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Abstract: Recent advances in 3D human shape reconstruction from single images have shown impressive results, lever-
aging on deep networks that model the so-called implicit function to learn the occupancy status of arbitrarily
dense 3D points in space. However, while current algorithms based on this paradigm, like PiFuHD (Saito et al.,
2020), are able to estimate accurate geometry of the human shape and clothes, they require high-resolution
input images and are not able to capture complex body poses. Most training and evaluation is performed
on 1k-resolution images of humans standing in front of the camera under neutral body poses. In this paper,
we leverage publicly available data to extend existing implicit function-based models to deal with images of
humans that can have arbitrary poses and self-occluded limbs. We argue that the representation power of the
implicit function is not sufficient to simultaneously model details of the geometry and of the body pose. We,
therefore, propose a coarse-to-fine approach in which we first learn an implicit function that maps the input
image to a 3D body shape with a low level of detail, but which correctly fits the underlying human pose,
despite its complexity. We then learn a displacement map, conditioned on the smoothed surface and on the
input image, which encodes the high-frequency details of the clothes and body. In the experimental section,
we show that this coarse-to-fine strategy represents a very good trade-off between shape detail and pose cor-
rectness, comparing favorably to the most recent state-of-the-art approaches. Our code will be made publicly
available.

1 INTRODUCTION

While the 3D reconstruction of the human pose (Mar-
tinez et al., 2017; Moreno-Noguer, 2017; Pavlakos
et al., 2017; Rogez et al., 2019; Mehta et al.,
2018; Kinauer et al., 2018) and shape of the naked
body (Kanazawa et al., 2017; Pavlakos et al., 2018;
Varol et al., 2018; Varol et al., 2017) from single im-
ages has been extensively studied over the past few
years and led to very accurate results, doing this with
clothed humans remains a difficult challenge. There
exist recent works that provide very good body and
cloth reconstructions, but are methods limited to mild
human poses, typically standing up in front of the
camera (Saito et al., 2020; Saito et al., 2019; Nat-
sume et al., 2019; Alldieck et al., 2019b; Jackson
et al., 2018). A challenge that still remains open is
thus to capture diverse poses while maintaining a de-
tailed geometry of clothes and body.
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PiFu (Saito et al., 2019) and very recently (Saito
et al., 2020) are the most relevant works on clothed
human reconstruction, and builds upon the represen-
tation capacity of implicit functions, shown to be very
effective for estimating the geometry of rigid 3D ob-
jects (Mescheder et al., 2019; Chen and Zhang, 2019;
Xu et al., 2019). PiFu learns a per-pixel feature vector
aligned with the 3D surface to get an implicit func-
tion based on local information. However, while this
strategy provides a lot of detail, it cannot generalize
to arbitrary human poses.

Other works are able to capture diverse poses but
lack details of human clothing (Genova et al., 2020).
There exist methods that do not use implicit functions,
but introduce an additional step to the estimation of a
parametric naked body model. For instance, (Alldieck
et al., 2019b) learns a displacement map over the
SMPL model (Loper et al., 2015), although, this ap-
proach is also limited to a small range of body poses
and it needs high-quality 1024×1024 input images.

In this paper, we use implicit functions and pro-
pose an approach that, given a single image, is able
to predict detailed meshes of clothed 3D humans for
a wide range of poses and can work with but it is not
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limited to 224×224 input images.
We argue that one of the reasons why (Saito et al.,

2019; Saito et al., 2020) does not generalize well to
difficult poses is that it strongly relies on local pixel
features to guide the reconstruction and, thus, has no
awareness of the overall topology of the mesh and
therefore struggle to model unseen parts of the body.

To address this, we exploit global image features
and alleviate their inherent lack in details using two
strategies: First, we introduce a coarse-to-fine archi-
tecture with two modules, one building on an implicit
function and global features that learns a coarse 3D
shape, but with a correct body pose; and another net-
work that learns a displacement map to add extra de-
tail (see Fig. 1). Second, we take into account the
structure of the human body by including 2D joints
as inputs of our system. This enables to have overall
mesh consistency and retain the details of body and
clothing in complex poses.

We quantitatively evaluate our method on syn-
thetic data and qualitatively on real and synthetic im-
ages and demonstrate that our approach can capture
a wide range of poses better than previous state-of-
the-art methods based on implicit functions. Thus,
we claim that global reasoning combined with a re-
finement step leads to coherent human meshes with
no disconnected body parts, even in difficult poses,
while maintaining a good level of detail.

2 RELATED WORK

Single-view 3D Reconstruction of Rigid Objects. is
a well studied topic in computer vision and computer
graphics. The works in this realm can be mainly cate-
gorized by the representation they use, whether it is a
voxel grid (Choy et al., 2016; Tulsiani et al., 2017; Wu
et al., 2017), pointcloud (Pumarola et al., 2020; Fan
et al., 2016), mesh (Wang et al., 2018; Gkioxari et al.,
2019) or implicit function (Mescheder et al., 2019).
Voxels usually require extensive memory and are time
consuming to train while usually leading to recon-
structions with very restricted resolution. Pointclouds
require additional non-trivial post processing steps to
generate the final mesh. (Wang et al., 2018; Gkioxari
et al., 2019) directly work on the mesh using a graph
based CNN (Scarselli et al., 2008), although they are
only able to generate overly smoothed meshes with
simple topology which can be genus-0 only. In con-
trast, we choose to work with implicit function repre-
sentation due to the well known fact that they require
relatively simple architectures and have the ability to
obtain a greater level of detail without requiring vast
amounts of memory.

Several works (Mescheder et al., 2019; Park et al.,
2019; Xu et al., 2019; Chen and Zhang, 2019) have
shown that implicit functions can be learned by means
of deep neural networks, and it is possible to get
high resolution reconstruction by applying the march-
ing cubes (MC) algorithm. Most recent approaches
for image 3D reconstruction use implicit functions.
For example, (Mescheder et al., 2019) conditions the
learning of occupancy probabilities to an input im-
age, being able to reconstruct a high resolution mesh.
However, they rely solely on global image features
which hinders the model to learn high frequency de-
tails. We, instead, use local information about the
joints and learn a displacement map to improve the
reconstruction details as a result of the MC algo-
rithm. (Chen and Zhang, 2019) also uses global fea-
tures suffering from the same lack of detail needed to
capture clothed humans.
Single-View 3D Human Reconstruction. While
the problem of localizing the 3D position of the
joints from a single image has been extensively stud-
ied (Martinez et al., 2017; Moreno-Noguer, 2017; Ro-
gez et al., 2019; Moon et al., 2019; Mehta et al.,
2018) 3D human body shape reconstruction still re-
mains an open problem. Single-view human recon-
struction requires strong priors due to the inherent
ambiguity of the problem. This has been addressed
by using parametric models learned from body scan
repositories such as SCAPE (Anguelov et al., 2005)
and SMPL (Loper et al., 2015) to represent the human
body geometry by a reduced number of parameters.
These parameters are then optimized to match image
characteristics. For example, methods that use deep
neural networks input additional information such as
silhouettes (Dibra et al., 2017; Pavlakos et al., 2018)
and other types of manual annotations (Lassner et al.,
2017; Omran et al., 2018). Furthermore, (Vince Tan
and Cipolla, 2017) uses a differential renderer along
with a deep neural network to predict SMPL body pa-
rameters by directly estimating and minimizing the
error of image features. Despite the usefulness of
parametric models, they can only reproduce the ge-
ometry of the naked human body.

Monocular reconstruction of cloth geometry has
been traditionally addressed under the Shape-from-
Template (SfT) paradigm (Moreno-Noguer and Fua,
2013; Sanchez et al., 2010; Moreno-Noguer and
Porta, 2011; Agudo et al., 2016), requiring 3D-to-2D
point correspondences between a template mesh and
the input. More recently (Pumarola et al., 2018) in-
troduced a deep network which alleviated the need for
estimating correspondences. In any event, the clothes
reconstructed by these approaches, were focused to
simple rectangular-like shapes, and were not applica-
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Figure 1: Overview of our pipeline to reconstruct clothed people under complex poses. Given an input RGB image, an implicit
function-based network initially predicts a smoothed version of the geometry, but with an accurate body pose. The fine details
of the mesh are recovered by a second network that computes a displacement field over the smooth mesh.

ble to reconstruct the shape of the garments worn by
humans.

To overcome this limitation, (Alldieck et al.,
2019b) proposes to learn a displacement map on top
of the SMPL body model and is able to represent
certain type of clothing, short hair details and hands
details. However, it fails for more complex topolo-
gies such as dresses and skirts and it is limited to
mild human body poses (people standing in front of
the camera and looking at it). Also others use dis-
placement maps for this purpose (Zhu et al., 2019;
Onizuka et al., 2020), although mostly from videos
or few image frames (Alldieck et al., 2018; Alldieck
et al., 2019a). In this paper, while we also learn a dis-
placement map, we are capable of capturing dresses
and skirts while including a large diversity of body
pose.

To address the limitations of parametric models,
template-free methods have been used, some based on
voxel representations (Varol et al., 2018; Zheng et al.,
2019; Jackson et al., 2018), others based on different
representations (Pumarola et al., 2019; Saito et al.,
2019). BodyNet (Varol et al., 2018) infers the vol-
umetric body shape, although, due to resolution con-
strains and the use of SMPL as a final fitting, it cannot
recover clothing geometry. DeepHuman (Zheng et al.,
2019) uses a volume-to-volume translation approach
showing impressive results to capture pose and cer-
tain type of clothing, but it fails to correctly capture
complex cloth geometry such as skirts and also suffers
from high memory requirements of voxel representa-
tion, limiting its resolution and requiring and initial
estimation of template-based model SMPL. To tackle
the resolution limitation of voxels, GimNet (Pumarola
et al., 2019) uses geometry images to represent the

body shape and is able to capture complex poses and
geometries such as dresses, although with a lack of
details. Finally, PIFu (Saito et al., 2019) and PI-
FuHD (Saito et al., 2020) use implicit function rep-
resentation which is memory efficient and results in
impressive level of details even for complex cloth ge-
ometries and accessories. However, this approach can
not generalize to arbitrary human poses. We also
use an implicit function representation, but in con-
trast to previous approaches we are able to capture
a large range of arbitrary poses. This is made possi-
ble thanks to a first module of our model, which is
general enough and reasons in a global manner gen-
erating realistic human meshes.

Finally, most similar in concept but very differ-
ent implementation from our work, (He et al., 2020)
demonstrate that in order to have a better detailed re-
construction, it is first necessary to have a solid geo-
metric prior which can be learned from a coarse voxel
representation of the human body.
3D Datasets. Even though 3D reconstruction has be-
come a popular topic in the field, there are very few
publicly available datasets that contain 3D informa-
tion of human body. Obtaining the 3D body shape
is a complex task that requires vast amounts of ef-
fort. BUFF dataset (Zhang et al., 2017) is one of the
few that contains high-quality 3D scans, nevertheless,
it only includes 6 different subjects and although it
has a good human body pose variation, only captures
restricted actions. As an alternative, datasets with
synthetically photo-realistic images have appeared in
the scene (Varol et al., 2017; Pumarola et al., 2019).
SURREAL (Varol et al., 2017) is the largest dataset,
containing 6 million frames generated by projecting
synthetic textures of clothes onto random SMPL body

VISAPP 2022 - 17th International Conference on Computer Vision Theory and Applications

194



shapes. However, given that clothes are projected
onto a naked body model, they are only textures and
have no shape of their own, making it impossible
to learn clothing details from this dataset. On the
contrary, 3DPeople (Pumarola et al., 2019) contains
models of 80 different 3D dressed subjects that per-
form 70 actions and 2.5 million photorealistic ren-
dered images in which every action sequence is cap-
tured by from 4 camera views. For this work we use
3DPeople dataset. Most recently (Caliskan et al.,
2020) announced a similar dataset containing images
of synthetic humans and their corresponding 3D hu-
man mesh annotations. We don’t use this dataset,
however, because it has not yet been made public.

3 METHOD

3.1 Problem Formulation

We aim to solve the problem of single image 3D re-
construction applied to human bodies with clothing.
Our goal is to make sure that not only the inferred
pose of the mesh representing the person is correct but
also that we recover geometry details of the clothing.

Let I ∈ RH×W×3 be an input RGB image of a sin-
gle clothed person at an arbitrary pose. Our aim is to
learn a mapping M to reconstruct the mesh M which
is a detailed 3D representation of the clothed body
of the person. We represent M as a mesh with N ver-
tices vi, where vi =(xi,yi,zi) are the 3D coordinates of
each vertex that explains the body of the person in the
image, taking into account the body shape, pose and
clothing details. We train M in a supervised manner.

3.2 Network Architecture

We next describe our network to generate detailed
meshes under complex poses from a single image.
Given the high complexity of the task, we use a
coarse-to-fine approach and divide our method into
two main modules, as shown in Fig. 1.

The first module, denoted coarse network, outputs
a smoothed mesh Msmooth provided an input set of
query points p and an observation of the 3D object,
the image I. This mesh intentionally lacks the level
of detail we are looking for but it is enforced to accu-
rately fit the body pose.

The second module, which we call displacement
network, adds details to the mesh by estimating ver-
tex displacement ~di over the direction of the normal
vector ~ni for each vertex vi of Msmooth, yielding to
Mdet . For this, we learn a network that takes as in-

puts I and a set of vertices randomly sampled from
Msmooth, which we shall denote vsmooth.

It is worth noting that, as an additional input to
guide the learning of both networks, we use the 2D
joints of the person in I. Next, we explain both net-
works in detail.

3.2.1 Coarse Network

Given the input image I, we use J ground truth 2D
body joint locations and represent them as heatmaps
y ∈ RH×W×J . We use J = 17 body joints. This joint
representation is then concatenated with I and fed into
the network. Additionally, the network has as input
a set of query points in the 3D space pxyz = {pi}K

i=1.
Our goal is to learn the occupancy probability for each
pi given I and y. Formally, we seek to estimate the
mapping:

M : I⊕y, pi→ [0,1] (1)

This mapping takes the form of an implicit
function and can be learned by a neural network
fθs(pi,I,y). Estimating M to account for high fre-
quency details is, however, significantly challenging
for the network, and indeed we found out that train-
ing this network to learn details resulted in meshes
with incorrect body poses. For this reason, we force
it to learn a smoothed version of the occupancy field
of the ground truth mesh, hence its name coarse net-
work. To enforce this, instead of using the detailed
mesh as ground truth, we train this network with a
pseudo ground truth that results from applying Lapla-
cian smoothing (Sorkine et al., 2004).

Finally, at inference, to recover the mesh we first
evaluate fθs(p,I,y) for all p of a discretized volumet-
ric space. We then use an octree based algorithm
MISE (Mescheder et al., 2019) and mark each p as
occupied if fθs(p,I,y) is bigger or equal than some
threshold τ. After the evaluation is complete, we ap-
ply the MC algorithm (Lorensen and Cline, 1987) to
extract and approximate isosurface and estimate the
faces topology of Msmooth. Note that although we in-
tentionally train fθs to produce a smooth mesh, the
body pose is expected to be correct. Also note that
we build on (Mescheder et al., 2019) and, therefore,
follow their formulation, however, any other recon-
struction model could be used instead.

3.2.2 Displacement Network

This network has a similar architecture as the previous
one with two main differences: instead of estimating
occupancy probability, it regresses the magnitude for
displacements ~di and takes an additional conditioning
value that also serves as a query input, the vertices
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vsmooth. In the same fashion as before, we learn a new
encoding for the image and joints representation φI
but we use vsmooth to generate a point encoding φp
and concatenate this to φI . This way we are able to
condition the learning of the displacements on I, y
and Msmooth. This network, denoted hθd (p,I,y,v), re-
gresses the magnitude of the displacement ~di which
is then applied to vsmooth in the direction of the nor-
mals ~ni of Msmooth. This reduces the complexity of
the problem by forcing the regressor to learn only a
scalar value and not a 3-dimensional vector, helping
the network to learn the proper displacements.

The final result is obtained by adding the learned
displacements to the vertices estimated by the first
module:

vdet = vsmooth +~d , (2)

where vdet are the vertices that correspond to Mdet
and share the same faces as Msmooth and ~d is the es-
timated displacement over the direction of the normal
vector.

Finally, at inference, to obtain the detailed mesh
Mdet we first evaluate hθd (p,I,y,v), that in this case
are all vertices vsmooth. Then, using equation 2 we get
the detail vertices for Mdet .

3.3 Learning the Model

3.3.1 Smooth Reconstruction Loss

To learn the parameters θs of the neural network
fθs(p,I,y), we randomly sample points in the 3D
bounding volume of the mesh representing the per-
son. We sample these points in three ways: (a) uni-
formly over the bounding volume, (b) densely over
the face and hands, and (c) densely over the surface.
For b and c we sample several points (much more
than a) near the surface of the mesh, that is why we
say it is a dense sampling. To automatically obtain
sampling points for face and hands we only sample
points within a radius r of a sphere centered at the 3D
joints corresponding to hands and face. We found that
hands and face require higher level of detail to be bet-
ter reconstructed than feet, hence, we do not include
sampling specifically corresponding to feet. For each
sample image i in a training batch we sample K points
pi j ∈ R3, j = 1, ...,K. The minibatch loss LB is then
is evaluated at those locations:

LB(θs) =
1
B

|B|

∑
i=1

K

∑
j=1

L( fθs(pi j,I,y),oi j) , (3)

where oi j ≡ o(pi j) denotes the true occupancy at point
pi j, and |B| is the minibatch size. The loss L(·, ·),
different from (Mescheder et al., 2019), is a weighted

binary cross-entropy (wBCE) classification loss that
takes into account the unbalanced number of points
that lay inside the mesh in contrast to those that are
outside. This avoids losing important body parts, es-
pecially the limbs, when extracting the mesh.

In a similar fashion as in (Mescheder et al., 2019)
we also introduce a generative loss that helps us cap-
ture the rich distribution of complex clothing. We do
this by adding an encoder network gψ(·) that takes as
inputs the points and occupancies to predict the mean
uψ and standard deviation σψ of a Gaussian distribu-
tion qψ(z|(pi j,oi j) j=1:K) on a latent space z ∈ RL as
output and then optimizing the KL divergence. This
way, the new loss becomes:

LB(θ) =
1
B

|B|

∑
i=1

[
K

∑
i= j

L( fθs(pi j,I,y),oi j)+

KL(qψ(z|(pi j,oi j) j=1:K)||p0(z))]

(4)

where p0(z) is a prior distribution on the la-
tent variable zi and zi is sampled according to
qψ(z|(pi j,oi j) j=1:K). We train this as a conditional
variational autoencoder (Sohn et al., 2015).

To generate Msmooth we use a hierarchical iso-
surface extraction algorithm (Mescheder et al., 2019),
that incrementally builds an octree to efficiently ob-
tain a high resolution mesh, that is then forwarded to
the second stage of our method.

3.3.2 Displacement Loss

In order to learn the parameters θd of the neural net-
work hθd (p,I,y,v), in a similar manner as we did with
the coarse network, we randomly sample N points pi j
from vsmooth and evaluate the minibatch loss LB . Yet,
instead of using a wCBE loss, we use an L2 loss:

LD(θd) =
1
B

|B|

∑
i=1

N

∑
j=1
‖ fθd (pi j,I,y,vsmooth)−di j‖2

(5)

4 IMPLEMENTATION DETAILS

Our model builds upon the ONet network architec-
ture (Mescheder et al., 2019). For the coarse network
fθs(p,I,y) we use 5 ResNet blocks (He et al., 2016)
which are conditioned on the input using conditional
batch normalization (Ioffe and Szegedy, 2015). For
the image and joint encoding we use a ResNet18 ar-
chitecture.

For the displacement network we modify the ar-
chitecture by adding 5 ResNet blocks (yielding to
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Table 1: Quantitative evaluation on 3DPeople. Numerical
comparison of our approach with other methods that use
implicit functions retrained with the same data as ours. We
measure IoU, Chamfer distance, Normal Consistency and
Point to Surface (see main text) to validate the different
components of our model. ↑: higher the better. ↓: lower
the better.

Method IoU ↑ Chamfer ↓ Normal
Consistency↑ P2S ↓

ONet 0.516 0.280 0.793 18.135
PiFu 0.244 1.550 0.601 70.200
Ours 0.610 0.100 0.821 16.200

a total of 10 blocks) and changing the last layer to
regress the displacement value. We observed that for
less amount of layers, the network is not able to cap-
ture the complexities of clothes and other details. It is
important for the network to understand the 3D struc-
ture of the body in order to regress the desired dis-
placements, for this reason we also modify the condi-
tioning input of the architecture to be able to include
mesh vertices as a prior. For this we use a similar
encoder as in PointNet (Qi et al., 2016) and for the
network we use 10 ResNet blocks. We plan to release
our code.

The model is trained with 60,000 synthetic im-
ages of cropped clothed people resized to 224 x 224
pixels as needed by the image encoder, however,
this resolution could be easily changed. These im-
ages correspond to 15,000 different meshes of vary-
ing number of vertices taken from the 3DPeople
dataset (Pumarola et al., 2019) and projected to 4
camera views. We use 44 subjects out of 80 to reduce
training time.

In order to train fθs we generate occupancy an-
notations, i.e determine which points lie in the in-
terior of the mesh. This step requires a watertight
mesh. To do this we use code provided by (Mescheder
et al., 2019). We train the coarse network during 645
epochs, K=2048 and Adam (Kingma and Ba, 2014)
optimizer with initial learning rate of 1e− 4, beta1
0.9, beta2 0.999. For weighted-BCE we use a pos-
itive weight of 25. For reconstructing the mesh, we
use a threshold parameter τ=0.96 for all cases. For
this network to better capture complex poses, we first
normalize each mesh w.r.t. three points: hips, upper
left leg and upper right leg.

To train hθd (p,I,y,v) we generate ground truth
data using the results obtained from our coarse net-
work and compute the displacement over the normal
by first densely sampling the surface of the ground
truth mesh and then finding the distance over the
normal direction from a mesh vertex to the nearest
point in the ground truth mesh. We train during 1700
epochs with batch size 14, K=2,048 and N=10,000.

As for the optimizer we use Adam (Kingma and Ba,
2014) with initial learning rate of 1e−4, beta1 as 0.9,
beta2 as 0.999. At epoch 170 we change the learning
rate to 1e−5 and, again, at epoch 1,200 to 1e−6.

5 EXPERIMENTAL EVALUATION

This section provides an evaluation of our proposed
method. We present quantitative and qualitative re-
sults on synthetic images from 3DPeople (Pumarola
et al., 2019) and qualitative results on images in the
wild. We evaluate our approach on 3,200 images
randomly chosen for 5 subjects (2 female/ 3 male)
from (Pumarola et al., 2019).

We compare our approach quantitatively (see
Table 1) with other two prominent implicit func-
tion models for 3D reconstruction, namely, Occu-
pancyNets (ONets) (Mescheder et al., 2019) and
PiFu (Saito et al., 2019). Note that to ensure fair
comparison both a re-trained with the same training
data as our model and we test all models with the
same test set as ours. Although one could argue that
numerical comparison with SOTA should include PI-
FuHD (Saito et al., 2020), this was not possible as the
authors have not released the training code. However,
we believe that the methods in question are good rep-
resentatives of powerful implicit function models for
3D reconstruction. In this sense, being ONet a good
candidate for global consistency models and PIFu for
hi-detail local consistent models. Qualitative compar-
ison with both these methods on synthetic images can
be found in Fig. 4.

Additionally, in Table 2 we present a quantitative
ablation study to validate all the components propose
in this paper and used by our final method. The ta-
ble compares our method and several baselines built
upon the Occupancy Net (Mescheder et al., 2019) and
the losses we have defined in our system. Table 2 re-
ports the errors for all methods and shows that our
approach consistently improves all baselines. Also,
notice how the addition of the wBCE and KL losses
over the ONet baseline, gracefully reduce the errors.

As evaluation metrics we use volumetric IoU,
Chamfer distance (CD), normal consistency score and
point to surface score (P2S). Volumetric IoU is de-
fined as the quotient of the volume of the two meshes
union and the volume of their intersection. We use
the same procedure as in (Mescheder et al., 2019)
to obtain this value. We calculate the CD by ran-
domly sampling 100,000 points from both the wa-
tertight ground truth and the estimated meshes. We
define a normal consistency score as the mean abso-
lute dot product of the normals in one mesh and the
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Figure 2: Comparison between the baselines used on 3DPeople. Baseline is (Mescheder et al., 2019) retrained on 3DPeople
and subsequent columns are results of added components to that model validated in Table 2. The figure displays the recon-
structed meshes from the camera viewpoint. The color of the meshes encodes the normal directions of the surface. Note how
our approach captures the global consistency of the mesh, as the previous, and additionally presents certain clothing details.

Table 2: Quantitative ablation study on 3DPeople dataset. Note that dense sampling denotes sampling strongly in the surface
of the mesh (meaning several more points than in uniform sampling).

Components Metrics
Occupancy wBCE KL Joints Uniform Samp. Dense Samp. Displacement CD ↓ IoU↑ Normal Consistency↑ P2S↓

X X 2.752 0.516 0.793 18.135
X X X 1.689 0.576 0.808 18.698
X X X X 1.496 0.579 0.811 18.353
X X X X X 1.422 0.579 0.814 18.265
X X X X X X 1.051 0.612 0.829 16.397
X X X X X X X 1.082 0.606 0.821 16.200

normals at the corresponding nearest neighbors in the
other mesh. As in (Saito et al., 2019), we measure the
average point-to-surface Euclidean distance (P2S) in
cm from the vertices on the reconstructed surface to
the ground truth.

Fig. 2 shows three samples of the meshes re-
constructed with each of the baselines and our final
method. Regarding the three ONet baselines, note
how the introduction of the losses tend to produce bet-
ter reconstructions, although the sharper geometry de-
tails are more evident in our approach (Fig. 2(ours)),
which includes all previous losses plus the refinement
of the geometry estimated with the displacement net-
work. Also the effect of other components of our
model and the proposed training scheme if depicted
qualitatively in Fig. 3.

Qualitative comparison on synthetic and real im-
ages is also presented. Fig. 4 presents sample syn-

thetic images from our test set that none of the mod-
els have seen before. Here we present results of our
method along with ONet and PIFu, note that all are
re-trained with 3DPeople dataset. As shown in Fig. 4
one can note that PiFu if capable of reconstructing in
a very acceptable manner all the front-view parts of
the meshes, however, it fails to give a global consis-
tency to the mesh. This can be seen in the columns
depicting the side-view. We argue that this is due to
PIFu’s heavy reliance on local aligned features. Also
we argue that PIFu is penalized by the relatively low-
resolution of the input images, whereas our methods
in not that sensitive to low-resolution failures. Addi-
tionally, since the 2D joints are not exploited by PiFu,
the structure of the body it produces is not always
consistent. Qualitative comparison with other SOTA
methods on real images can be found in Fig. 5. Here
we compare our method with (Saito et al., 2019; Saito
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Figure 3: Visual ablation study. Note that these are outputs
of the coarse network so they lack finer details. (a) Dif-
ference in reconstructions when using 2D joints as inputs
vs. not using them. (b) Effect of enforcing smoothness.
Green meshes are ground truth, pink ones are reconstruc-
tions. Here we present reconstruction when the network
tries to learn the detailed ground truth mesh vs. reconstruc-
tion when forcing coarse network to learn a smooth version
of the ground truth. (c) Impact of using a generative loss and
”dense” sampling, meaning, sampling more heavily on the
surface of the mesh. Adding generative loss helps to capture
the richness of the 3D shape distribution. Here we can see
that by adding KL loss and then sampling near the surface,
especially around face and hands (dense), we obtain bet-
ter results both in hands, face and skirts.(+KL=wBCE+KL,
+Dense=wBCE+KL+Dense).

et al., 2020; He et al., 2020). Note that non of these
methods nor ours have been train with real images
and inference, in this case, is done with the trained
weights provided by the authors of each method. All
PIFu methods, except Geo-PIFu (to a lesser extent)
show the same problem addressed before: shockingly
good front views, however lacking global consistency
and human body coherence. Geo-PIFu works better in
these cases as this model specifically aims for global
coherence just as our method does.
Impact of using 2D Joints. We found out that using
2D joints as additional input to our model improves
the reconstruction quality. By adding joint informa-
tion we prevent the network from generating incom-
plete human bodies, especially in cases where the im-
age presents self-occlusions (see Fig. 3(a)).
Impact of Enforcing Smoothness. As stated before,
we enforce the coarse network to learn a smooth ver-
sion of the ground truth mesh. This reliefs the net-
work from learning a more complex mapping to ac-
count for high-level details which has an impact on
the correctness of the reconstructed human pose. As
shown in Fig. 3(b), one can clearly see that when we
do not enforce to learn a smooth version of the mesh,
the pose deviates considerably from the ground truth.
Impact of using a Generative Model. The use of
generative loss (equation 4) helps the model to better
capture the richness and variability of the distribution

of human clothing and body details such as hands and
face. As it can be seen in Fig. 3(c), when adding the
KL loss term to the model the skirt and hands are bet-
ter reconstructed. Moreover, this is improved when
combining this with the dense sampling strategy that
was mentioned before.
Impact of Dense Sampling. When combined with
the KL loss, the dense sampling strategy (near sur-
face and around face and hands) helps the model to
better capture the correct structure of clothing and hu-
man body. In the case of Fig. 3(c), we show how
adding this sampling strategy results in better hands
and skirts. Although not shown here, we also ob-
served slight improvement in the face area.
Real Images. We finally show in Figures 4 and 5 the
reconstructed shapes on synthetic and real images, re-
spectively. Note, specially in the synthetic examples,
how we are able to capture very complex body poses
together with the details of the clothing (e.g. skirts).
Also, note that for test and real images (given that we
do not have ground truth for 2D joints) we use an off-
the-shelf 2D pose detector such as (Cao et al., 2019).
Another alternative is to use (Rong et al., 2021) and
get all necessary joints by projecting them into the 2D
space.

Although we get good results on real images, it
can be perceived, in some cases, that the results are
not as good as on synthetic ones. We hypothesize
that this is due to a slight difference in appearance of
real images in contrast to synthetic ones, especially
due to lighting conditions, shadows and color. It is
known that there is domain gap between real and syn-
thetic images. We believe that by training with real
images or paying more attention to the photo-realism
of synthetic images we would get even better results.
While we are able to capture skirts, where most of
other methods fail, there is still room for improve-
ment. However, we believe that combining global
reasoning with a refinement step to add details is the
right direction to obtain coherent human meshes in a
wide range of poses with high enough detail.

6 CONCLUSIONS

In this paper we have made the following contribu-
tions to the problem of reconstructing the shape of
dressed humans. As far as we can tell we are the
first ones to do 3D reconstruction of clothed human
body from single image in a wide range of poses in-
cluding complex ones. In doing so, we do not require
high resolution images. We demonstrate that different
sampling schemes can improve the details with im-
plicit function representation. Finally, we are able to
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Figure 4: Results on synthetic images of the 3DPeople dataset. For every row we display the input RGB image and the mesh
reconstructed using our approach and comparative approaches seen from two different viewpoints, Onets (Mescheder et al.,
2019) and PIFu (Saito et al., 2019). The color of the meshes encodes the normal directions of the surface.

Figure 5: Qualitative results of our approach on real images. We compare with PIFu (Saito et al., 2019), PIFuHD (Saito et al.,
2020) and Geo-PIFu (He et al., 2020).
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capture details such as dresses and skirts while main-
taining consistency of the body from all directions and
not only the observed view.
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