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Abstract: Wearable consumer activity trackers have become a popular tool for longitudinal monitoring of sleep quality. 
However, sleep data were routinely visualized in isolation from other contextual information. In this paper, 
we proposed a sleep analytics method to identify the associations between sleep quality and the contextual 
data that are readily measurable with a single Fitbit device. Different from prior studies that only focused on 
the daily aggregation of the contextual factors (e.g., total step counts), our method considers the intraday 
temporal patterns of these factors. Time-domain, frequency-domain, and nonlinear features were derived 
using the minute-by-minute intraday step and heart rate time series. The results showed that some of the 
identified contextual features such as the zero-crossing of steps and the absolute energy of heart rate could 
lead to actionable insights. While the nonlinear features—such as the average and longest diagonal line length 
derived through the recurrent quantitative analysis of the step time series—may not lead to insights that can 
be immediately acted on, they generated new hypotheses for further scientific studies. The results also showed 
that when dealing with data of consumer wearables, the individual-level analysis could generate more 
personally relevant insight than the cohort-level analysis. 

1 INTRODUCTION 

Getting enough and quality sleep is critical for 
people’s physical and mental health (Buysse, 2014). 
While traditional sleep monitoring technologies such 
as polysomnography (PSG) and actigraphy were only 
available in medical settings, recent advances in 
consumer wearable technologies have expanded 
sleep monitoring to daily life. Consumer activity 
trackers such as Fitbit are affordable, easy to use, and 
provide an intuitive user interface for data 
visualization. These devices have achieved great 
popularity not only among individual users but also 
recently in the scientific research community (Peach 
et al., 2018; Weatherall et al., 2018). As the latest 
models can achieve comparable accuracy against 
medical devices, these devices are increasingly used 
in research studies to generate new insights into sleep 
health (Liang, 2021; Liang & Ploderer, 2020; 
Yurkiewicz et al., 2018) 
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Despite their popularity, consumer sleep tracking 
technology is yet recognized as an effective tool that 
helps people improve their sleep quality. Most sleep 
trackers rely on motion-sensing technology 
(accelerometer or gyroscope) to gauge how often a 
user moves during sleep. Therefore, they may 
overestimate or underestimate sleep and wake. For 
example, a user wakes up in the middle of the night 
but lying still could get an imprecise sleep summary 
the next day. Furthermore, a previous study pointed 
out ‘not identifying reasons for sleep problems’ and 
‘not knowing how to act’ as two main barriers to 
improving sleep with consumer activity trackers 
(Liang & Ploderer, 2016). From a data science 
perspective, addressing these two barriers requires the 
analysis of users’ sleep data within their lifestyle 
context (Liang, Ploderer, et al., 2016). Despite of 
being able to collect multiple streams of behavioural 
and physiological data (e.g., steps, heart rate, calorie 
expenditure), Fitbit only allows users to visualize 
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these data separately, leaving it difficult to explore the 
relationships among different streams of data. Figure 
1 illustrates how sleep data are presented in isolation 
from other streams of data that can potentially 
provide contextual information. It is worth 
mentioning that this problem is not specific to Fitbit 
but rather universal to all consumer activity trackers.  

 

Figure 1: A screenshot of the Fitbit dashboard. 

On the other hand, several research studies have 
attempted to address the above limitation of consumer 
activity trackers. In these studies, researchers 
developed web and mobile applications that allow 
users to explorer the correlations among multiple 
streams of health data readily collected with 
consumer activity trackers (Bentley et al., 2013; 
Daskalova et al., 2016; Kay et al., 2012; Liang, 
Ploderer, et al., 2016). Both linear correlation analysis 
and data mining techniques have been employed to 
identify relationships between sleep and lifestyle 
context (Daskalova et al., 2016; Liang, Chapa-
Martell, et al., 2016; Liang, Ploderer, et al., 2016). 
Here we coin the term ‘context-aware sleep 
computing’ as the umbrella of all the research studies 
that attempt to analyse sleep within the context of 
users’ lifestyle, physiological and psychological 
states, and living environment.  

Current context-aware sleep computing research 
is limited to the daily aggregation of contextual 
factors. Prior studies have only considered the 
associations of sleep to the total number of steps, 
calories expenditure, or minutes spent in various heart 
rate zones in a day (Bentley et al., 2013; Daskalova et 
al., 2016; Kay et al., 2012; Liang, Ploderer, et al., 
2016). While daily aggregations provide important 

information on day-to-day variability, the intraday 
temporal patterns of these factors—which may 
potentially correlate to sleep quality at night—were 
largely overlooked. This study aims to fill in this gap. 
We performed a two-week data collection experiment 
with 16 participants using Fitbit Charge 3. The 
minute-by-minute time series data of steps and heart 
rate were retrieved using a special Fitbit web API that 
requires permission from the Fitbit company. Time-
domain, frequency-domain, and nonlinear features 
were derived from the time-series data to capture the 
intraday temporal patterns of these two factors in 
different dimensions. We also proposed an ensemble 
feature selection method to identify the important 
intraday features that significantly correlate to sleep 
quality at night. The contribution of this study is two-
fold.  
 The proposed context-aware sleep analysis 

method bridges a methodological gap in 
persona informatics by considering the 
intraday temporal patterns of lifestyle factors. 

 We demonstrated how the proposed method 
could help generate not only actionable insights 
for individuals, but also interesting research 
hypothesis that may inspire further studies in 
sleep science.  

2 RELATED WORKS 

Sleep plays a critical role in human health and has 
strong associations with learning, memory, and 
metabolism. Many studies have been conducted to 
help people understand more about sleep. However, 
sleep experiments performed in sleep labs had some 
drawbacks since the environment in which sleep 
occurs was very different from a bedroom 
environment. The findings of these studies might not 
be generalized to real situations and result in poor 
ecological validity. Recently, the development of 
commercial sleep-tracking devices provides 
researchers with a tool to track sleep as well as 
daytime activities in naturalistic settings. While the 
companion apps of these devices only present 
different streams of data independently, several 
research studies have developed third-party web and 
mobile applications that help users to learn about the 
relationship between sleep metrics and contextual 
factors (Bauer et al., 2012; Bentley et al., 2013; Kay 
et al., 2012; Liang, Ploderer, et al., 2016). These 
studies have demonstrated both feasibility and merits 
in investigating the effects of multiple categories of 
factors along with sleep.  To collect data without 
disturbing participants’ daily activities, many studies 
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used wristband activity trackers (Fitbit, Xiaomi Mi 
Band) to collect behavioural and lifestyle information 
in addition to sleep. Additional sensors were also used 
to explore the home sleep environment (Kay et al., 
2012; Liang, Ploderer, et al., 2016; Park et al., 2019; 
Wang et al., 2021). (Kay et al., 2012), built up a 
system called Lullaby which can be installed in 
participants’ bedrooms to capture light, temperature, 
noise, and motion signals. Contextual factors varied 
from study to study and some of them cannot be 
detected automatically, such as consuming caffeine, 
nicotine use, relaxation, and food intake. This 
problem can be solved by asking the participants to 
write down their observations manually (Bauer et al., 
2012; Bentley et al., 2013; Daskalova et al., 2016; 
Liang, Ploderer, et al., 2016; Park et al., 2019). 
However, missing data is a big challenge since 
manual logging did not occur frequently. Apart from 
using wristband devices, some studies used available 
sensors in smartphones and developed their own 
widget so that they can reduce the need for external 
devices (Bauer et al., 2012; Daskalova et al., 2016). 
Taking advantage of mobile phones, factors like 
location, weather, free/busy hours, communication 
records can be extracted automatically (Bentley et al., 
2013; Kay et al., 2012; Liang, Ploderer, et al., 2016; 
Park et al., 2019; Wang et al., 2021). In these studies, 
some participants were amazed by how little they 
knew about sleep despite having sleep every day (Kay 
et al., 2012). Participants were able to see the links 
between sleep hours with emotion and physical 
activity for the next day (Bentley et al., 2013). 
Studying contextual factors not only benefits healthy 
subjects but also contributes to sleep disorder 
research. (Park et al., 2019) found that contextual 
factors such as calories consumed, walk, distance, 
stairs, and active ratio could be useful for predicting 
sleep efficiency and ranking the risk level of insomnia 
for the next night’s sleep. Some contextual factors 
such as age, gender, subjective perception of sleep 
quality and heart rate were shown to affect the 
accuracy of sleep trackers and were used to develop 
more accurate sleep staging algorithms (Liang & 
Chapa-Martell, 2019, 2021).  

Some limitations exist and demand further work 
to improve. First, existing studies have only 
considered the daily aggregation of lifestyle 
contextual factors, such as the total number of steps, 
the total calories expenditure, and the total minutes 
spent in each activity intensity zone. The intraday 
variability and the temporal patterns were largely 
neglected. Second, the data from different 
participants were usually merged into one large 
dataset for analysis, assuming the homogeneity of the 

cohort. While such cohort-level analysis is widely 
adopted, it is found that the results are usually not 
generalized well to individuals, especially when the 
intra-personal variability is larger than the inter-
personal variability (Molenaar, 2004). In this study, 
the intraday temporal patterns of the time series data 
of steps and heart rate were captured using a diversity 
of time-domain, frequency-domain, and nonlinear 
features. In addition, we performed contextual-aware 
sleep analysis for participants individually to identify 
correlations between sleep and lifestyle for each 
person. In what follows, we demonstrate the 
usefulness of intraday features of the time series data 
of lifestyle factors, as well as the importance of a 
research paradigm shift from cohort informatics 
towards personal informatics. 

3 METHODS 

An overview of the proposed context-aware sleep 
analysis is illustrated in Figure 2. All data were 
collected using Fitbit Charge 3. We constrained the 
contextual factors to steps and heart rate because they 
are readily measurable together with sleep data using 
a single Fitbit device, which best represents the usage 
scenario of consumer activity trackers in real life. In 
what follows, we detail the data collection experiment, 
data preprocessing, feature construction and the 
original feature selection algorithm. 

3.1 Data Collection and Retrieval 

Due to the lack of high-quality open-access datasets 
that serve our purpose, we conducted a 14-day data 
collection experiment on our own with 16 participants 
using Fitbit Charge 3. The participants were recruited 
through personal connections and word of mouth. 
Applicants with diagnosed sleep problems were 
excluded. The cohort consist of 9 women and 7 men, 
with an average age of 30 years. Ethics approval was 
obtained from the Ethics Committee of the Kyoto 
University of Advanced Science. 

We mailed a Fitbit Charge 3 device to each 
participant and instructed them to set up the device 
and the companion Fitbit app on their smartphones. 
The participants were required to log in to the Fitbit 
app using a provided email account that our research 
assistants created exclusively for the data collection 
experiment. The subjects were encouraged to wear 
the Fitbit Charge 3 as often as possible and to 
synchronize the device daily. Participants who 
successfully completed the data collection 
experiment were allowed to keep the Fitbit device as 
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a reward, and they were instructed to re-login on their 
Fitbit apps using their personal email account, so that 
their data would not be synchronized to the 
experiment account afterward. 

The daily aggregation of sleep data was retrieved 
using Fitbit public web API. We selected three sleep 
metrics—total sleep time (TST), wake after sleep 
onset (WASO), and deep sleep ratio—as indicators of 
sleep quality, as prior studies showed that many users 
to consumer sleep trackers rely on these metrics to 
assess their sleep quality (Bauer et al., 2012; Bentley 
et al., 2013; Kay et al., 2012; Liang & Ploderer, 2020; 
Liang, Ploderer, et al., 2016). Prior validation studies 
found that Fitbit are reasonably accurate in measuring 
the daily aggregation of sleep metrics (De Zambotti 
et al., 2019; Liang & Chapa-Martell, 2018).  

The intraday time series of steps and heart rate 
were retrieved using a special Fitbit web API that 
requires getting permission from the Fitbit company. 
While a third-party service has no limitations in 
accessing the aggregated data, permission is needed 
to access the intraday time series. Both the steps and 
heart rate time series were retrieved at one-minute 
resolution. 

 

Figure 2: An overview of the proposed context-aware sleep 
analysis method with Fitbit. 

 

3.2 Data Preprocessing 

The data preprocessing protocol described below was 
performed individually on the dataset of each subject 
to handle missing data and to ensure the correct 
timestamp match between the contextual data and the 
sleep data. 

Missing data was an occasional issue when no 
sleep stage data was recorded throughout the night, or 
no resting heart rate was recorded upon waking up on 
a day. The Fitbit API supports the retrieval of two 
kinds of sleep data. The ‘stage’ data consist of sleep 
stage levels include ‘light’, ‘deep’, ‘rem’, and ‘wake’, 
while the ‘classic’ data consist of sleep pattern levels 
include ‘asleep’, ‘restless’, and ‘wake’. In other 
words, when the sensor did not record sufficient 
signals to infer sleep stages of a night, it only roughly 
classified sleep and awake. The target sleep metrics 
that were related to sleep stages were all filled in with 
NAs on nights with no sleep stage information. 
Missing heart rate data were set to NA as well. 
Afterward, the NAs were imputed with the mean of 
the intraday time series. 

The contextual data and the sleep data needed to 
be matched by date. According to the data scheme of 
Fitbit, the sleep data of day N corresponds to the sleep 
that ends in the morning of day N (not the sleep that 
starts on the night of day N). Hence, the contextual 
data of sleep on day N refers to the steps and heart 
rate data between the end time of sleep on day N-1 
and the start time of sleep on day N. Depending on 
whether a user goes to bed before midnight (case 1) 
and after midnight (case 2), the sleep start time of day 
N could be either on day N-1 (case 1) or on day N 
(case 2). The corresponding contextual data that 
matched to the sleep on day N hence differed between 
case 1 and case 2. In addition, the raw sleep data 
retrieved only consist of sleep stages in minutes. We 
calculated the ratio of deep sleep (DR) by dividing the 
minutes of deep sleep by TST. 

3.3 Feature Construction 

We derived features from the intraday time series of 
steps and heart rate. A full list of derived features is 
summarized in Table 1.  

The time-domain features were directly derived 
from the preprocessed time series data. These features 
capture the statistical and morphological 
characteristics of the intraday time series data. 
Frequency-domain features were derived from the 
Fourier transform of the original time series data. 
These features capture the spectral characteristics of 
the intraday time-series data. Nonlinear features were 
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derived after phase space construction by applying 
Taken’s time-delay embedding to the time-series data 
(Dingwell & Cusumano, 2000). Several nonlinear 
dynamic system analytic techniques were applied for 
deriving nonlinear features. These techniques 
included recurrence quantitative analysis (RQA), 
Poincaré plots (PP) (Hoshi et al., 2013), detrended 
fluctuation analysis (DFA) (Hardstone et al., 2012), 
as well as several measures of entropy (López-Ruiz   
et al., 1995). These features capture the chaotic 
characteristics and the complexity of the intraday 
steps and heart rate time-series. The infinite and 
missing values were first unified as ‘NA’ and then 
imputed by the mean of the corresponding features. 

3.4 Feature Selection 

Feature selection is a critical step in identifying the 
contextual features that are relevant and have the 
strongest predictive power of the target sleep metric 
(Guyon & Elisseeff, 2003). Existing feature selection 
algorithms fall into three main categories: wrappers, 
filters, and embedded methods. Each category has its 
merits and demerits. Wrapper methods build a 
predictive model to score feature subsets, which 
usually provide the best-performing feature set but 
are computationally intensive. Filter methods achieve 
a trade-off between computational speed and the 
usefulness of the feature set. Embedded methods 
perform feature selection as part of the model 
construction process and the computational 
complexity is between the previous two categories. In 
this study, we proposed an ensemble feature ranking 
and selection method illustrated in Figure 3. The 
proposed algorithm leverages six feature selection 
algorithms to generate an average importance score 
for each feature and performs feature pruning based 
on a set of criteria. 

As illustrated in Figure 3, the six feature selection 
algorithms include one wrapper (i.e., recursive 
feature elimination (RFE)), two filters (i.e., F-test and 
mutual information (MI)), and three embedded 
methods (i.e., multivariate linear regression, Lasso 
regression, and Ridge regression). All features were 
scaled between [0, 1] before being passed to the 
feature selection algorithm. Each algorithm k 
generated an importance score ߫௫,௬  for a feature x in 
relation to a target sleep metric y. The ߫௫,௬  of all six 
algorithms were scaled to the range [0, 1] and then 
averaged to generate an average importance score for 
feature x in relation to sleep metric y. In the meantime, 
the support ݑݏ௫,௬  of feature x in relation to sleep 
metric y—defined as the number of algorithms that 
generated a scaled ߫௫,௬  above 0.5—was also 

computed. Pearson’s correlation coefficient and the 
correspondent p-value were calculated to quantify the 
linear relationship between feature x and sleep metric 
y. 

Table 1: Features constructed using Fitbit intraday time 
series data. 

Category Feature Denotation 
Time-

domain 
mean mean 
median median 
standard deviation std 
variance variance 
peak to peak p2p 
maximum max 
minimum min 
absolute energy absEnergy 
mean absolute 
difference 

meanAbsDiff 

zero cross zc 
skewness skew 
kurtosis kurt 
5th order moment mmt5th 

Frequenc
y-domain 

total spectrum totalSpec 
maximal spectrum maxSpec 
peak ratio peakRatio 

Nonlinear recurrence rate recurRate 
percent 
determinism 

det 

average diagonal 
line length 

avgDiagLine 

longest diagonal 
line length 

longestDiagLine 

entropy of diagonal 
lines lengths 

entropyDiagLine 

laminarity lam 
trapping time trappingTime 
longest vertical line 
length 

longestVertLine 

entropy of vertical 
lines lengths 

entropyVertLine 

ratio between 
determinism and 
recurrence rate 

ratioDetRecurRate 

ratio between 
laminarity and 
determinism 

ratioLamDet 

correlation 
dimension 

corDim 

scaling exponent alpha 
scaling exponent 
with 50% overlap 

alphaOverlap 

Hurst exponent hurstExpK 
Shannon entropy shannonEn 
sample entropy sampEn 
permutation entropy permuEn 
system complexity sysComplexity 
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Figure 3: The proposed ensemble method for selecting the most important intraday contextual features in relation to the target 
sleep metrics. 

Three conditions were defined to select the most 
important features: (1) ߫௫̅,௬ > 0.5, (2) ݑݏ௫,௬ ≥ 3, and 
(3) p < 0.05. The outputs of the ensemble feature 
selection method were the selected contextual 
features and the corresponding Pearson’s correlation 
coefficients in relation to each sleep metric.  

In this study, feature selection was performed at 
both the individual level and the cohort level. At the 
individual level, the cleaned dataset of each subject 
was fed directly into the ensemble feature selection 
method. At the cohort level, the datasets of all 
subjects were merged before being fed into the 
ensemble feature selection method. It is worth noting 
that at the cohort level analysis, the repeated measures 
correlation was used in place of Pearson’s correlation 
to handle the dependence among observations. The 
parameter α was set to 0.5 for Lasso and Ridge, and 
the RFE was set to stop the search when 5 features 
were left. Missing values were removed in a pair-wise 
manner in correlation analysis. 

4 RESULTS 

The contextual features that were significantly 
associated with each sleep metrics are shown in 
Figure 4~6. The features were selected using the 
proposed ensemble method. Red, blue, and grey cells 
indicate significantly and positively correlated 
important features, significantly and negatively 
correlated important features, and unimportant 
features, respectively. The shades of red and blue 
indicate the strength of correlation. The first column 
shows the result at the cohort level, and the 
subsequent columns show the result for each subject. 
As can be seen from figures 4-6, the identified 
correlations exhibit great inter-participant differences, 
while no correlation was found between the 
contextual and sleep metric for P2 and P9. 

Figure 4 shows the identified important 
contextual features of TST. At the cohort level, 
ratioDetRecurRate was the only contextual feature  
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Figure 4: Contextual features that significantly correlate to TST. The value and colour shade of a cell indicate the correlation 
coefficient and the correlation strength, respectively.  

 

Figure 5: Contextual features that significantly correlate to WASO. The value and colour shade of a cell indicate the 
correlation coefficient and the correlation strength, respectively. 
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Figure 6: Contextual features that significantly correlate to the deep sleep ratio. The value and colour shade of a cell indicate 
the Pearson’s correlation coefficient and the correlation strength, respectively. 

that exhibits a significant correlation. This factor was 
also an important factor for P3, though the correlation 
strength at the cohort level was much lower than that 
at the individual level. At the individual level, the 
same contextual feature may demonstrate the 
opposite correlation direction for different 
participants. For example, meanAbsChange_HR was 
negatively correlated to TST for P1 (r = -0.72, p = 
0.006) but positively correlated to TST for P4 (r = 
0.57, p = 0.035).  The strongest correlation was found 
between absEnergy_HR and TST for P14 (r = -0.79, 
p < 0.001). No correlation was found between the 
contextual features and TST for P2, P6, P7, P9, and 
P11. Figure 5 shows the identified important 
contextual features of WASO. At the cohort level, no 
factor was significantly correlated to WASO. Similar 
to TST, the same contextual feature may demonstrate 
opposite correlation direction for different 
participants. It is shown that entropyDiagLine_Steps 
was a negatively correlated factor for P3 (r = -0.70, p 
= 0.008) but a positively correlated factor for P6 (r = 
0.60, p = 0.010), and sampEn_Steps was a negatively 
correlated factor or P1 (r = -0.63, p = 0.020) but a 
positively correlated factor for P15 (r = 0.50, p = 
0.020). Significant inter-subject differences were 
observed. P4 and P5 had the highest number of 
correlated features, while no correlation was found 
for P2, P9, and P13. 

Figure 6 shows the identified important 
contextual features of the deep sleep ratio. No 
contextual feature was selected at the cohort level. At 
the individual level, no contextual feature was 
selected for 9 out of 16 participants. P3 and P11 had 
the highest number of selected features for the deep 
sleep ratio.  

 

5 DISCUSSIONS 

With the burgeon of consumer sleep tracking 
technologies, there has been an increasing analytical 
need to interpret personal sleep data within a user’s 
behavioural and physiological context. In response to 
this need, several prior studies have considered the 
relationships between sleep and the daily 
aggregations of contextual factors (Bauer et al., 2012; 
Bentley et al., 2013; Kay et al., 2012; Liang, Ploderer, 
et al., 2016), but the intraday temporal patterns of the 
contextual factors were largely neglected. In this 
study, we directed the focus to the intraday temporal 
patterns and characteristics of the heart rate and step 
time-series data, which can be readily measured 
together with sleep data using consumer activity 
trackers such as Fitbit. We derived time-domain, 
frequency-domain, and nonlinear features from the 
minute-by-minute intraday time series and proposed 
an ensemble feature selection method to identify the 
most important intraday features that were 
significantly associated to target sleep metrics. 

This study yielded two principal findings. First, 
the intraday temporal patterns of the behavioural and 
physiological data collected with consumer activity 
trackers encoded valuable contextual information for 
sleep analysis. Second, the correlation analysis results 
generated at the cohort level are likely to deviate from 
the correlations at the individual level.  

Some of the identified contextual features could 
lead to intuitive interpretations that generated 
actionable insights. The zero-crossing of the intraday 
step time-series was an important contextual factor at 
the individual level for TST and WASO. At the 
individual level, it shows that a decrease in zero-
crossing was associated with increased sleep hours 
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for P10 and P14, but increased wake time for P12. 
Since zero-crossing is an indicator of the noisiness of 
a signal (Liang, 2021), it is indicated that P10 and P14 
were likely to achieve longer sleep hours by 
improving the regularity of their daily physical 
activity, while P12 may pursue the opposite to reduce 
wake time during sleep. Zero-crossing has been an 
important feature in EEG-based automatic sleep 
staging (Şen et al., 2014). Our finding suggests that 
the zero-crossing of intraday step time series 
collected using consumer activity trackers may serve 
as a predictor of night sleep, though it requires further 
analysis to confirm this hypothesis. 

The mean absolute difference of the intraday heart 
rate time series was an important contextual factor of 
all the target sleep metrics at the individual level. An 
increase in the mean absolute difference of the 
intraday heart rate was associated with increased TST 
for P4, decreased WASO for P1 and P14, and 
increased deep sleep ratio for P11. Since being 
engaged in more intense physical activity during the 
day is linked to the increased mean absolute 
difference in heart rate, these participants may 
attempt to integrate exercise into daily routines for 
better sleep at night. 

Contextual factors such as the absolute energy of 
the intraday heart rate time series also yielded 
actionable insights. An increase in the absolute 
energy of the heart rate time series was positively 
associated with WASO for P8 but was negatively 
associated with WASO for P12. Correspondently, P8 
may benefit from spending more time in the low heart 
rate zone while P12 may benefit from the opposite. 

On the other hand, some of the nonlinear features 
may not provide insights that can be immediately 
acted on, but they may generate interesting 
hypotheses that inspire further scientific studies. 
Several selected nonlinear features were derived from 
the intraday step time series using recurrence 
quantitative analysis (RQA). For example, the 
average diagonal line length (negatively associated to 
TST for P12 and positively associated to WASO for 
P16), the longest diagonal line length (positively 
associated to WASO for P5 and to TST for P16), the 
entropy of the vertical line length (positively 
correlated to WASO P6 and to deep sleep ratio for 
P12) were important contextual features of sleep for 
certain participants. Chaos-based analysis of human 
physiological data has become widely adopted for 
diagnosing motor-control and cardiovascular diseases 
(Dingwell & Cusumano, 2000; Wu et al., 2009). 
Similarly, the nonlinear chaotic features derived from 
the intraday personal health data may represent a 

promising method for predicting sleep quality or 
diagnosing sleep problems in daily life settings.  

6 CONCLUSIONS 

In this study, we demonstrated the importance of 
considering the intraday temporal patterns of steps 
and heart rate for context-aware sleep analysis with 
personal health data. The statistical, spectral, 
morphological, and nonlinear features of the intraday 
time series could all provide valuable predictive 
information of sleep at night and should be routinely 
included in personal informatics analysis. While 
some intraday features provided actionable insights 
that could guide behaviour change for better sleep, 
others may generate interesting hypotheses that 
inspire further scientific studies. In the meantime, the 
individual-level analysis may be preferred over 
cohort-level analysis for generating personalized 
insights on sleep health.  
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