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Abstract: COVID-19 is a recently emerged pneumonia disease with threatening complications that can be avoided by 
early diagnosis. Deep learning (DL) multimodality fusion is rapidly becoming state of the art, leading to 
enhanced performance in various medical applications such as cognitive impairment diseases and lung cancer. 
In this paper, for COVID-19 detection, seven deep learning models (VGG19, DenseNet121, InceptionV3, 
InceptionResNetV2, Xception, ResNet50V2, and MobileNetV2) using single-modality and joint fusion were 
empirically examined and contrasted in terms of accuracy, area under the curve, sensitivity, specificity, 
precision, and F1-score with Scott-Knott Effect Size Difference statistical test and Borda Count voting method. 
The empirical evaluations were conducted over two datasets: COVID-19 Radiography Database and COVID-
CT using 5-fold cross validation. Results showed that MobileNetV2 was the best performing and less sensitive 
technique on the two datasets using mono-modality with an accuracy value of 78% for Computed 
Tomography (CT) and 92% for Chest X-Ray (CXR) modalities. Joint fusion outperformed mono-modality 
DL techniques, with MobileNetV2, ResNet50V2 and InceptionResNetV2 joint fusion as the best performing 
for COVID-19 diagnosis with an accuracy of 99%. Therefore, we recommend the use of the joint fusion DL 
models MobileNetV2, ResNet50V2 and InceptionResNetV2 for the detection of COVID-19. As for mono-
modality, MobileNetV2 was the best in performance and less sensitive model to the two imaging modalities. 

1 INTRODUCTION 

COVID-19 is a 2019 pneumonia coronavirus disease 
that has affected 2.7 million people and caused over 
46 000 new deaths as of the week of 19 October 2021 
(Weekly epidemiological update on COVID-19 - 19 
October 2021, n.d.). The current gold standard for 
COVID-19 diagnosis is the reverse transcription–
polymerase chain reaction but it is expensive and its 
sensitivity is not satisfactory (Goudouris, 2021). 
Other imaging modalities are used : CT that is quite 
effective for early diagnosis but expensive and Chest 
X-Ray (CXR) that is cost-effective and widely 
available but has limited sensitivity in early stage 
infection (Aljondi & Alghamdi, 2020). Several 
single-modality DL research works have been 
conducted that showcase the power of DL in COVID-
19 diagnosis. Additionally, most of these works use 
CT and CXR for its diagnosis as found in (Islam et 
al., 2021) review. Meanwhile, very few works using 

                                                                                                 
a  https://orcid.org/0000-0003-1475-8851 

multimodality fusion have been conducted for 
COVID-19 diagnosis (Rahimzadeh & Attar, 2020; 
Wu et al., 2020; Xu et al., 2021; Zhang et al., 2021; 
Zhou et al., 2021). Multimodality fusion learning 
consists of exploiting the complementary information 
provided by each modality to improve the 
performance of the DL models. Three different fusion 
strategies exist: early fusion, joint fusion and late 
fusion (S. C. Huang et al., 2020). Early fusion is the 
process of joining different input modalities and 
feeding the resulting feature vector into a machine 
learning (ML) model for training. Joint fusion though, 
consists of extracting features from the input 
modalities and feeding their joint representation to 
another model for further learning. The main 
difference with early fusion, is that the loss still gets 
propagated to the feature extracting neural network 
during training for better feature representation. 
Finally, late fusion refers to the process of fusing the 
different predictions output from the learning models 
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of different modalities to provide a final decision. For 
COVID-19, (Wu et al., 2020) introduced multi-view 
fusion (early fusion) using a modification of 
ResNet50 architecture and three-view (axial, coronal 
and sagittal views) images of CT. In (Rahimzadeh & 
Attar, 2020) they used CXR images to detect COVID-
19, pneumonia and normal cases and proposed a 
system that concatenates the features extracted in 
parallel by Xception and ResNet50V2 then fed them 
to a convolutional neural network (CNN) layer for 
further learning (i.e. joint fusion). Recently, (Zhou et 
al., 2021) proposed a system that learns the impact of 
clinical features using High-order Factorization 
Network (HoFN), and processes the CT images using 
an attention-based deep convolutional neural network 
with pre-trained parameters. Finally, a loss function 
is designed to shift deep features of both modality into 
the same feature space. Meanwhile, (Zhang et al., 
2021) introduced an end-to-end multiple-input deep 
convolutional attention network (MIDCAN) by using 
the convolutional block attention module (CBAM) 
that can handle CT and CXR images simultaneously 
and employs multiple-way data augmentation to 
overcome the overfitting problem. Additionally, (Xu 
et al., 2021) (late fusion) using CT scans, clinical 
information and lab testing results extracted a 10-
feature high-level representation of CT scans using a 
customized ResNet. Then they developed three 
machine learning models (i.e. k-nearest neighbour, 
random forest, and support vector machine (SVM)) 
for the multinomial classification task. This study 
aims to evaluate and compare the performance of 
joint fusion DL models with mono-modality DL 
models using the most recent and frequent seven DL 
techniques (VGG19 (Simonyan & Zisserman, 2014), 
ResNet50V2 (He et al., 2016), DenseNet121 (G. 
Huang et al., 2017), InceptionV3 (Szegedy et al., 
2016), InceptionResNetV2 (Szegedy et al., 2017), 
Xception (Chollet, 2016) and MobileNetV2 (Sandler 
et al., 2018)) for COVID-19 classification based on 
accuracy, sensitivity, specificity, precision, F1-score, 
and area under the curve (AUC) over two datasets: 
COVID-19 Radiography Database (COVID-19 
Radiography Database | Kaggle, n.d.) and COVID-
CT (Yang et al., 2020). Moreover, we use the Scott-
Knott Effect Size Difference (SK ESD) 
(Tantithamthavorn et al., 2019) statistical test to find 
the best statistically different groups of DL 
techniques with non-negligible differences. While we 
use the Borda Count voting method  (Emerson, 2013) 
to rank the best techniques selected by the SK ESD 
test (Elmidaoui et al., 2020). The study explores four 
research questions: 

(RQ1): What is the overall performance of DL models 
using mono-modality in COVID-19 
classification? Is there any mono-modality DL 
architecture that outperforms the others? 

(RQ2): How does a modality impact the diagnostic 
performance of a DL architecture? 

(RQ3): What is the overall performance of DL models 
using joint fusion strategy in COVID-19 
classification? 

(RQ4): How do joint fusion DL architectures perform 
in comparison with mono-modality DL 
models? 

The rest of the paper is structured as follows. 
Section II the data preparation process followed. 
Section III describes the experimental process. 
Section IV presents and discusses the results. Finally, 
Section V highlights the conclusion and future 
direction of this study. 

2 DATA PREPARATION 

We used two datasets to train our models: COVID-19 
Radiography Database and COVID-CT. In the 
following we provide description of these datasets 
and some of the preprocessing performed to prepare 
the data for training. 

COVID-19 Radiography Database (COVID-19 
Radiography Database | Kaggle, n.d.): or COVID19 
CXR is a database released by researchers from Qatar 
and Dhaka Universities along with their collaborators 
from Pakistan and Malaysia. We took 349 CXR 
COVID-19 from the 3616 positive cases provided 
along with 397 from the 10192 normal ones (i.e. no 
chest disease reported) to balance with the COVID-
CT (Yang et al., 2020) dataset available cases. 

COVID-CT (Yang et al., 2020): Or COVID19 
CT, a dataset containing 349 CT images of COVID-
19 cases and 397 normal cases collected from 216 
patients from COVID-19 related papers. 

Note that we refer to the COVID19 CT and CXR 
datasets as a whole as COVID19 when joining the CT 
and CXR modalities. As for preprocessing, the 
images of the CT, CXR modalities were resized to 
224x224 pixels and preprocessed using the 
preprocess input function from the TensorFlow 2.0 
library depending on each model. Furthermore, we 
applied data augmentation to these modalities during 
training but only for the single-modality DL models 
and not for the joint fusion DL models. It consisted 
of: an horizontal flip, height and width shift of value 
0.1, 20° rotation, then shear and zoom of value 0.1.  
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3 EXPERIMENTAL SETUP 

This section presents the experimental setup of 
followed in this study. First, we go over the 
evaluation metrics used to evaluate the DL models. 
Second, we define the statistical test Scott Knott ESD 
and voting method Borda Count used to cluster the 
DL techniques according to their accuracy and to rank 
the best SK ESD techniques according to precision, 
AUC, sensitivity, specificity and F1-score. Third, we 
detail the training and testing process followed to 
train single and joint fusion DL models. Fourth, we 
explain the experimental process carried out to 
generate all of the empirical evaluations. Finally, we 
go over the acronyms that were chosen to shorten the 
names of the DL methods. 

3.1 Evaluation Metrics 

In this study, we trained and evaluated the DL 
techniques using 5-fold cross validation (CV) and 
reported the average of the performance metrics 
during the five iterations of each DL technique. 
Moreover, we used six metrics to evaluate the 
performance of the trained DL models: accuracy, 
AUC score, sensitivity, specificity, precision and F1 
score. These six metrics are defined by means of 
Eqs.1–5 respectively: 

Accuracy (A) = 
ାାାା (1)

Sensitivity = Recall (S)= 
ା (2)

Specificity (Sp) = 
	ା	 (3)

Precision (P) = 
ା (4)

F1 = 2  
ୖୣୡୟ୪୪ ×	୰ୣୡ୧ୱ୧୭୬ୖୣୡୟ୪୪ ା	୰ୣୡ୧ୱ୧୭୬ (5)

where: TP: diseased case is identified as diseased. 
FP: diseased case identified as normal. TN: normal 
case identified as normal, and FN: normal identified 
as diseased. 

3.2 SK ESD Statistical Test and Borda 
Count Method 

Scott Knott ESD (Elmidaoui et al., 2020): A variant 
of the Scott-Knott test, is a multiple comparison 

method that uses hierarchical clustering to divide a set 
of treatment averages (e.g., means) into statistically 
distinct groups with non-negligible differences. 

Borda Count (Emerson, 2013): A voting method 
used to determine the winner among several 
candidates by distributing points to a set of candidates 
based on their ranking: 1 point for last choice, 2 points 
for the second-to-last choice, and so on until the top 
is reached. These point values are totalled, and the 
winner is the candidate with the largest total point. 
We use this method to figure out the best DL models 
based on the five performance metrics, considered as 
voters, (i.e. precision, AUC, sensitivity, specificity, 
F1-score) with equal weights. 

3.3 Training and Testing Processes 

We train seven ImageNet pretrained DL models on 
the three datasets using both single-modality and joint 
fusion approach. The seven models are: VGG19, 
Dense-Net121, InceptionV3, InceptionResNetV2, 
Xception, ResNet50V2, MobileNetV2. All of these 
seven models are CNN based they differ in the 
number of layers and are an improvement to their 
predecessors. VGG19 (Simonyan & Zisserman, 
2014) has 19 hidden layers with 16 convolutional 
layers and three fully connected layers. ResNet50V2 
(He et al., 2016) a residual network model with 50 
layers and a lightweight version of ResNet. 
DenseNet121 (G. Huang et al., 2017) is similar to 
ResNet but uses dense blocks instead of the residuals 
and has 121 layers. InceptionV3 (Szegedy et al., 
2016) and InceptionResNetV2 (Szegedy et al., 2017) 
both are part of the Inception family with 42 layers 
and 164 layers respectively. Xception (Chollet, 2016) 
a 71 layers CNN model that replaces the Inception 
modules with depth wise separable convolutions. 
Finally MobileNetV2  (Sandler et al., 2018), is a 53 
layers CNN designed for mobile devices and based 
on inverted residual structure. We first train single 
modality models and then we leverage the saved 
weights from these models and train the joint fusion 
DL models. During training within the 5-fold CV we 
split the datasets into 60% for training, 20% 
validation and 20% for testing. Additionally, we use 
early stopping and reduce learning rate on plateau to 
avoid overfitting with a batch size of 32. For the loss 
we use binary cross entropy along with binary 
accuracy. All of the models are trained using 
Colaboratory GPU from Google. The models 
implementation comes from the TensorFlow 2.0. 
Meanwhile, the performance metrics 
implementations are taken from the scikit-learn 1.0 
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library. Further details about mono-modality and joint 
fusion DL models training are provided below. 

3.3.1 Mono-modality 

We load each model with the ImageNet weights. We 
fine-tune VGG-19 as it is the least complex model by 
freezing the first 18 layers and unfreezing the 19th 
layer for further training. Then we add the 
classification network consisting of: Flatten layer, 
Dropout (with probability = 0.5), two Dense layers 
with 1024 and 256 nodes respectively and ReLU as 
activation function and the final output layer with 
sigmoid as activation function. For the optimizer we 
use Adam with a learning rate of 1e-6. For all of the 
models the epoch is set to 100. For the DenseNet121, 
InceptionV3, InceptionResNetV2, Xception, 
ResNet50V2 and MobileNetV2 no fine-tuning is 
performed we simply add the following classification 
network: Global average pooling 2D, Dropout (with 
probability = 0.5), Dense layer of 1024 nodes and 
ReLU as activation function and the final output layer 
with sigmoid as activation function. As for the 
optimiser we use RMSprop with default parameters. 

3.3.2 Joint Fusion 

We first load the saved weights from the trained 
mono-modality models. Then using the last 
convolutional layer from the DL model we extract the 
features from each modality (CT and CXR 
respectively). Second, we concatenate the resulting 
features from each modality into one feature matrix. 
After that, we feed the concatenated features into a 
simple CNN model containing: Conv 2D layer with 
16 filters, kernel size of 2 and ReLU as activation 
function. Followed by a Max Pooling 2D layer (pool 
size = 2), Flatten layer, Dense layer (16 nodes and 
ReLU as activation function) and output layer with 
sigmoid as activation function. The optimizer used is 
Adam with 1e-3 as the learning rate. The models are 
set to train for 10 epochs. This process applies to all 
of the seven DL models we trained in mono-modality. 

3.4 Empirical Process 

Following the methodology of Elmidaoui et al. 
(Elmidaoui et al., 2020) we: 

1. Assessed the performances of the mono-
modality and joint fusion deep learning models 
in terms of accuracy, AUC, precision, 
sensitivity, specificity and F1-score using a 5-
fold CV. 

2. Clustered the mono-modality and joint fusion 
DL techniques using Scott-Knott ESD based on 
accuracy to select the best SK ESD cluster. 

3. Ranked the mono-modality and joint fusion DL 
techniques of the best SK ESD cluster using the 
Borda Count method based on the five 
performance measures (AUC, precision, 
sensitivity, specificity, F1-score) and picked the 
top deep learning model(s). 

3.4 Abbreviations 

The following naming guidelines are intended to 
assist the reader and shorten the names of the deep 
learning techniques used. For each mono-modality 
trained model, we shorten the name of each DL 
approach as follows: VGG19 to VG19, DenseNet121 
to DN121, InceptionV3 to Iv3, InceptionResNetV2 to 
IRv2, Xception to Xcep, Res-Net50V2 to R50v2, 
MobileNetV2. When comparing mono-modality DL 
models with joint fusion DL models, we add the 
acronym "JF" to the models' abbreviations. 

4 RESULTS AND DISCUSSION 

This section presents and discusses the results of the 
empirical evaluations of the seven DL architectures: 
VGG19, DenseNet121, InceptionV3, 
InceptionResNetV2, Xception, ResNet50V2, 
MobileNetV2 with mono-modality and joint fusion 
multimodality approaches trained on two datasets: 
COVID19 CT and COVID19 CXR. It is structured in 
order to address RQ1, RQ2, RQ3 and RQ4 as stated 
in the following: 

• (RQ1): Six measures were used to assess the 
DL models' performance: accuracy, AUC, 
sensitivity, specificity, precision, and F1-
score. We use the SK ESD statistical test to 
cluster the DL models trained per modality for 
each dataset for the mono-modality models. 
Then, for each dataset, we choose the best 
cluster per modality. In addition, the Borda 
Count ranks of the DL models belonging to the 
best SK ESD cluster are computed. We 
calculate the sum of each DL technique's 
derived SK ESD ranks to analyze its 
performance across the accessible modalities 
(SR). We calculate the sum of the differences 
of the rankings (SDR) of each DL approach 
across modalities to examine its sensitivity 
across the available modalities. This allows 
for the greatest and least accurate/sensitive DL 
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approaches to be highlighted based on existing 
modalities. 

• (RQ2): The impact of each modality on the 
diagnosis performance of a DL technique is 
evaluated and discussed. To do this, we 
clustered all of the modalities and DL 
approaches for each dataset using the SK ESD 
statistical test based on accuracy values. 
Following that, Borda Count was used to rank 
the best cluster's modality-technique 
combinations. 

• (RQ3): As for the joint fusion DL models, we 
used the same process as of the mono-
modality models (RQ1) to evaluate and 
compare them. 

• (RQ4): We perform a comparison between 
mono-modality and joint fusion DL models 
using SK ESD test and Borda Count based on 
the six performance criteria to figure out what 
models are best to diagnose COVID-19.  

4.1 Evaluating and Comparing  
Mono-modality Techniques (RQ1) 

Table 1 reports the mean values of the 5-fold CV six 
metrics (sensitivity, specificity, precision, F1-score, 
AUC and accuracy) of the seven DL techniques using 
each modality of the two datasets COVID19 CT and 
COVID19 CXR. Figure 1 and 2 show the SK ESD 
results based on accuracy for COVID19 CT and 
COVID19 CXR datasets respectively. Table 2 shows 
the Borda Count ranks based on sensitivity, 
specificity, precision, F1-score, and AUC of the DL 
techniques belonging to the SK ESD best cluster of 
the two datasets. Finally, Tables 3 present the ranks 
of each DL technique according to each modality and 
the values of SR and SDR of COVID19 modalities. 
Hereafter, our observations. 

Figure 1 and 2 show that: (1) for the CT modality 
we obtained six clusters and for the CXR modality we 
have only three clusters. (2) The best cluster of the CT 
modality contains two models: MobileNetV2 
(accuracy = 78%) and ResNet50V2 (accuracy = 
77%). (3) The best cluster of the CXR modality has 
three models: Xception (accuracy = 92%), 
DenseNet121 and MobileNetV2 both with an 
accuracy of 92% as shown in Table 1. Meanwhile the 
worst model found in the last cluster for both CT and 
CXR is VGG19. As for the best ranking models using 
the Borda Count method as found in Table 2 are for 
CT, ResNet50V2 and for CXR the DenseNet121 and 
Xception. To compare the seven DL models 
considering the two modalities, Table 3 presents: (1) 
the sum of the SK ESD ranks (SR) of each DL model  
 

 

Figure 1: SK ESD results of mono-modality DL techniques 
over the COVID19 CT dataset. 

 

Figure 2: SK ESD results of mono-modality DL techniques 
over the COVID19 CXR dataset. 

Table 1: Mean metrics results on the test set of the 5-fold 
CV for each model on the CT and CXR modalities. 

Model/ 
Modality 

S 
(%) 

Sp
(%) 

P  
(%) 

F1  
(%) 

AUC 
(%) 

A 
(%) 

VG19/ 
CT

84 39 62 71 62 64 

R50V2/ 
CT

81 76 80 80 78 77 

IRv2/ 
CT

77 64 74 75 71 71 

Iv3/CT 82 64 73 77 73 73 
DN121/CT 88 65 74 81 76 77 
Xcep/CT 78 73 77 78 76 76 

MNv2/CT 86 69 77 81 77 78 
VG19/CXR 93 78 84 88 85 85 

R50V2/ 
CXR

96 86 89 92 91 91 

IRv2/CXR 95 87 89 92 91 91 

Iv3/CXR 95 86 89 92 90 91 

DN121/ 
CXR

97 87 90 93 92 92 

Xcep/CXR 96 88 90 93 92 92 
MNv2/ CXR 99 85 88 93 92 92  

across the two modalities: for each DL technique and 
each modality, a technique has a score equal to its SK 
ESD rank. Thereafter, the total score SR of each 
technique across the two modalities is the sum of its 
individual scores that determines its performance 
across modalities (i.e. the lower the total score the 
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higher is the performance). (2) The sum of the 
differences of the ranks (SDR) of each DL technique 
across modalities in order to evaluate its sensitivity to 
modalities (i.e. the lower the differences of ranks the 
lower is its sensitivity). From Table 3, we notice that 
MobileNetV2 has the lowest score of SR (SR = 2) and 
VGG19 has the highest one (SR = 9). For the total 
score SDR, MobileNetV2 has the lowest one (SDR = 
0) and was ranked first across both of the two 
modalities. Additionally, in second rank we find 
DenseNet121 and ResNet50V2 (SR = 3 and SDR = 
1). Therefore, we conclude that MobileNetV2 is the 
best DL technique in terms of performance and 
sensitivity. 

Table 2: Borda Count ranking of the mono-modality models 
in the best SK ESD cluster for each dataset. 

Model/Modality Borda Count rank 

R50v2/CT 1 
MNv2/CT 2 

DN1211/CXR 1 
Xcep/CXR 1 

MNv2/CXR 2 

Table 3: Statistics on SK ESD ranks for the COVID19 
modalities. 

Model 

Scott-Knott 
ESD rank Sum of SK 

ESD ranks 
(SR) 

Sum of SK 
ESD ranks 
differences 

(SDR) 
COVID19 
CT CXR 

Xcep 3 1 4 2 
MNv2 1 1 2 0 
DN121 2 1 3 1 
R50v2 1 2 3 1 

Iv3 4 2 6 2 
IRv2 5 2 7 3 
VG19 6 3 9 3 

4.2 Impact of Modalities on the 
Performances of DL Techniques 
(RQ2) 

In this section we evaluate and discuss the impact of 
each modality on the diagnosis performance of a DL 
technique. To this aim, we use SK ESD statistical test 
based on accuracy values to cluster all the 
combinations of modalities and DL techniques for 
each dataset. Figure 3 shows the SK ESD results 
based on accuracy for COVID19. We can see that the 
CXR modality was the best to positively impact the 
performance of the DL techniques for COVID-19 
diagnosis as most of the reported techniques in the 
best cluster are using the CXR modality. The models 
are Xception, DenseNet121 and MobileNetV2. As 

reported in Table 2 and previously the best ranked 
model is MobileNetV2. From this, we can conclude 
that the diagnostic modality impacting the most 
favourably the performance of the DL models for 
COVID-19 diagnosis is CXR. 

 

Figure 3: SK ESD results of mono-modality DL techniques 
over the COVID19 dataset. 

4.3 Evaluation of Joint Fusion DL 
Models Performance (RQ3) 

This section reports the overall performance of joint 
fusion DL techniques in COVID-19 classification. 
Table 4 presents the mean values of the 5-fold cross 
validation six metrics (sensitivity, specificity, 
precision, F1-score, AUC and accuracy) of the seven 
joint fusion DL techniques for the COVID19 dataset.  
Figure 4 demonstrates the SK ESD results based on 
accuracy. Moreover, Table 5 shows the Borda Count 
ranks based on sensitivity, specificity, precision, F1-
score, and AUC of the joint fusion DL techniques 
belonging to the SK ESD best cluster. 

Figure 4 shows that the SK ESD test generated 
four clusters and the best one has four joint fusion DL 
models: ResNet50V2, MobileNetV2, and 
InceptionResNetV2 with an accuracy of 99% and 
VGG19 with an accuracy of 99%. As shown in Table 
5, apart from VGG19 all of the three joint fusion DL 
models (ResNet50V2, MobileNetV2 and 
InceptionResNetV2) are ranked as first. Meanwhile, 
the model reported in the last cluster is DenseNet121. 

To conclude, for COVID-19 diagnosis, the best 
joint fusion DL models are MobileNetV2, 
ResNet50V2 and InceptionResNetV2 seconded by 
VGG19. Furthermore, the worst joint fusion DL 
model is DenseNet121.  

 

Figure 4: SK ESD results of joint fusion over the COVID19 
dataset. 
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Table 4: Mean metrics results on the test set of the 5-fold 
CV for each joint fusion DL model on the COVID19 
dataset. 

Model 
S 

(%) 
Sp  
(%) 

P 
(%) 

F1  
(%) 

AUC 
(%) 

A 
(%) 

VG19 99 99 99 99 99 99 
R50V2 99 99 99 99 99 99 
IRv2 99 99 99 99 99 99 
Iv3 98 98 98 98 98 98 

DN121 92 95 96 94 93 93 
Xcep 97 100 100 98 98 98 

MNv2 98 100 100 99 99 99 

Table 5: Borda Count ranking of the joint fusion DL models 
belonging to the best clusters of the COVID19 dataset. 

Model Borda Count Rank 
MobileNetV2 1 
ResNet50V2 1 

InceptionResNetV2 1 
VGG19 2 

4.4 Comparison of Mono-modality DL 
Techniques and Joint Fusion DL 
Techniques (RQ4) 

This section compare the performances of mono-
modality DL techniques and joint fusion DL 
techniques. To this aim, for each dataset and each 
modality, we cluster the best mono-modality DL 
techniques (RQ1) and the best joint fusion DL 
techniques (RQ3) using the SK ESD test based on 
accuracy. Figure 5 (a-b) shows the SK ESD results 
for the COVID19 and APTOS19 datasets 
respectively. Hereafter, our observations. 

The SK ESD test provides two clusters (see Figure 
5 (a-b)) for the CT and CXR modalities with four best 
joint fusion DL models: ResNet50V2 (accuracy = 
96%), MobileNetV2 (accuracy = 96%), 
InceptionResNetV2 (accuracy = 96%) and VGG19 
(accuracy = 97%). As previously mentioned 
ResNet50V2, MobileNetV2, InceptionResNetV2 are 
ranked first by the Borda Count method (see Table 5). 

 

Figure 5: Comparison of best joint fusion with best mono-
modality DL techniques on the COVID19 dataset with (a) 
the CT and (b) CXR modalities. 

5 CONCLUSIONS AND FUTURE 
WORK 

In this paper, we presented and discussed the results 
of an empirical study of seven DL models (VGG19, 
DenseNet121, InceptionV3, InceptionResNetV2, 
Xception, ResNet50V2, MobileNetV2) trained using 
both single and multimodality images using the joint 
fusion strategy from three publicly available datasets 
(COVID19 CT and COVID19 CXR) for COVID-19 
(COVID-19, non-COVID-19) binary classification. 
The empirical evaluations were conducted using six 
performance metrics, along with SK ESD statistical 
test and the Borda Count voting method to asses and 
rank the seven single-modality and joint fusion DL 
models. The findings of this study in respect to the 
research questions were the following:  

(RQ1): The best DL model for COVID-19 diagnosis 
using the CT and CXR modalities 
respectively is the MobileNetV2 model with 
an accuracy of 78% for CT and 92% for 
CXR as it resulted in optimum scores at the 
level of performance and sensitivity.  

(RQ2): In all of the reported results, the CXR 
modality was found to be the most 
favourably impacting on the DL techniques 
performance. 

(RQ3): The best joint fusion DL models were 
MobileNetV2, ResNet50V2 and 
InceptionResNetV2 with an accuracy of 
99% seconded by VGG19 with an accuracy 
of 99%. Additionally, the worst joint fusion 
DL model was DenseNet121 (accuracy = 
93%) for COVID-19 diagnosis.  

(RQ4): Joint fusion DL models outperformed mono-
modality DL models for COVID-19 
diagnosis with an accuracy of 99% 
(MobileNetV2, ResNet50V2 and 
InceptionResNetV2) for joint fusion DL 
models; and an accuracy of 77% for CT 
(ResNet50V2), 92% (DenseNet121) and 
92% (Xception) for CXR. 

Future works aim to study the interpretability of 
these seven DL models for mono-modality and joint 
fusion strategy. 
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