

Gruss, D., Spreitzer, R., and Mangard, S. (2019b). Cache
Template Attacks. https://github.com/IAIK/cache
template attacks.

Intel (2017). Intel R© 64 and ia32 ar-
chitectures performance monitoring
events. https://usermanual.wiki/Document/
335279performancemonitoringeventsguide.
2005880979/view.

Irazoqui, G., Eisenbarth, T., and Sunar, B. (2016). Mascat:
Stopping microarchitectural attacks before execution.
IACR Cryptol. ePrint Arch., 2016:1196.

Irazoqui, G., Eisenbarth, T., and Sunar, B. (2018). Mascat:
preventing microarchitectural attacks before distribu-
tion. In 8th ACM Conference on Data and Application
Security and Privacy, pages 377–388.

Irazoqui, G., Inci, M. S., Eisenbarth, T., and Sunar, B.
(2014). Wait a minute! a fast, cross-vm attack on aes.
In Int. Workshop on Recent Advances in Intrusion De-
tection, pages 299–319.

libguestfs (2019). Libguestfs tools for accessing and modi-
fying vm disk images. https://libguestfs.org/.

Microsoft/Avml (2020). Microsoft/avml: Avml - ac-
quire volatile memory for linux. https://github.com/
microsoft/avml.

Mushtaq, M., Akram, A., Bhatti, M. K., Rais, R. N. B.,
Lapotre, V., and Gogniat, G. (2018). Run-time detec-
tion of prime+ probe side-channel attack on aes en-
cryption algorithm. In Global Information Infrastruc-
ture and Networking Symp. (GIIS), pages 1–5.

Nagnagnet (2018). Prime+Probe is a last-level cache
side-channel attack. https://github.com/nagnagnet/
PrimeProbe.

Nepoche (2017). Flush and reload cache side channel at-
tack. https://github.com/nepoche/Flush-Reload.

Park, J. (2018). CSCA (Crypto Side Channel Attack). https:
//github.com/jinb-park/crypto-side-channel-attack.

Pasic, H. (2019). Side channel attack (cache attack. https:
//github.com/HarisPasic/SideChannelAttack.

Saxena, S., Sanyal, G., Srivastava, S., and Amin, R. (2017).
Preventing from cross-vm side-channel attack using
new replacement method. Wireless Personal Commu-
nications, 97(3):4827–4854.

VolatilityFoundation (2020). Volatility framework - volatile
memory extraction utility framework. https://github.
com/volatilityfoundation/volatility.

x86 and amd64 instruction reference (2019). Core instruc-
tions. https://www.felixcloutier.com/x86/index.html.

Yarom, Y. (2020). A micro-architectural side-channel
toolkit. https://cs.adelaide.edu.au/∼yval/Mastik/.

Yarom, Y. and Falkner, K. (2014). Flush+ reload: A high
resolution, low noise, l3 cache side-channel attack. In
23rd {USENIX} Security Symposium ({USENIX} Se-
curity 14), pages 719–732.

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

514

