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Abstract: We enhance and customize the automatically evolving genetic-based CNN (AE-CNN) framework to develop 
an auto-designed CNN (AutoCNN) pipeline to dynamically generate an optimal CNN model to assist 
physicians in detecting multi-skin cancer diseases (MSCD) over dermatoscopic images. Specifically, the 
contributions of this work are three-fold: (1) integrate the pre-processing module into the existing AE-CNN 
framework to sanitize and diversify dermatoscopic images; (2) enhance the evaluation algorithm of the 
framework to improve the model selection process by using the k-fold cross-validation; and (3) conduct the 
experimental study to present the accuracy results that the CNN model constructed by AutoCNN outperforms 
the model by AE-CNN to detect and classify MSCD. 

1 INTRODUCTION 

Skin Cancer is one of the fastest-growing diseases in 
the United States, and most commonly is the 
abnormal growth of skin cells with the ability to 
spread to neighboring cells or other parts of the body. 
According to the American Academy of Dermatology 
Association (AADA, 2021), there are approximately 
9,500 people in the U.S. diagnosed with skin cancer 
every day (i.e., an average of 3.3 million Americans 
per year). Despite this, if skin cancer can be detected 
and diagnosed early, the five-year survival rate for 
patients is expected to be 98 percent (ACS, 2021). To 
support physicians to detect and diagnose skin cancer 
early in its development for patients, dermatoscopy 
(DermNet, 2021) is a widely used technique, as 
dermatoscopic images have an immense potential for 
the detection of a suspicious mole at an early stage of 
development. However, for physicians to detect and 
classify a skin cancer early into a specific type (e.g., 
melanoma, melanocytic nevus, basal cell carcinoma, 
actinic keratosis, and benign keratosis) on 
dermatoscopic images is very challenging due to 
various subjective and time-intensive interpretations. 
To address the above issues, convolutional neural 
networks (CNNs) have played an important role to 
speed up the early detection of skin cancer through 
dermatoscopic image classification. In a study 
comparing the detection accuracy of CNNs with 

trained dermatologists, CNNs were found to be 
72.1% accurate, as opposed to 65.56%-66% with 
trained dermatologists (Chan, S., 2020). Using this 
state-of-the-art technology to support the early 
detection of skin cancers, physicians have a more 
effective and efficient way to treat their patients. The 
more effective and efficient detection and diagnosis 
of skin cancer improves the survival rate of patients. 
Therefore, we are motivated to study and explore this 
technology to address the detection of skin cancer. 

Presently, the construction of CNN architectures 
to conduct the early detection of skin cancers can be 
broadly divided into two categories: single and 
ensemble. Built on domain knowledge and the 
available datasets, single hand-crafted CNNs 
(Albelwi, S, 2016; Nasr-Esfahani, E., 2016; Le, T.T., 
2017; Stefan Jianu, S.R., 2019; Ashraf Ottom, M. 
2019; Rundo, F., 2019; Fu’adah, Y.N., 2020) are the 
manually-designed static architectures that require 
researchers to possess significant medical domain 
knowledge and deep CNN design experience to 
develop and implement the network. With 
considerable domain expertise, the best CNN 
architecture constructed by this approach delivers a 
certain promising detection performance on the 
dataset originated from homogeneous data sources. 
However, due to its insufficient and imbalanced data 
to train the network, the architecture may not behave 
well for unseen types of data images from 
heterogeneous data sources, as in many cases, the 
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network is not able to learn enough representative 
instances for each class label (i.e., skin cancer types) 
to extract the distinctive image features for the 
classification. In addition, those heterogeneous 
datasets may exhibit different data variations and 
characteristics that the hand-crafted CNNs may not be 
able to provide promising detection performance.  

To address these issues, ensemble CNN 
architectures have been developed. Specifically, they 
are hybrid CNN architectures (Aldwgeri, A., 2019; 
Mahbod, A., 2019; Al Mamun, Md., 2021) that 
combine different single CNN models, which have 
been pre-trained on a large number of images and 
adapted to their diverse variations to extract more 
unique features from the domain-specific images. 
Models that conduct ensemble learning deliver a better 
classification performance than that of single CNN 
models only. Currently, there are several well-known 
pre-trained CNN models, such as VGGNet (Simonyan, 
K., 2015), GoogleNet (Szegedy, C., 2015), and ResNet 
(He, K., 2016), which are pre-trained on ImageNet 
(ImageNet, 2021) and CIFAR (Krizhevsky, A., 2009). 
However, to identify the best possible combination of 
those pre-trained CNN models is challenging due to a 
large number of different possible model combinations 
with the high computational learning cost. In addition, 
even though learning the best model combination 
among all the possible pre-trained CNNs is a dynamic 
process, those pre-trained CNN models are still in the 
static architectures that may lack the adaptability for 
diverse image variations (e.g., skin cancer images). 
Those pre-trained CNN models may perform 
significantly worse with heterogeneous data sources 
not encountered before. 

To bridge the above gaps, (Sun, Y., 2020) have 
developed an automatically evolving genetic-based 
CNN (AE-CNN) framework to dynamically design 
and construct an optimal CNN architecture on any 
available image dataset without requiring any manual 
intervention. The experimental results show that the 
CNN architecture generated from the framework 
outperforms the above state-of-the-art CNNs’ peer 
competitors in terms of the classification accuracy 
performance. However, the AE-CNN framework that 
generates an optimal architecture is not fully designed 
for skin cancer detection and classification and does 
not consider two crucial components: (1) pre-
processing the raw images (e.g., lesion segmentation, 
image augmentation, etc.,) and (2) selecting the best 
CNN model based upon the entire training dataset 
instead of a separated validation dataset only. To 
mitigate the above shortcomings, we enhance and 
customize AE-CNN to develop and implement an 
auto-designed CNN (AutoCNN) framework that 

enables domain users to dynamically generate an 
optimal CNN architecture on their available datasets 
to assist physicians in early detecting multi-skin 
cancer diseases (MSCD) over dermatoscopic images. 
Specifically, the contributions of this work are three-
fold: (1) integrate the pre-processing module into AE-
CNN to sanitize and diversify dermatoscopic images, 
(2) enhance the evaluation algorithm of AE-CNN to 
improve the model selection process by using the k-
fold cross-validation (Sanjay, M., 2018) on the entire 
training dataset, and (3) conduct an experimental 
study, using the 25,331 dermatoscopic images 
provided by the 2019 International Skin Imaging 
Collaboration (ISIC, 2019), to present the 
classification accuracy. From the results, we can 
conclude that the CNN model constructed by 
AutoCNN outperforms the model constructed by AE-
CNN to detect and classify MSCD. The source code 
will be available to the public after the acceptance. 

The remainder of the paper is organized as 
follows. First, we briefly describe the AE-CNN 
framework in Section 2. In Section 3, we illustrate our 
enhanced AutoCNN framework and its workflow. 
We also demonstrate and explain our pipelines of 
both skin cancer image segmentation and its 
augmentation in Section 4 and 5, respectively. In 
Section 6, we discuss and summarize the 
experimental study and results. In Section 7, we 
conclude and briefly outline our future work. 

2 AE-CNN FRAMEWORK 

Fig. 1 is the AE-CNN framework. First, the size of 
the population N, i.e., the total number of individual 
CNN architectures in each generation, is predefined. 
Note that each CNN individual in each generation is 
trained on 80% of the ISIC-2019 image dataset and 
validated on 10% of the dataset in the fitness 
evaluation module in our experimental study. Each 
CNN individual of a generation in the population N 
takes part in the evolutionary process of the genetic 
algorithm with the maximal generation number of T. 
During the population evolutionary process, a new 
CNN offspring is generated from its selected parents 
with the crossover and mutation operations, while the 
parents are selected by the binary tournament 
selection. After the fitness of the generated offspring 
has been evaluated, a new population is selected with 
the environmental selection operation from the 
current operation that contains the current individuals 
and the generated offspring, and the parents survive 
into the next evolutionary process, the next 
generation. Towards the end, the framework 
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Figure 1: Automatically Evolving CNN (AE-CNN) Framework. 

 
Figure 2: Autodesigned CNN Framework for Multi-Skin Cancer Diseases (AutoCNN-MSCD) Detection. 

generates T * N CNN models, from which the best 
CNN architecture is selected among all the possible 
CNN candidates in terms of their classification 
accuracy performance. The best CNN model 
generated by AE-CNN is then compared with the best 
model constructed by AutoCNN. Both CNN models 
are tested on the same 10% of the image dataset for 
performance evaluation. 

3 AutoCNN-MSCD FRAMEWORK 

Fig 2. is the AutoCNN framework, which is the 
enhanced version of AE-CNN to detect MSCD. The 
framework is composed of two main modules: Pre-
processing and Enhanced AE-CNN. In the pre-
processing module, there are three sub-modules 
including Image Resizing (IR), U-Net Segmentation 
(Ronneberger, O., 2015), and Image Cropping (IC). 
First, the framework loads the raw images of each class 
label into the IR sub-module to resize each image. The 
resized images are then passed to the U-Net sub-
module that performs the semantic segmentation 
process to locate the position of skin lesions on the 
images. After that, the skin lesions on the images are 

cropped and resized again. The cropped and resized 
images per class label are randomly split into 90% for 
training and 10% for testing. Each skin cancer class in 
the 90% training dataset is iterated through and the 
number of images is counted. If the quantities are not 
balanced among all the classes, then image 
augmentation is conducted to generate enough images 
for each of the classes. The goal is to ensure that each 
CNN model per generation gets trained equally on each 
class of skin cancer. The 10% testing dataset is not 
augmented to prevent data leakage and overfitting 
problems. After the images are segmented and 
augmented, they are loaded into the enhanced AE-
CNN module. The main difference between the 
original AE-CNN framework and the enhanced AE-
CNN module is that the original AE-CNN framework 
evaluates each CNN model only on a specific portion 
of the original dataset. The accuracy calculated is not 
fully complete, whereas the enhanced AE-CNN 
module assesses the performance of each CNN 
individual by using 10-fold cross-validation. 10-fold 
cross-validation gives a more accurate performance of 
the best CNN model among all possible candidates 
(Gholamiangonabadi, D., 2020; Shaban, M., 2020). 
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Figure 3: Image Pre-processing Module. 

4 IMAGE PRE-PROCESSING 
MODULE 

In this section, we describe and explain the pre-
processing module in more detail. Some images may 
have a lesion at the center/border or some may have a 
tiny tumor on a specific spot of the photo, which is 
very difficult for a CNN model to detect. Therefore, 
we have developed and implemented the image pre-
processing module to locate a lesion on each image 
and then crop the area not including the lesion from 
the image. Each CNN model can learn each type of 
lesions more precisely rather than learning its 
surrounding background with noise.  

Our image pre-processing pipeline is shown in Fig 
3. First, each skin cancer image is resized to 460 x 
460 pixels in the RGB channels. After that, the 
resized images are passed to the U-Net architecture 
with the ResNet18 encoder to obtain the predicted 
mask of each image lesion. The predicted mask is 
then overlayed on top of the resized images. This 
overlayed image is cropped and resized again so that 
the lesion is in the middle of the image. However, 
since some predicted masks are almost completely 
dark, i.e., more than 99.7% of the mask is entirely 
occupied by the black pixels, the original image is 
then used for the downstream process without 
performing the segmentation. In this case, a mask 
cannot provide any information about the lesion on 
the image other than a completely dark photo. 

4.1 U-Net Architecture with ResNet18 
Encoder 

In the image pre-processing module, we use the U-
Net architecture to perform the skin lesion semantic 
segmentation task, because the U-Net architecture, 

with several plain convolutional layers, is originally 
designed and developed for biomedical image 
segmentation. Despite this, it is not completely used 
for skin cancer segmentations. Due to the flexibility 
of the FastAI library (FastAI, 2021), we have 
replaced the down-sampling section of the original U-
Net encoder with another state-of-the-art CNN 
architecture, ResNet. The ResNet network is selected 
because of its advantage of being able to skip 
connections to prevent overfitting, to avoid a 
vanishing gradient, and to extract more important 
features than the plain convolutional layers. The 
enhanced U-Net decoder is similar to the basic U-Net 
decoder, which also has cross-connections. The main 
difference is that instead of up-sampling by using 
transpose convolutions, FastAI applies a newly 
developed method, i.e., pixel shuffle or sub-pixel 
convolution with ICNRN initialization, which is used 
in the image’s super-resolution (Shi, W., 2016). 

To train and evaluate the enhanced U-Net with a 
ResNet encoder, we use the ISIC-2018 dataset (ISIC, 
2018), which contains 2,594 training images with 
their corresponding ground-truth masks, because the 
ISIC-2019 dataset does not contain ground-truth 
masks. Specifically, we use 90% of the images for 
training and 10% for testing. During the training 
process, we select two different ResNet backbones, 
i.e., ResNet18 and ResNet34. Note that our 
framework can flexibly apply to any backbones based 
upon the image sources and variety. The evaluation 
metric is the Dice Coefficient (DC) score computed 
by using this equation: DC Score = ଶ|ୋ∩୔||ୋ|ା|୔|, where G is 
a set of ground truth images, P is a set of segmented 
images, |G| and |P| are the number of images in each 
set, and |G∩P| is the number of intercepted images. 
The DC score measures the similarity of the ground 
truth images and the predicted images by the U-Net 
with the two ResNet encoders. 

VISAPP 2022 - 17th International Conference on Computer Vision Theory and Applications

610



 
Figure 4: Skin Lesion Semantic Segmentation and Ground Truth on the ISIC-2018 Testing Dataset. 

The U-Net training procedure is as follows: (1) 
apply the pretrained weights of the ResNet encoder 
and freeze the encoder weights, (2) train the weights 
of the U-Net decoder with the Adam optimizer with 
the batch size of 8 and the learning rate of 0.001 for 
10 epochs, and (3) unfreeze the weights of the 
encoder section and continue training the whole 
network with the same optimizer but using a smaller 
learning rate for 10 epochs. To reduce the overfitting 
of training the whole network, we apply the early 
stopping by truncating the training process when the 
validation DC score is not improved for three epochs 
and take the optimal weights from the epoch with the 
highest validation score.  

Fig. 4 shows some examples of the U-Net 
semantic segmentation on the ISIC-2018 testing 
dataset, in which we cannot find a big difference 
between the ResNet34 and ResNet18 backbones, in 
terms of their segmentation capability. Table 1 also 
shows the segmentation results on the ISIC-2018 
testing images, where we observe that the DC score 
of the ResNet34 encoder is slightly better than that of 
the ResNet18 encoder. Note that the size of a lesion 
is relatively big in each image and the position of the 
lesion is mostly at the center of the images in the 
ISIC-2018 dataset. On the contrary, the ISIC-2019 
skin cancer images contain eight different types of 
lesions (including melanoma, melanocytic nevus, 

basal cell carcinoma, actinic keratosis, benign 
keratosis, dermatofibroma, vascular lesion, and 
squamous cell carcinoma) and their locations are not 
always at the center/border of the images. Because of 
this, we evaluate the U-Net architecture with both 
ResNet encoders to see which one is more capable of 
handling this problem. We found that the U-Net 
architecture with ResNet34 and ResNet18 encoders 
both can detect the edges of the majority of lesions on 
the ISIC-2019 images. However, for the small lesions 
on the images, the U-Net with the ResNet18 encoder 
can still detect the lesions, while the U-Net with the 
ResNet34 encoder fails to capture any lesion on the 
images. Some examples are shown in Fig. 5. Due to 
the performance of the ResNet18 encoder, which can 
spot small lesions on the image, and its DC score 
which is slightly lower than that of the ResNet34 
encoder, we decide to integrate it into our U-Net 
architecture. 

Table 1: Dice Coefficient Score on Testing Images. 

Encoder Name Dice Coefficient Score  

U-Net with RestNet18  0.864 

U-Net with RestNet34 0.878 
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Figure 5: Examples that the U-Net with ResNet34 Encoder 
Fails to Detect a Lesion on the ISIC-2019 images. 

4.2 Threshold Determination to Use 
Original Images for CNN Training 

Although the ResNet18 encoder can perform better 
than the ResNet34 encoder for spotting small lesions 
on images, it still cannot detect irregular and 
unobvious lesions on images shown in Fig. 6. Note 
that among 25,531 ISIC-2019 images, there are 45 
images that the ResNet18 encoder cannot detect that 
results in generating almost completely dark 
segmented images. For those images, we do not 
perform the segmentation because there is no 
advantage of using those completely dark images to 
train our CNN models. Instead, we just resize those 
original images as the same size as the other 
segmented images. 

To make the pipeline automatically identify this 
type of image, shown in Fig. 6, which cannot be 
detected by the ResNet18 encoder, we need to set a 
proper threshold as a cut-off point. First, we analyze 
the characteristics of those 45 images, as a base, by 
computing the percentage of the non-black pixels in 
those images. The percentage distribution is shown in 
Fig. 7 that the mean value is 0.153%, the median 
value is 0.030%, and the standard deviation (SD) is 
0.236%. As the distribution is more right-skewed, 
most of the images have very small non-black pixels. 
To detect those image outliers, we decide to select a 
threshold using the average of Median + SD (0.27%) 
and Mean + SD (0.39%), i.e., 0.3%, in the dataset. It 
means that if a segmented image contains the 
percentages of the black pixels at least 99.7% or 
more, we use its original image for the down-
streaming processes for the CNN training.  

 
Figure 6: Examples that the U-Net with the ResNet18 
Encoder Fails to Detect a Lesion on the ISIC-2019 images. 

 
Figure 7: Distribution Plot of Non-black Pixel Percentage. 

5 IMAGE AUGMENTATION 
MODULE 

The collected images that AE-CNN and AutoCNN 
are evaluated on is the ISIC-2019 skin cancer dataset, 
which includes eight different skin cancer diseases. 
The types of skin cancer are melanoma, melanocytic 
nevus, basal cell carcinoma, actinic keratosis, benign 
keratosis, dermatofibroma, vascular lesion, and 
squamous cell carcinoma. The number of images in 
each disease class varies from 250 to 10,000 images 
that the augmentation is needed to make the image 
balance among the classes to improve the 
performance of CNN models. Our image 
augmentation pipeline first finds the class with the 
largest number of images and then augments the 
images in each other class until it equals the number 
of images of the largest class. Our pipeline includes 
four different image augmentation methods, shearing, 
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flipping, random contrast, and random noise, 
conducted in sequence, shown in Table 2. Note that 
the augmentation pipeline is programmed in Python 
using a combination of two libraries, Augmentor 
(Bloice, M.D., 2020) and Albumentations 
(Albumentations Team, 2021). Both libraries have 
different types of image augmentations and are 
applied in different ways. The Augmentor library 
used in the augmentation pipeline is to perform the 
shearing, flipping, and random contrast operations, 
while the Albumentations library is used to apply the 
random noise augmentation. The number of 
augmentations needed is calculated for each class and 
the functions of these specific augmentations are 
called to produce the new images. 

Table 2: Image Augmentation Techniques. 

Method Probability Parameters 

Shearing 1.0 
Max_shear_left = 25 

Max_shear_right = 25 
Flipping 0.8 NA 

Random 
Contrast 0.8 

Min_factor = 0.9 
Max_factor = 1.0 

Random Noise 1.0 
Mode = 's&p' 

Amount = 0.02 

In our setting, for each randomly selected image, 
there are at least two or up to four augmentation 
methods being used that depends on the probability 
of that method being set. First, an image from each 
other class is randomly selected and then the shearing 
augmentation is conducted on the image due to the 
100% probability of occurring. After that, the image 
may or may not be conducted on the flipping 
augmentation because of its 80% probability 
happening. This process continues for the other two 
augmentations in order. Each augmentation function 
also has its own specific parameters. Flipping has no 
parameters. Shearing has a max rotation to the left 
and a max rotation to the right, e.g., the max angles 
are not more than 25 degrees in each rotation. 
Random contrast has the minimum and maximum 
factor parameters (e.g., 0.9 and 1.0 respectively), 
which corresponds to the lower and upper bound of 
how much contrast is contained in an image. Random 
noise has two parameters: "mode" decides what type 
of noises is applied (e.g., salt and pepper (s&p)) and 
"amount" determines the percentage of image pixels 
containing noise (e.g., 0.02). After the process is 
completed for each other class, the augmented images 
are moved into their own class folders.  

6 EXPERIMENTAL RESULTS 
AND DISCUSSION 

Based upon the classification accuracy performance 
among all the eight skin cancer diseases in the 10% 
validation dataset performed by each CNN individual 
among all the 15 generations in the AE-CNN 
framework, we find that the 3rd individual in the 14th 
generation, shown in the Table 3 configuration, has 
the highest validation accuracy with 67.12%. This 
CNN model is composed of six main units in order, 
where DBU is a DenseNetUnit, RBU is a 
ResNetUnit, and APL is an Average Pooling Layer. 
In each unit, there is its own specific configuration. 
For example, the 1st DBU has three feature filters (F) 
with the input dimension (I) 32 x 32 pixels. After an 
image is passed through the 1st DBU, there are three 
corresponding feature maps generated as the outputs. 
The size of each feature map (O) is 16 x 16 pixels. 

Table 3: Best CNN Model Configuration from AE-CNN. 

1st  2nd  3rd  4th  5th  6th  
DBU DBU DBU RBU RBU APL 
F: 3 

I: 32x32
O: 16x16

F: 6 
I: 16x16
O: 12x12

F: 12 
I: 12x12
O: 32x32

F: 3 
I: 32x32 
O: 32x32 

F: 1 
I: 32x32 
O: 1x8 

Average 
Pooling

Likewise, using the 10-fold cross-validation 
accuracy of each CNN model in AutoCNN, we notice 
that the 2nd individual in the 15th generation, shown in 
the Table 4 configuration, has the highest accuracy 
(70.82%) on the 90% training dataset. This CNN 
model is constructed by seven main units in order. 

Table 4: Best CNN Model Configuration from AutoCNN. 

1st  2nd  3rd  4th  5th 6th  7th  
RBU DBU RBU RBU DBU RBU APL 
F: 4 

I: 32x32
O: 39x39

F: 8 
I: 39x39
O: 24x24

F: 16 
I: 24x24
O: 16x16

F: 3 
I: 16x16 
O: 32x32 

F: 4 
I: 32x32 
O: 32x32 

F: 1 
I: 32x32 
O: 1x8 

Average 
Pooling

Both individuals above are selected and evaluated 
on the testing dataset. Note that the main reason why 
only five individuals in 15 generations in each 
framework are executed is that we lack the 
computational hardware to execute both AE-CNN 
and AutoCNN frameworks. We used the WPI Turing 
Research Cluster (WPI, 2018), which limits each job 
to a certain number of resources over a certain amount 
of time. To run both frameworks to generate and train 
each CNN individual, our jobs are limited to two 
NVIDIA P100 graphics cards, 2 Intel CPUs, and 
approximately 50 gigabytes of memory. Due to these 
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limitations, we are only able to generate and train five 
CNN models among all the 15 generations. These 
computation limitations cause both frameworks to 
take a significant amount of time to run to 
completion, approximately one week each. If we had 
accessed to more resources, we would have been able 
to run more individuals and more generations to 
obtain a higher-performing CNN model. Despite 
these, once the best CNN model is obtained, the skin 
cancer detection is very fast. The testing result shown 
in Table 5 suggests that the best CNN model of 
AutoCNN outperforms the best of AE-CNN by about 
5.23% for eight different classes of skin cancer 
diseases. AutoCNN has higher accuracy, because of 
the image pre-processing module and the k-fold 
cross-validation approach. Our results have shown a 
promising improvement in AutoCNN. 

Table 5: Testing Accuracy of AE-CNN and AutoCNN Best 
Generation 

Model Generation Individual Accuracy 
AE-CNN 14 3 0.6642 
AutoCNN 15 2 0.7165 

7 CONCLUSIONS AND FUTURE 
WORK 

To the best of our knowledge, this is the first paper 
written to enhance and customize genetic-based AE-
CNN to develop and implement an AutoCNN 
framework that enables domain users to dynamically 
generate an optimal CNN architecture on their 
available datasets to assist physicians in early 
detecting MSCD over dermatoscopic images. 
Specifically, the contributions of this work are three-
fold: (1) integrate the pre-processing module into AE-
CNN to sanitize and diversify dermatoscopic images, 
(2) enhance the evaluation algorithm of AE-CNN to 
improve the model selection process by using the k-
fold cross-validation on the entire training dataset, 
and (3) conduct an experimental study, using the 
25,331 dermatoscopic images provided by ISIC-
2019, to present the classification accuracy. From the 
results, we can conclude that the CNN model 
constructed by AutoCNN outperforms the model 
constructed by AE-CNN to detect and classify 
MSCD. However, there are still several important 
research challenges that we would like to investigate 
into the performance of AutoCNN concerning 
MSCD. Specifically, how the metadata of each 
image, including the patient's age, gender, and lesion 

location, can impact the classification accuracy of 
CNN models. We are also interested in how Deep-Q 
learning algorithms can improve the speed of 
generating CNN architectures, as well as how the 
framework can be enhanced to provide a user-friendly 
interface for domain users to easily operate it. 
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