
Incentivisation of Outsourced Network Testing: View from Platform
Perspective

Sultan Alasmari1, Weichao Wang1 and Yu Wang2

1College of Computing and Informatics, University of North Carolina Charlotte, NC, U.S.A.
2Department of Computer and Information Sciences, Temple University, PA, U.S.A.

Keywords: Incentivisation of Network Testers, Outsourced Network Testing.

Abstract: With the development of Security as a Service (SAAS), many companies outsource their network security
functionality to security service providers. To guarantee the execution and quality of such services, a third
party can help the end customer verify the enforcement of the security service level agreement (SSLA). Since
individual testers often lack the capability and trustworthiness to attract many customers, a platform is needed
to bridge the gap between the customers and the testers. In this paper, we investigate the incentivisation of
outsourced network testing from the platform perspective. We first define the problem of cost/benefit model
of the platform and identify the restriction factors. We describe multiple testing task assignment scenarios and
prove that they are NP problems. Next we design heuristic algorithms for the problem. Our simulation results
examine the performance of the heuristic approaches.

1 INTRODUCTION

With fast development and wide adoption of Secu-
rity as a Service (SaaS) (Hawedi et al., 2018), more
and more corporations start to depend on third party
companies to protect their networks. However, the se-
curity services must be verified periodically to make
sure that the service provider does not violate any
of the service level agreements (SLA) (de Carvalho
et al., 2017).

While the requirement on periodic verification
sounds reasonable, it is quite hard to enforce in real
life if the company depends on one or two nodes to
conduct such test since their identities can be easily
recognized and remembered by the service provider.
In (Alasmari et al., 2020), the authors propose an ap-
proach similar to the crowd-sensing system: a plat-
form serves as the middleman to connect the cus-
tomers who need their security properties to be tested
and the nodes who can conduct such tests for them.
The authors investigate the expected properties of the
outsourced verification services and the mechanisms
to prevent either testers or customers from cheating.

While the approach in (Alasmari et al., 2020)
presents an overview of the platform, it lacks the dis-
cussion on an important problem: incentive models
for the platform and network testers to participate in
the verification procedure. Note that to conduct net-

work testing, a tester often needs to send out some
packets that will be considered ‘suspicious’ or even
‘malicious’ under some cases. For example, to assess
whether or not the network security service provider
will react promptly enough to identify some malicious
payload, the tester may need to send out some packets
that match to the malware signature. These packets,
however, may be labeled by the tester’s internet ser-
vice provider (ISP) and cause negative consequence
(e.g. limiting the network bandwidth of the tester).
Therefore, a cost-benefit model must be established
and analyzed before such a platform can be deployed.

To solve this problem, in this paper we will es-
tablish a cost-benefit model from the platform point
of view. We will first classify the network testing
traffic based on the probability that they will be la-
beled as suspicious by ISP. We will then establish a
model for the problem as a linear programming prob-
lem. We analyze the complexity of the problem and
prove that it is NP hard. We will then design heuris-
tic algorithms to solve the incentive model under dif-
ferent situations. Finally, we apply the algorithm to
multiple cost/benefit scenarios of outsourced network
testing and evaluate its performance.

Our paper has the following unique contributions.
First, we establish an incentive model for outsourced
network security testing. In our model the testers try
to maximize their profit while staying under the radar

Alasmari, S., Wang, W. and Wang, Y.
Incentivisation of Outsourced Network Testing: View from Platform Perspective.
DOI: 10.5220/0010897300003120
In Proceedings of the 8th International Conference on Information Systems Security and Privacy (ICISSP 2022), pages 499-506
ISBN: 978-989-758-553-1; ISSN: 2184-4356
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

499

of network security monitors. Second, we model the
problem as a linear programming problem and show
that it is equivalent to variations of the knapsack prob-
lem. We then design heuristic algorithms to solve the
problem. Third, we apply our algorithms to multiple
network testing scenarios and show that the outputs
of the algorithms can explain the potential policies of
the platform very well.

The remainder of the paper is organized as fol-
lows. In Section 2, we describe related work. In Sec-
tion 3, we first discuss the differences between our
incentive problem and several problems that also de-
mand incentive models. We then use a linear pro-
gramming model to characterize the problem and
prove that it is an NP problem. We present several
heuristic algorithms to solve it. Section 4 presents the
quantitative evaluation results. Finally, Section 5 con-
cludes the paper.

2 RELATED WORK

In this part, we will describe the state-of-the-art re-
search in several directions from which we can ben-
efit. We are especially interested in the outsourced
security services, their enforcement, and incentive
models in other domains that we can refer to. For
Security-as-a-Service (SaaS), researchers have con-
ducted a lot of efforts to use Service Level Agreement
(SLA) to define the criteria of evaluation. For exam-
ple, the EU researchers built the framework SPECS
(Rak et al., 2013) and the project MUSA (Rios et al.,
2016) that allowed users to prepare, negotiate, imple-
ment, and remediate security SLAs. The efforts in
(Casola et al., 2020) try to embed security into the
system from the design phase. In (Hawedi et al.,
2018), the authors designed a different approach.
They embed a lightweight IDS system at the cloud
provider and allow the tenants to configure their own
rules in the IDS for their VM. This approach provides
a certain level of flexibility to users who have security
expertise.

There are efforts in which the security provider
allows end customers to participate in the configu-
ration of security measures. For example, in (Ca-
sola et al., 2017), end users can propose security ob-
jectives and the provider will determine and allocate
resources to satisfy the needs. Example approaches
are built to measure parameters for network security
(Wonjiga et al., 2019a) and data integrity (Wonjiga
et al., 2019b). A similar approach is to standardize the
interfaces to the network security functions (NSF) in
network function virtualization environments (Hyun
et al., 2018). The definition and enforcement of secu-

rity SLAs also benefit from the advances in the new
techniques such as AI and smart contract. For exam-
ple, in (Wonjiga et al., 2019b), researchers applied
blockchain to data integrity protection so that both
end users and cloud providers can verify the results.

Incentive models have been widely used to pro-
mote participation in the activities such as crowd-
sourcing, crowdsensing (Khan et al., 2019), and next
generation wireless networks. Compared to these
models, our application scenario has some unique
properties. Sending out ‘suspicious traffic’ to con-
duct network security tests may lead to identification
and disconnection by ISP, thus leading to long term
negative impacts. The only scenarios we can find
that share the properties are the financial incentives
for clinical trials of treatment for infectious diseases
(Paul et al., 2021). Here the volunteers will receive
cash rewards for being contacting with infectious dis-
eases and testing new medicines. They trade the short
term incentives for the potential of long term diseases.

3 INCENTIVISATION OF
OUTSOURCED NETWORK
TESTING

In this section, we will present the details of the in-
centive model the platform can use to attract more
nodes to participate in the network security services
as testers. We will first discuss the assumed scenarios
and the functionality of different parties in the sys-
tem. We will then present the cost and payment from
both the platform’s and tester’s point of view. The in-
centivization model will then be formally defined as
a linear programming problem with constraints. Our
analysis will show that the problem is NP hard and
heuristic approaches must be designed.

3.1 System Assumptions

Figure 1 shows the application scenario. We assume
that an end user u uses the network security services
provided by s. u wants to use a third party to verify
whether or not s is satisfying the security service level
agreement (SSLA). Therefore, it resolves to the net-
work security service testing platform P. To simplify
the scenario, we assume that u carefully crafts a group
of packets and asks P to conduct the test. To prevent s
from recognizing the source address of P and the test-
ing traffic, P can recruit a group of testers to conduct
the test. The test results can then be shared with u.

From the platform perspective, the overall opera-
tions must be profitable to make the business sustain-

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

500

Figure 1: Application scenarios of the proposed approach.

able. For example, P will charge service fees from the
user u and have to pay the testers correspondingly.
Note that different testers may charge different fees
to P because of the network service cost and security
setup. While it is not necessarily true for P to make
a profit on every request, in the long term it needs to
make sure that ($income - $cost) is positive.

Different from the crowd-sensing or crowd-
sourcing scenarios (Khan et al., 2019; Zhao et al.,
2021) in which the participants use valuable resources
such as time and battery power to accomplish tasks,
the costs of network testers are usually caused by
other factors. For example, many ISPs will moni-
tor the network traffic for potential attack detection.
Once a malicious or suspicious node is detected, the
ISP may restrict its network bandwidth or sometimes
directly disable the services. From this point of view,
the testers are risking their network availability to par-
ticipate in the services.

Because of the complexity of the ISP network
monitoring and restriction policies, in this paper we
adopt the model presented in (Desai, 2012). Here we
classify the testing packets into three categories based
on their sensitivity to security policies: low, middle,
and high (our model could support more fine grained
classification). For each node i, within a time period,
the node can send out at most Ri,low, Ri,mid , and Ri,hi
packets at the low, medium, and high sensitivity lev-
els, respectively, if it wants to avoid any restrictions
by the ISP. Therefore, P must consider such restric-
tions when assigning tasks to the tester. Table 1 sum-
marizes the symbols we use in this paper.

3.2 Working Procedure and the Cost
Model

In this section, we will describe the working pro-
cedure of the platform and establish the cost model
so that we can analyze the complexity of the overall
problem.
Step 1: User ui will submit a network testing request
to platform P that consists of (Hui high, Mui middle,
and Lui low) sensitivity packets. The user agrees to

pay (Hui∗BPh + Mui∗BPm + Lui∗BPl) to the platform;
Step 2: Platform P will assign the testing request to
one or multiple testers. Note that different criteria
and restrictions may need to be considered during this
procedure. Here the platform needs to consider both
its base price charge upon the user ui and the price
that it needs to pay to the tester to balance the book;
Step 3: The network testing will be conducted. Once
the testing operations are accomplished, each party
will pay the fee as the agreed amount. This request is
complete.

3.2.1 Task Assignment Method 1

In this task assignment method, we assume that each
testing request needs to be assigned to a single tester.
Therefore, we can formally define the problem as:

maximize:
|G|

∑
i=1

|J|

∑
j=1

Xi, j(Hi ∗ (BPh−Pj,h)+

Mi ∗ (BPm−Pj,m)+Li ∗ (BPl −Pj,l))

subject to:
|G|

∑
i=1

Xi, j ∗Hi ≤ R j,h, Xi, j ∈ {0,1}, j = 1 to |J|

|G|

∑
i=1

Xi, j ∗Mi ≤ R j,m, Xi, j ∈ {0,1}, j = 1 to |J|

|G|

∑
i=1

Xi, j ∗Li ≤ R j,l , Xi, j ∈ {0,1}, j = 1 to |J|

|J|

∑
j=1

Xi, j = 1, i = 1 to |G|

Here the objective is to maximize the profit of the
platform by assigning the testing requests to testers.
While P has uniform price rules for different types of
testing traffic, each tester could charge different prices
for the same type of packets since they need to con-
sider the network costs. The profit P collects is deter-
mined by the difference between the two prices and
the number of packets. At the same time, since a test-
ing request can be assigned to only one tester, the total
numbers of high, middle, and low sensitivity packets
assigned to each tester must be within its limits. Here
Xi, j represents whether or not the requests Gi is as-
signed to tester j. The last constraint shows that each
task is assigned to only one tester.

Complexity Analysis
From the definition of the problem, we can see that it
is related to the knapsack problem. Here each tester’s
packet limits are the knapsacks’ capacity while the
testing requests are the items. We have proven the
following theorem.
Theorem 1: Assignment method 1 is an NP-complete
problem.
Proof: A special case of this problem is equivalent to
the subset knapsack problem. �

Incentivisation of Outsourced Network Testing: View from Platform Perspective

501

Table 1: Symbols used in the paper.

P platform that provides testing services
Tj jth tester that conducts testing services
Ui ith user that demands testing services

BPh, BPm, BPl base price P charges for each high, mid, and low sensitivity packet
Gi(Hi, Mi, Li) ith network testing request with Hi high, Mi middle, and Li low packets

Pj,l , Pj,m, and Pj,h price tester j charges for sending a low, middle and high sensitivity packet
R j,l , R j,m, and R j,h the limits of low, middle, and high sensitivity packet tester j can send out

Xi, j whether or not we assign request Gi to tester j
Yi, j,H # of high sensitivity packets of Gi assigned to Tj (same for mid and low)

G the set of network testing requests
J the set of network testers

3.2.2 Task Assignment Method 2

In this task assignment method, we assume that a
testing request can be assigned to multiple testers to
jointly accomplish the task. Note that the whole re-
quest must be satisfied. In other words, we will not
serve only a part of the request. Under this case,
the assignment procedure could become more com-
plicated since we can draw the packet capacity from
different sources. As long as the remaining capacity
of high, middle, and low sensitivity packets is enough
for the request, we can satisfy the request.

From the first sight, it seems that this problem can
be solved with a greedy algorithm, e.g., always assign
the request to the tester that charges the lowest price
for a category of the packets. The greedy approach,
however, may leave a part of the testing capacity un-
usable, thus leading to a low profit for P.

Below we show the formal definition of the prob-
lem. Here we can assign a request to multiple testers
as long as all of the testing packets are covered. Yi, j,H
represents the number of high sensitivity packets of
request Gi that are assigned to tester Tj. Another
restriction is the total number of high (middle, or
low) sensitivity packets that are assigned to a tester
is within her limit.

maximize:
|G|
∑
i=1

|J|
∑
j=1

(Yi, j,H ∗ (BPh−Pj,h)+Yi, j,M∗

(BPm−Pj,m)+Yi, j,L ∗ (BPl −Pj,l))

subject to:
|G|
∑
i=1

Yi, j,H ≤ R j,h , j = 1 to |J|

|G|
∑
i=1

Yi, j,M ≤ R j,m, j = 1 to |J|

|G|
∑
i=1

Yi, j,L ≤ R j,l , j = 1 to |J|

|J|
∑
j=1

Yi, j,H = Hi, i = 1 to |G|

|J|
∑
j=1

Yi, j,M = Mi , i = 1 to |G|

|J|
∑
j=1

Yi, j,L = Li, i = 1 to |G|

Complexity Analysis
Since now a single testing request can be assigned to
multiple testers, it is different from the scenario that
we discussed in Section 3.2.1. Now the testing capac-
ity of different nodes can actually be merged together
to form a large pool. Please note that since each tester
may have different capacities in high, middle, and low
sensitivity packets, their sums are also different. At
the same time, each tester has its own price policy of
the testing packets.

Since the testing capacity can be merged to form a
large pool, we have a variant of the multi-dimensional
knapsack problem (Laabadi et al., 2018). Here the
profit of satisfying a single testing request is not a
constant since each tester has its own price policy. We
have proven that this variant is still an NP-hard prob-
lem.
Theorem 2: Assignment method 2 is an NP-hard
problem.
Proof: A special case of this problem is equivalent to
the general multidimensional knapsack problem. �

3.3 Heuristic Algorithms

In this section we will discuss some heuristic algo-
rithms for the task assignment problem. Depending
on whether or not a testing request can be assigned
to multiple testers, we investigate two different ap-
proaches.

The first heuristic algorithm we present is a
variation of the Primal Effective Capacity Heuristic
(PECH) mechanism for the general MDKP (Akcay
et al., 2007) problem. Specifically, it is a greedy al-
gorithm for the Task Assignment Method 1. Here
we assume that a task must be assigned to a single
tester. Since each tester adopts its own price model,
the profit that P can collect from accomplishing the

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

502

task depends on the assigned tester. Since the plat-
form needs to select one task from all the unassigned
network testing requests, the selection method could
directly impact the final result. Several examples of
the selection criteria include: (1) first come first serve;
(2) fit as many requests as possible to the testing ca-
pacity; or (3) randomly choose a task.

Another criteria of tester assignment is the packet
capacity usage of different categories. Since we as-
sign a whole request to one tester, we try to use the
packet capacities in a balanced way to avoid the sit-
uations in which a certain type of packet capacity is
used up while for other types a plenty of capacity is
remained. Under this case, we will assign a request
to a tester that will create the least imbalance in its
remaining capacities after satisfying the request. Be-
low we provide an example. Assume that we have
two testers T1 and T2 who have used their capacities
from high to low as follows: T1(71%,68%,72%) and
T2(66%,69%,67%). The imbalance is defined as the
largest difference between capacity usage in different
categories. So the imbalance of T1 is 72%− 68% =
4%, and for T2 is 3%. Now assume that a request
contains only high sensitivity packets. Because of the
difference in capacities of testers, it will use 2% of
T1’s capacity or 3% of T2’s capacity. Therefore, if we
assign it to T1, the new imbalance value will be ((71%
+ 2%) - 68% = 5%). While for T2 the new value is
(69% - 67% = 2%). Therefore, to reduce imbalance
at testers after assignment, we will give the task to T2.

The Task Assignment Method 2 is a little bit dif-
ferent since we can assign the packets to multiple
testers. Therefore, a greedy algorithm will try to
assign each single testing packet to the tester who
charges the lowest price. Once that tester’s capac-
ity is reached, we can move on to the next cheapest
tester. Note that this approach tries to maximize the
profit from the current request for the platform. If
the first-come-first-serve method is always adopted,
it is possible that a certain type of packet capacity is
used up first, thus preventing us from admitting new
requests. For example, if all testing capacity of the
middle level sensitivity packets is used up, we will
not be able to admit any request that contains middle
sensitivity packets since we do not allow a request to
be partially satisfied.

To prevent this scenario from happening, we can
manage the remaining capacity of different types of
packets and try to maintain a balance. For example,
during the request assignment procedure we can set
up a threshold of the imbalance value between the re-
maining capacities of different categories. We will
not accept any request that will break the threshold.
Below we provide an example. Assume that we set

the imbalance threshold at 5%. Before admitting a
request, the capacity usage are 45% (low), 42% (mid-
dle), and 47% (high), respectively. Now if a task re-
quests 1% of middle sensitivity packet capacity and
2% of high, we will not admit it since the ending ca-
pacity usage will be 43% (middle) and 49% (high)
which will exceed the imbalance threshold 5%.

4 QUANTITATIVE RESULTS

In this part, we will present some quantitative results
of the proposed approaches. The experiments focus
on the achieved profit of different approaches, and the
practicability of the task assignment models.

4.1 Achievable Profits

Based on the discussion in previous sessions, we can
see that the task assignment problem is an NP prob-
lem. Therefore, in this section, we will compare the
maximum profit under some scenarios to the achiev-
able profit of the heuristic approaches. Restricted
by the search space size and required computation
power, we will experiment with some small scale
questions.

We assume that the prices that the platform
charges for each high, middle, and low sensitivity
packet are $12, $10, and $8, respectively. For each
tester, the capacities of high, middle, and low sensitiv-
ity packets follow uniform distribution in the ranges
of (900, 1100), (1800, 2200), (900, 1100), respec-
tively. The size of the network test requests also fol-
lows uniform distribution around the expected values.
They are divided into two groups. The first group
have the sizes that range from 20% to 90% of the
testers’ capacities, while the second group range from
10% to 45%. The charging prices of the testers uni-
formly distribute between 92% to 100% of the plat-
form prices. To calculate the maximum profit of the
assignment, we search for all possible combinations.

In this group of experiments, we consider three
task assignment mechanisms: first come first serve
(FCFS), random assignment, and exclusive search
(maximum profit). Here the FCFS mechanism will try
to satisfy the tasks based on their arriving order. The
random assignment mechanism picks from the pool
of unsatisfied tasks and assign it to the tester that will
generate the highest profit. In Figure 2, we show the
ratio between the profits of the heuristic mechanisms
and the maximum profit.

From the figure, we can see that the size of the
network testing requests has an large impact on the
achievable profit. For example, when the sizes of

Incentivisation of Outsourced Network Testing: View from Platform Perspective

503

the requests are comparable to the capacities of the
testers (60% to 90%), very frequently we can fit only
one or two requests into the tester’s capacity. There-
fore, the difference between the maximum profit and
the achievable profits of the heuristic mechanisms is
not large. As the size of the requests decreases (40%
and 50%), we can assign multiple requests to a tester.
Therefore, the selection of requests and testers could
impact the profit a lot since a poorly designed as-
signment mechanism can often use low percentage of
the capacity, thus causing increased differences be-
tween the maximum profit and achievable profits of
the heuristic methods. When the size of the requests
further decreases, we can fit many requests into the
capacity of a single tester, and the percentage usage
goes up again. From this point of view, after the plat-
form learns the distribution of the request sizes, they
can recruit testers with favorable capacity sizes that
can help the platform to increase its profit. From an-
other aspect, we can see that the FCFS and Random
assignment mechanisms demonstrate similar perfor-
mance.

Figure 2: Ratio between the maximum profit and profit of
different mechanisms.

4.2 Comparison of Heuristic
Approaches

In the second group of experiments, we will compare
multiple heuristic approaches. Specifically, we study
4 heuristic mechanisms: (1) FCFS/Greedy: in this
mechanism, the platform adopts the first-come-first-
serve policy. A single request must be assigned to
one tester who can generate the largest profit through
accomplishing the request. (2) Random/Greedy: in
this method, we assume that all request information
is available to the platform. We will then randomly
pick a request from the pool and assign it to a tester
who can generate the largest profit. We will continue
this procedure until all testers use up their capacities,
or all requests are satisfied. From this point of view, it
is similar to FCFS but we choose requests randomly
instead of based on the arriving order.

The third mechanism that we experiment with is
called “balanced capacity usage”. In this method, we

try to assign a request to a tester to minimize the dif-
ference between the used capacity in high, middle,
and low sensitivity packets at the tester. Specifically,
for all tester Tj, we try to achieve min (max capacity
usage di f f erence). The objective is to use the capac-
ities in a balanced way so that we can assign more
requests to a single tester.

Last but not least, in the ‘merged’ mechanism, we
allow a request to be assigned to multiple testers and
each accomplishes only a part of the task. In this
method, the capacities of the high, middle, and low
sensitivity packets of different testers are merged into
their own pools. For each request, we will choose
the tester who charges the lowest price to the cor-
responding packet type. Since different testers may
charge different prices, we may assign the high sensi-
tivity packets to one tester and the middle sensitivity
packets to another tester. In this way, we can usually
achieve higher profit since we will use the tester ca-
pacities more effectively.

In this group of experiments, we assume that the
platform recruits 50 testers and there are 1500 re-
quests submitted by end users. The meanings of the
parameters are similar to those discussed in Section
4.1. Since we do not have the maximum profit value,
in the following figures we will illustrate the absolute
profit (in $).

Figure 3 shows the quantitative results. On the X-
axis, we have the ratio between the size of the network
testing requests and the tester capacity. On the Y-axis,
we have the profit value. We have several observa-
tions in the figure. First, for the ‘merged’ mechanism,
since we put all the capacities of the testers into the
pools of their own categories, we can continue to sat-
isfy requests until at least one of the categories can no
longer fit any request. Therefore, we can see that the
profit of the ‘merged’ mechanism is not largely im-
pacted by the request size. On the contrary, for the
other three mechanisms, their profit will slowly de-
crease as the size of the requests increases.

Figure 3: Relationship between the achieved profit and the
size of testing requests.

Compared to ‘FCFS/Greedy’ and ‘Ran-
dom/Greedy’, the ‘Balanced’ mechanism tries

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

504

to use the capacity in different categories in a strate-
gic manner so that we can avoid the scenario that
one category is exhausted while a large portion of
capacities of other categories are still unused. From
the figure, we can see that the ‘Balanced’ mechanism
generates higher profit than the other two methods.
As the size of the requests increases, more capacity
at the testers could not be used. Therefore, the
overall profit will decrease. Similar to the reason
we discussed in Section 4.1, the ‘FCFS/Greedy’ and
‘Random/Greedy’ mechanisms do not demonstrate
noticeable differences.

In Figure 4, we study how the price model of the
testers impacts the profit of the platform. Specifically,
we adjust the average price difference between the
testers and the platform. In the X-direction, the aver-
age price difference increases from 2% to 10% of the
platform price. On the Y-direction we show the profit.
From the figure we can see that as the price difference
changes, the profit increases almost linearly.

Figure 4: Relationship between the achieved profit and the
prices at testers.

4.3 Future Extensions

In this part, we will discuss potential extensions to our
approach.

Impacts of Price Model
This paper can be viewed as our exploration of the
practicability of the outsourced network testing ser-
vices. Specifically, we want to see how various fac-
tors impact the sustainability and profit of the plat-
form. To simplify the discussion and simulation, we
assume a uniform distribution of the price difference
between the testers and platform and the prices do not
change. In real life, both platform and testers could
adopt more complicated price model. For example,
they can dynamically adjust the price based on the
number of requests, the number of testers, and the
remaining capacity. From this point of view, maxi-
mization of the platform profit will become a more
challenging question.

Privacy of Security Policies
Another concern of the outsourced network testing is
the leakage of the network security policies of the end
customers. Based on the construction and contents of
the network testing packets, a tester may derive out
the network security policies that the end user adopts.
Therefore, should a tester turn malicious, it has the
capability to design attacks based on the knowledge
of the policies. To defend against such attacks, a po-
tential mechanism is to distribute the testing traffic to
multiple testers so that each party holds only a portion
of the knowledge. The end user could also embed de-
ceitful traffic into the request. Subsequent research is
needed in this direction.

5 CONCLUSION

In this paper we investigate the problem of outsourced
network test. Specifically, we focus on the working
model of the platform and the possible mechanisms
of task assignment. Our analysis shows that the task
assignment problem is an NP problem and we need
to design heuristic algorithms to assist the platform to
generate higher profit. We conduct simulation to in-
vestigate the maximum profit and the achievable prof-
its of different approaches. Our simulation shows that
maintaining a balance between the remaining testing
capacities of different categories will increase profit
of the platform.

When we put the research problem in a larger
view, the goal is to allow the platform to run the net-
work testing services in a sustainable way. Therefore,
it needs to attract enough number of end users as well
as network testers to the platform. At the same time,
it needs to protect the privacy of the end users. Dif-
ferent from the service level agreements that focus on
resource usage such as CPU cycles, outsourcing of se-
curity related SLAs deserves more careful execution
since a balance between safety and effectiveness of
the approach must be maintained.

REFERENCES

Akcay, Y., Li, H., and Xu, S. (2007). Greedy algorithm
for the general multidimensional knapsack problem.
In Annals of Operations Research, volume 150, pages
17–29.

Alasmari, S., Wang, W., and Wang, Y. (2020). Proof of
network security services: Enforcement of security sla
through outsourced network testing. In International
Conference on Communication and Network Security
(ICCNS), pages 52–59.

Incentivisation of Outsourced Network Testing: View from Platform Perspective

505

Casola, V., De Benedictis, A., Eraşcu, M., Modic, J., and
Rak, M. (2017). Automatically enforcing security slas
in the cloud. IEEE Transactions on Services Comput-
ing, 10(5):741–755.

Casola, V., De Benedictis, A., Rak, M., and Villano, U.
(2020). A novel security-by-design methodology:
Modeling and assessing security by slas with a quan-
titative approach. Journal of Systems and Software,
163:110537.

de Carvalho, C., de Andrade, R., de Castro, M., Coutinho,
E., and Agoulmine, N. (2017). State of the art and
challenges of security sla for cloud computing. Com-
puters & Electrical Engineering, 59:141–152.

Desai, V. R. (2012). Techniques for detection of malicious
packet drops in networks. Master’s thesis, University
of Massachusetts Amherst.

Hawedi, M., Talhi, C., and Boucheneb, H. (2018). Security
as a service for public cloud tenants(saas). Procedia
Computer Science, 130:1025–1030.

Hyun, S., Kim, J., Kim, H., Jeong, J., Hares, S., Dunbar,
L., and Farrel, A. (2018). Interface to network secu-
rity functions for cloud-based security services. IEEE
Communications Magazine, 56(1):171–178.

Khan, F., Ur Rehman, A., Zheng, J., Jan, M. A., and
Alam, M. (2019). Mobile crowdsensing: A survey on
privacy-preservation, task management, assignment
models, and incentives mechanisms. Future Gener-
ation Computer Systems, 100:456–472.

Laabadi, S., Naimi, M., El Amri, H., and Achchab, B.
(2018). The 0/1 multidimensional knapsack problem
and its variants: A survey of practical models and
heuristic approaches. American Journal of Operations
Research, (8):395–439.

Paul, M., Harbarth, S., Huttner, A., Thwaites, G., Theuret-
zbacher, U., Bonten, M., and Leibovici, L. (2021).
Investigator-initiated randomized controlled trials in
infectious diseases: Better value for money for regis-
tration trials of new antimicrobials. Clinical Infectious
Diseases, 72(7):1259––1264.

Rak, M., Suri, N., Luna, J., Petcu, D., Casola, V., and Vil-
lano, U. (2013). Security as a service using an sla-
based approach via specs. In Proceedings of IEEE
International Conference on Cloud Computing Tech-
nology and Science, (CloudComp), pages 1––6.

Rios, E., Mallouli, W., Rak, M., Casola, V., and Ortiz, A. M.
(2016). Sla-driven monitoring of multi-cloud applica-
tion components using the musa framework. In IEEE
International Conference on Distributed Computing
Systems Workshops (ICDCSW), pages 55–60.

Wonjiga, A. T., Rilling, L., and Morin, C. (2019a). Defin-
ing security monitoring slas in iaas clouds: the exam-
ple of a network ids. Research Report RR-9263, Inria
Rennes Bretagne Atlantique, pages 1–37.

Wonjiga, A. T., Rilling, L., and Morin, C. (2019b). Security
monitoring sla verification in clouds: the case of data
integrity. Research Report RR-9267, Inria Rennes -
Bretagne Atlantique, pages 1–29.

Zhao, B., Tang, S., Liu, X., and Zhang, X. (2021). Pace:
Privacy-preserving and quality-aware incentive mech-

anism for mobile crowdsensing. IEEE Transactions
on Mobile Computing, 20(5):1924–1939.

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

506

