How to Simplify Law Automatically? A Study on South Korean Legislation and Its Simplified Version

Stefanie Urchsa, Akshaya Muralidharanb and Florian Matthesc

Chair of Software Engineering for Business Information System, Technical University of Munich, Garching, Germany

Keywords: Text Simplification, Legal Tech, South Korean Legislation, Natural Language Processing.

Abstract: People with a low literacy level have problems understanding complex texts. Especially legal texts can be challenging. Automatic Text Simplification (TS) can help to make the legal text more accessible. However, most TS research is based on Wikipedia articles and newspaper articles. To be able to use automatic TS on the legal text we have to understand what constitutes simple legal text. Therefore, we examine the English translation of South Korean legislation and its official simplification. Subsequently, we use state of the art TS models on the legislation text. The models simplify the text only quantitatively lacking in retaining the context of the original text.

1 INTRODUCTION

Text Simplification (TS) is a Natural Language Processing task that aims to automatise the tedious work attached to manual text simplification. Al-Thanyyan and Azmi (Al-Thanyyan and Azmi, 2021) define TS as “[...] the process of reducing the linguistic complexity of a text to improve its understandability and readability, while still maintaining its original information content and meaning.”. Generally, TS includes the following tasks: simplifying the form and content of a text, reducing redundancies and not needed information from a text and summarisation of a text (Siddharthan, 2015). TS opens documents up to people with a lower literacy level. A study by the “Program for the International Assessment of Adult Competencies”1 showed that 32% of U. S. adults are able to read and extract information from simple texts but are overwhelmed by more difficult tasks. Being unable to understand more complex texts is especially critical when legal texts are involved. If a person does not understand the law they will have problems adhering to it. Furthermore, people who are not able to understand the rights, granted to them by the law, are not fully able to use them. Rubab et al. (Rubab et al., 2020) show that simplifying the wordings of law increases the comprehensibility of the texts for law professionals, law teachers and laymen alike, making it more accessible.

However, simplifying legal text is no easy task, as all the meaning of the source text has to be preserved. Therefore, TS in the legal field is in need of carefully constructed training data and metrics to detect if a text is successfully simplified while retaining all crucial information. Unfortunately, training corpora for normal TS task are already scarce. To the authors’ knowledge currently, no corpus of normal legislation aligned to a simplified version of this legislation exists. Hence research on automatic simplification of legislation is scarce too. Normal TS measures do not necessarily apply to the legal field and its sensitivity to semantics in text. Consequently, TS models that are optimised towards common TS measures do not necessarily apply to the legal field.

The South Korean government provides its citizens with an online version of their legislation2 (hereafter referred to as E-Law) and a translation into English. Moreover, the South Korean government provides a simplification of its legislation3 (hereafter referred to as Easy-Law) which is translated into twelve different languages, among them English. We align Easy-Law with its corresponding E-Law parts. Subsequently, we analyse how an easy to read legal text, that contains all necessary information, compares to its standard law counterpart. Therefore, we examine what constitutes easy legal language. Additionally,

1https://nces.ed.gov/surveys/piaac/ accessed on 2021-10-15
2https://e-law.khri.re.kr/ accessed on 2021-10-28
3https://www.easylaw.go.kr accessed on 2021-10-28

ahttps://orcid.org/0000-0002-1118-4330
bhttps://orcid.org/0000-0003-2495-4717
chttps://orcid.org/0000-0002-6667-5452

Urchs, S., Muralidharan, A. and Matthes, F.
DOI: 10.5220/001089400003116
In Proceedings of the 14th International Conference on Agents and Artificial Intelligence (ICAART 2022) - Volume 3, pages 697-704
ISBN: 978-989-758-547-0; ISSN: 2184-433X
Copyright © 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved
we use state of the art TS models on E-Law and compare them to the Easy-Law baseline. Due to copyright issues, we can not publish the parallel dataset.

2 RELATED WORK

This paper analyses the simplification of South Korean legislation. Therefore, this chapter introduces related work from the fields of text simplification (TS), TS corpora and metrics to analyse the simplicity of the text.

2.1 Text Simplification

In one of the earliest works on TS Chandrasekar and Srinivas (Chandrasekar and Srinivas, 1997) approach the task on a sentence level. The authors propose a two-step process: first, the input is analysed and its structure is described in a dependency tree with the Tree Adjoining Grammar (TAG). In the second step this description is used to transform the input into a simpler version, basically flattening the dependency trees. The transformation rules are automatically learned on an aligned corpus of sentences and their manual simplification. Dars (Dras, 1999) addresses TS on a text basis and defines the problem as "reluctant paraphrase". His base assumption is that an author produced a text that contains everything they want to express. Due to external factors like length constraints, readability issues or style guides authors have to paraphrase their text. Therefore, a "best solution" for the paraphrase, one that adheres best to the factors and still retains the most textual meaning, exist. Like Chandrasekar and Srinivas, Dars uses the TAG to represent the input. He then proceeds to map between two TAG grammars, combined with integer programming, to adhere to the previously mentioned factors. At the same time, he tries to paraphrase as little as possible. Both approaches concentrate on the syntactic simplification of text. Other researchers interpret TS as a monolingual translation task. For example, Wubben et al. (Wubben et al., 2012) integrate a re-ranking heuristic into the translation task and train their system on a corpus that aligns Wikipedia articles with their corresponding Simple Wikipedia articles. A third way to approach TS is to lexically simplify the text at hand. One of the current state of the art TS systems by Qiang et al. (Qiang et al., 2021) is a lexical simplification model based on BERT. The system pipeline consists of three steps: first identifying complex words in the text, second generating words to replace these complex words and third filtering the generated words and ranking them according to the best replacement fit. The resulting model is called LSBert. Martin et al. (Martin et al., 2020a) approach TS as a mixture of simplifying the structure and grammar of a text. Their TS system ACCESS enables the user to tune the text simplification to the following attributes: sentence length or amount of compression, level of paraphrasing and reduction of lexical and syntactic complexity. A Sequence-to-Sequence model is then conditioned on these attributes. In later work, Martin et al. (Martin et al., 2020b) extend their ACCESS model by the MUSS method. This method trains controllable TS models in an unsupervised way, by utilising sentence-level paraphrase data. Therefore, excluding the need for labelled training data.

At the time this paper is written LSBert and ACCESS in combination with MUSS can be considered state of the art. Therefore, this paper uses these models on the E-Law corpus and compares them to the Easy-Law baseline, investigating their compatibility to legal language.

2.2 Text Simplification Corpora

TS literature uses parallel text corpora. These are corpora where a complex source is aligned with its simplification. In the field of English TS corpora mostly use a combination of the English Wikipedia with Simple Wikipedia. For example Coster and Kauchak (Coster and Kauchak, 2011) aligned sentences from English Wikipedia with their simplification from Simple Wikipedia resulting in 137 thousand sentence pairs. Zhu et al. (Zhu et al., 2010) do the pairing of the Wikipedias on an article basis and obtain 65,133 paired articles. A third paired Wikipedia corpus is generated by Kajiwara and Komachi (Kajiwara and Komachi, 2016) by performing a match on the article titles. Their corpus consists of 126,725 article pairs. Xu et al. (Xu et al., 2015) argue that the combination of Wikipedias is insufficient as TS resource and propose the Newsela corpus. This corpus consists of 1,130 news articles, that are professionally rewritten in four different simplification grades. The OneStopEnglish corpus by Vajjala and Lučić (Vajjala and Lučić, 2018) aligns 189 texts over three reading levels, resulting in 567 texts that are aligned at text and sentence level.

Unfortunately, none of these TS corpora covers legal text.

2.3 Text Simplification Metrics

To evaluate TS systems metrics have to be used. Dars (Dras, 1999) names three formulas as commonly known readability metrics for adult reading material:
How to Simplify Law Automatically? A Study on South Korean Legislation and Its Simplified Version

- Flesch Reading Ease

 \[
 \text{reading ease} = 206.835 - 0.846w_t - 1.015s_t
 \]

 Subtracts the average number of words per sentence \((s_t)\) from the number of syllables per 100 words \((w_t)\), the constants norm the reading ease to a grade based number.

- Dale-Chall Formula

 \[
 x_{50} = 0.1579x_1 + 0.0496x_2 + 3.6365
 \]

 \(x_{50}\) is the reading grade score of a student who knows half of the answers for questions about a text paragraph. It is calculated by adding the percentage of words outside a predefined easy to read list \((x_1)\) to the average sentence length in words \((x_2)\).

- FOG Index

 \[
 \text{reading level} = 0.4x_1 + 0.4x_2
 \]

 Adds the average sentence length \(x_1\) to the percentage of words with more than three syllables \(x_2\).

Al-Thanyyan and Azmi (Al-Thanyyan and Azmi, 2021) extend this list by the following formulas:

- SMOG grading score

 \[
 \text{SMOG} = 3 + \sqrt{2}\frac{x_p}{p}
 \]

 Looks at the average of polysyllable words \((x_p)\) (words with more than two syllables) in 30-sentence-long text segments.

- Flesch-Kincaid Grade Level Index (FKGL)

 \[
 \text{FKGL} = 0.39x_1 + 11.8x_2 - 15.59
 \]

 Combines the average length of a sentence \((x_1)\) and the average number of syllables per word \((x_2)\) and uses the constant to calculate a grade level.

This paper uses these metrics to understand what constitutes easy legal language, using the Easy-Law corpus. Furthermore, the metrics are used to analyse the text generated by LSBert and MUSS in combination with ACCESS.

3 ENGLISH KOREAN LEGISLATION

The Korean Legislation Research Institute (KLRI)\(^4\) provides a global platform for legislative research. The KLRI cooperates with the Korean Law Translation Center (KLT)\(^5\) to offer an English translation of current Korean statutes (referred to as E-Law in the remainder of this paper). KLRI and KLT aim to promote understanding of Korean Legislation for a global audience and non-Korean speaking residents. The Korean Ministry of Government Legislation\(^6\) expands this online resource with a website\(^7\) that explains Korean legislation in an easy to understand way. The website (further referred to as Easy-Law) provides information in Korean and twelve different translations, among them English.

This chapter introduces the E-Law and Easy-Law websites and a parallel corpus we created by aligning acts from these two websites.

3.1 E-Law

The E-Law website provides a translation of current legislation and historic legislation. We concentrate on the current legislation, where 2,230 statutes and regulations are provided. Users can search the website in different ways:

- By Legal Field

 Twelve different fields, from the constitution to foreign affairs, are offered.

- By Ministry

 Users can search for legislation for one of 23 Ministries, one of 17 Agencies or Administration, one of six commissions, one of six constitutional institutions or one of five miscellaneous options.

- By Subject

 The website offers 16 different subjects including family law, launching business, employment/labor, culture and environment/energy.

- All Overview of all legislation with keyword search.

 The sidebar enables searching by legal field, ministry and subject as well as validity (current and historical legislation) and type of statutes and regulations.

- Recently Translated

 Listing of all legislation ordered by date of the translation.

- Most viewed

 Listing of all legislation ordered by the number of total hits either by week, month or year.

- Law in News

 List of all legislation that is featured in the news.

In addition to the translation of legislation, the KLT offers a glossary of legal terms which lists certain keywords and provides a full-text search for these in all statutes. Furthermore, the Korean legislative system and legislative procedures are explained.

\(^4\)https://www.klri.re.kr/eng.do accessed on 2021-10-30
\(^5\)https://elaw.klri.re.kr/eng_service/introduction.do accessed on 2021-10-30
\(^6\)https://www.moleg.go.kr/english/ accessed on 2021-10-30
\(^7\)https://www.easylaw.go.kr/CSM/SubMainCmd.laf?langCd=700101 accessed on 2021-10-30
3.2 Easy-Law

In contrast to the E-Law website, the Easy-Law website is less structured. Therefore, all information can be accessed directly from the front-page without navigating through complex menus. Users can select one of sixteen categories. Each category contains one or more subcategories, which contain one or more key contents. By clicking the key contents the user arrives at a text page where the first subcategory of the chosen key content is explained in an easy to understand way. Users can select different subcategories and key contents in a side-bar.

The explanation starts with the most general concepts and expands on them or delivers additional context. Furthermore, references to the explained legislation are provided.

3.3 Parallel Corpus

To understand what differentiates easy law from normal law the legal information in the subcategories of the key facts (further referred to as simple articles) provided on the Easy-Law website is aligned with one or more corresponding sentences in the statutes provided by the E-Law website. More precisely: given a list of simple articles \(S_1, S_2, S_3, \ldots, S_n \) that consists of stand alone legal information \(S_{x,1}, S_{x,2}, S_{x,3}, \ldots, S_{x,m} \) and a list of normal acts \(A_1, A_2, A_3, \ldots, A_q \) consisting of sentences \(a_{y,1}, a_{y,2}, a_{y,3}, \ldots, a_{y,p} \). A mapping of the form

\[
S_{x,1}, S_{x,2}, S_{x,3}, \ldots, S_{x,m} \rightarrow \uparrow \rightarrow a_{y,1}, a_{y,2}, a_{y,3}, \ldots, a_{y,p} \\
\vdots \\
\uparrow \rightarrow a_{z,1}, a_{z,2}, a_{z,3}, \ldots, a_{z,q}
\]

is generated, such that the information contained on both sides of the mapping is the same. \(n, x, m, o, y, p, z, q \) indicate control variables. To create this mapping the following pipeline is executed: identification of stand-alone information in Easy-Law, referencing to corresponding E-Law act and extraction of the referenced sentence(s) from the E-Law act.

Every paragraph in the key facts document of the Easy-Law website that contains a reference to a legal act is considered a stand-alone piece of legal information. The reference is extracted with a simple regex-pattern search approach that searches the text for all mentions of acts.

It is not possible to directly map the references of the Easy-Law website to legislation on the E-Law website, because of different providers and different translations of the legislation names. Thus, BERT word embeddings are used to find a match with a minimal cosine distance between the act names.

The reference from the Easy-Law is mapped to the full act from the E-Law. This means, that the E-Law side of the mapping can contain more information than the Easy-Law side. However, to analyze the textual differences between easy law text and normal law text this additional information on the normal side is negligible.

717 simple articles are mapped to 2,183 structured acts from the E-Law website leading to a parallel corpus of 922 aligned samples.

4 ANALYSIS OF ENGLISH KOREAN LEGISLATION

To understand the textual difference between easy and normal English-Korean legislation both sides of the parallel corpus are analysed. At first simple count based analysis are performed, in a second step reading formulas introduced in chapter 2.3 are used and thirdly structural features are examined. In the end the results are discussed.

4.1 Count Based Analysis

For each sample the following count based metrics are processed:

- number of syllables
- number of words (excluding punctuation)
- number of sentences
- number of characters (including punctuation)
- number of letters (excluding punctuation)
- number of polysyllables (words with a syllable count greater or equal to three)
- number of monosyllables

Resulting in the mean values shown in table 1. The scores of simple law are always lower than the scores of normal law. Interestingly, simple law uses on average about half of the measure that is used for normal law. Polysyllables are generally scarce which is a characteristic of the English language.

However, these results have to be interpreted as a trend. As mentioned in subsection 3.3 the normal side of the parallel corpus can contain more information and therefore more sentences.
Table 1: Count based analysis of Korean legislation, all values represent the mean over all samples.

<table>
<thead>
<tr>
<th></th>
<th>simple</th>
<th>normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>syllables</td>
<td>139</td>
<td>271</td>
</tr>
<tr>
<td>words</td>
<td>81</td>
<td>164</td>
</tr>
<tr>
<td>sentences</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>characters</td>
<td>424</td>
<td>849</td>
</tr>
<tr>
<td>letters</td>
<td>411</td>
<td>812</td>
</tr>
<tr>
<td>polysyllables</td>
<td>17</td>
<td>30</td>
</tr>
<tr>
<td>monosyllables</td>
<td>48</td>
<td>100</td>
</tr>
</tbody>
</table>

4.2 Readability Scores

The following readability scores are computed on each sample of the parallel corpus, using the python library textstats8:

- Flesch Reading Ease
 The higher the score the more easy a text is to read, the highest possible score is 121.22, negative values are valid.
- Dale Chall Formula
 The higher the score the more complicated a text is to read. Values above 9.0 indicate that readers need at least a college education to understand the text.
- FOG Index
 Grade based score, that indicated which level of school education a reader needs to understand the text. E.g. a score of 9.3 indicated that readers with a ninth-grade education could understand the text.
- Flesch-Kincaid Grade Level Index
 Grade based score, that indicated which level of school education a reader needs to understand the text. E.g. a score of 9.3 indicated that readers with a ninth-grade education could understand the text.

The SMOG grading score is excluded, because it is normed for text sequences of thirty sentences. As discussed in subsection 4.1 the samples in the normal part of the parallel corpus average about three sentences.

Table 2 shows the result of the calculation. According to readability scores simple law is harder to read than normal law. Additionally, all scores indicate that both kinds of law are hard to read.

4.3 Structural Features

Two kinds of structural features are examined for each kind of law: the grammatical structure, represented as parse tree expansion at a depth of three and the number of references to other articles.

Kauchak et al. (Kauchak et al., 2017) discuss that parse trees at level two are too generic for in-depth analysis of the grammatical structure because only one expansion is done. This first expansion mostly consists of a noun phrase in combination with a verb phrase. Expansions after the third level become very specific to the sentence at hand, complicating generalisations over the texts. Table 3 shows the five most frequent grammatical structures in simple and normal.

The following tags are used:

- DT - determiner
- IN - preposition/complementiser
- LST - list item marker
- MD - modal
- NN - singular noun
- NP - noun phrase
- PP - prepositional complement
- S - sentence
- SBAR - subordinate clause
- VBN - past participle
- VBZ - 3rd person singular present tense verb
- VP - verb phrase
- WHNP - wh-noun phrase

Both, normal and simple law sentences, mostly follow the grammatical structure of S [NP [NP PP] VP [MD VP]]. An example of this structure is “[(An individual [NP]) (under influence [PP]) (may [MD]) (not drive [VP])].]”. In the second rank grammatically structures begin to drift apart. Normal law favours noun phrases without whole sentence constructs in the second rank and later on rank four lists of singular nouns. Simple law mostly adheres to full sentences with noun phrases followed by verb phrases and favours modals verbs in verb phrases. An in-depth analysis of modal verbs shows that 69% of simple sentences use modal verbs and only 21% of normal sentences. In third rank, easy law also abandons the conventional sentence construct in favour of a noun phrase.
Going one level deeper into the parse tree enables the detection of passive voice. Normal law uses passive voice in 43% of the parsed sentences and simple law only 27%.

Law often references other parts of the law in one article. The frequency of these references is an interesting indicator of the readability of the text. Two percent of simple law and twelve percent of normal law reference to other articles. Though, if normal law references other articles it references multiple ones whereas simple law only references a few.

4.4 Discussion

Simple law tends to use fewer words and characters to explain concepts, indicating a more direct communication style. The use of readability formulas does not lead to useful results. These metrics mostly try to predict the school education, in other words grade level, a reader needs to understand the text, but legislation addresses complex topics that are above the knowledge of an average school child. These readability formulas perform well on average adult reading material. However, to perform well on legal text these formulas need domain-specific adjustments. These adjustments have to be determined by linguistic experts. The structural analysis indicates that increased usage of modal verbs and full sentences as well as the reduced usage of passive voice increase the readability of legal text. Furthermore, excessive referencing to other acts decreases the readability of a law.

Therefore, readability measures that fit legal text need to focus on shortness of text, while using complete sentences and favouring modal words. Moreover, references in stead of direct explanations should be penalised.

5 Automatic Text Simplification

Automatic Text Simplification (TS) offers the opportunity to make the legislative text more accessible. Manually reformulating laws, regulations and announcements is a tedious and labour intensive task. This chapter investigates how two state of the art TS models perform on legal text by using the parallel corpus described in subsection 3.3.

Both models are used in the pre-trained versions. The easy law part of the corpus is used as ground truth for evaluating the results.

5.1 Models

LSBert (Qiang et al., 2021) specialises in lexical simplification. At first complex words are identified and a list of possible replacements is generated. This list is then ranked and the most suitable replacement chosen. The automatic simplification is conducted with the pre-trained model published by Qiang on GitHub\(^9\). Due to the sequential lookup, the model performs and limited resources it was only possible to generate simplifications for 1500 lines of text of the normal law part of the parallel corpus.

The second model ACCESS in combination with MUSS (Martín et al., 2020a) is more sophisticated and paraphrases the input instead of just exchanging words. For this experiment, the pre-trained version provided on GitHub\(^{10}\) by Facebook research is used. For comparability reasons, the same 1500 lines of the normal law of the parallel corpus are simplified.

5.2 Evaluation and Discussion

As discussed in subsection 4.4, conventional readability formulas are insufficient to express the readability of simplified law. Therefore, the evaluation concentrates on count-based measures as shown in table 4.

Overall both models seem to improve the readability of the text, even slightly outperforming the baseline of the simple law. As a lexical simplification model LSBert is able to reduce the mean character, letter and polysyllable count, ACCESS in combination with MUSS uses on average fewer words and therefore syllables. Both models quantitatively reduce the complexity of the normal law texts.

Just reducing the complexity of words used in the law could be misleading and change the meaning of

\(^{9}\)https://github.com/qiang2100/BERT-LS accessed on 2021-11-01

\(^{10}\)https://github.com/facebookresearch/muss accessed on 2021-11-01
Table 4: Comparison of count based measures for normal law, simple law and the simplifications with LSBert and ACCESS in combination with MUSS. All values depict the mean over all lines.

<table>
<thead>
<tr>
<th></th>
<th>normal</th>
<th>simple</th>
<th>LSBert</th>
<th>ACCESS + MUSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>syllable</td>
<td>56</td>
<td>53</td>
<td>52</td>
<td>48</td>
</tr>
<tr>
<td>words</td>
<td>34</td>
<td>31</td>
<td>32</td>
<td>30</td>
</tr>
<tr>
<td>sentence</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>char</td>
<td>173</td>
<td>161</td>
<td>147</td>
<td>150</td>
</tr>
<tr>
<td>letter</td>
<td>167</td>
<td>158</td>
<td>142</td>
<td>145</td>
</tr>
<tr>
<td>poly-syllables</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>mono-syllables</td>
<td>21</td>
<td>19</td>
<td>21</td>
<td>19</td>
</tr>
</tbody>
</table>

The simplification shows shortcomings of the LSBert model. The word minor is simplified to child and marry to meet, changing the expressed meaning of the text significantly. ACCESS in combination with MUSS is able to simplify the text without compromising the actual content.

Second article 633 of the civil act:

- normal:
 Rent shall be paid at the end of each month in the case of a movable object, a building, or a building site, and at the end of each year in the case of any other land. Provided, That in the case of a leased object which has a harvest season, rent shall be paid, without delay, upon the close of such a season.

- simple:
 If the lessee and the lessor have not determined the timing to pay rent, rent shall be paid at the end of each month.

- LSBert:
 Rent shall be paid at the end of each month in the case of a movable object, a building, or a building site, and at the end of each year in the case of any other land: Provided, That in the case of a used subject which has a crop year, rent will be paid, without cause, upon the close of such a season.

- ACCESS in combination with MUSS:
 Rent shall be paid at the end of each month in the case of a movable object, a building, or a building site, and at the end of each year in the case of any other land. The rent shall be paid, without delay, upon the close of such season in the case of a leased object.

ACCESS in combination with MUSS fails to retain the complete meaning of the original text. The model excludes the word harvest and, therefore, an important part of the information. LSBert exchanges the word harvest with the word crop. However, harvest season is an established concept describing a specific time of year. The crop season might refer to the season of a specific crop that does not necessarily span the same time period. Both models are not able to do the complete paraphrase the baseline, done by a human professional, suggests for this sample.

Both examples show that simple paraphrasing is insufficient for legal text, which relies on established concepts. If words are simplified with no regard of their domain the content of the text can change, rendering it unsuitable to explain the legislation to a broader audience. The results of both models can be improved by adding context-awareness.
6 CONCLUSION

We examined the English translation of South Korean legislation and its official simplification and produced a parallel corpus by aligning both sources. Subsequently, we explored the parallel corpus and investigated how the normal legalisation differs from the simple one. We concluded that simple legislation generally uses fewer and shorter sentences. Furthermore, complete sentences, fewer passive voice and modal verbs are favoured in simple law. Common Readability measures lead to insufficient results and were deemed unusable for legal texts. State of the art Text Simplification models were able to quantitatively reduce the complexity of the normal legal text. However, the models had problems retaining all information when used on the normal legal text in our parallel corpus. Awareness to the domain of the words the models paraphrase would improve the results.

ACKNOWLEDGEMENTS

This paper is based on the master thesis “Automatic English Text Simplification for Statutes” by Akshaya Muralidharan11.

REFERENCES

11https://wwwmatthes.in.tum.de/pages/1pwcti6a1ymz0/
Master-Thesis-Akshaya-Muralidharan