Towards a Goal-oriented Method for Software Solutions Prioritization

Keywords:

Abstract:

Prisca Petelo, Abderrahmane Leshob®?, Benzarti Imen®® and Hafedh Mili®°
University of Quebec at Montreal, Montreal, Canada

Goal Modeling, Archimate, Goal-oriented Requirement Language, Software Prioritization, Model-driven
Design, Enterprise Architecture, Solutions Architecture.

Architecture practitioners, such as enterprise architects, solutions architects, and application architects are
often faced with the problem of selecting the best software solutions that implement the requirements and
satisfy the business objectives. Examples of these solutions are: web services, software components, and full
software applications. To identify the best solution, architects often have to prioritize the candidate solutions
according to a set of criteria, such as their quality attributes, their contributions to satisfy the (business)
objectives, and their cost of implementation. This work aims to design a method that helps architects to
identify the optimal solution that achieves the requirements and efficiently satisfies the business objectives.
The proposed method is composed of three steps. First, it builds a goal model that links each candidate solution
to: 1) the functional requirements to be implemented and ii) the desired objectives to be satisfied. The goal
model uses the Archimate language. It connects the requirements, goals and solutions together according to the
Goal-oriented Requirement Language (GRL) rules. Second, the method computes automatically satisfaction
scores that measure the effectiveness of each solution. Third, the method prioritizes the solutions according to
their satisfaction scores. This work presents the principles underlying the proposed method and discusses its

possible application in the practice.

1 INTRODUCTION

Architecture practitioners are often faced with
the problem of selecting the software solution
that best meets their organization needs among a
set of candidate solutions. Business Architects,
working with business analysts are responsible for
elaborating business cases that propose different
candidate solutions and then do a comparative
study in order to select the best one that achieves
stakeholders requirements and objectives. Solutions
and application architects must select the best
components, services and frameworks that implement
the software functional requirements and that
efficiently achieve the quality attributes. Enterprise
architects must identify the best solutions to automate
business processes. For example, to automate a
business process, an enterprise architect may choose
either a Service-Oriented Architecture (SOA)-based
solution, a BPM (Business Process Management)
solution or an ERP (enterprise resource planning).

https://orcid.org/0000-0002-4066-3111
@ https://orcid.org/0000-0003-0658-9605
¢ https://orcid.org/0000-0002-1220-9042

Petelo, P., Leshob, A., Imen, B. and Mili, H.
Towards a Goal-oriented Method for Software Solutions Prioritization.
DOI: 10.5220/0010891500003119

To select the best solution(s), architects need
to prioritize the candidate solutions according to a
set of criteria, such as their quality attributes, their
contributions to satisfy the (business) objectives, and
their cost of implementation. Although prioritization
of the solutions plays a crucial role in enterprise
architecture (EA), business and solutions architecture,
few methods were proposed in the literature. Existing
prioritization approaches, including (Badidi, 2013;
Czekster et al., 2019; Kwong et al., 2010; Maximilien
and Singh, 2004; Min, 1992; Wei et al., 2005; Ziaee
et al.,, 2006) suffer from a number of limitations
including complexity and usability.

In this paper, we propose a new easy-to-
use method that helps architecture practitioners to
prioritize software solutions. The prioritization
process is based on the requirements that the solutions
must implement and the business objectives they
need to satisfy. The proposed method is goal-
oriented. It combines two languages: the Archimate
language, a language for modeling EA and the Goal-
oriented Requirement Language (GRL) that allows
the assessment of the relative effectiveness of design
alternatives, such as candidate solutions. First, the

287

In Proceedings of the 10th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2022), pages 287-293

ISBN: 978-989-758-550-0; ISSN: 2184-4348

Copyright (© 2022 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

method builds an Archimate-based goal model that
links candidate solutions (e.g., payment web service)
to the functional requirements (e.g., pay by credit
card) to be implemented and the desired objectives
(e.g., Secure payment) to be satisfied. The goal
model connects Archimate requirements, goals and
solutions according to the GRL rules and constraints.
Second, it computes automatically satisfaction scores
that measure the effectiveness of the solutions. Third,
the method prioritizes the solutions according to their
satisfaction score obtained in the previous step. The
higher the score is, the better is the solution.

This research has been conducted following the
design science methodology (Peffers et al., 2007).
The design science research approach aims to
answer questions related to relevant issues through
the creation of innovative artifacts (Peffers et al.,
2007). The artifact proposed in this research is a
prioritization method.

The remainder of the paper is organized as
follows. Section 2 describes our goal-oriented
method for software solutions prioritization using
a document management system. It also presents
the basic concepts of the Archimate and the GRL
languages. Section 3 surveys related work. Section
4 draws our conclusions and outlines directions for
future research.

2 A GOAL-ORIENTED METHOD
FOR SOFTWARE SOLUTIONS
PRIORITIZATION

Our goal is to design an easy-to-use method that helps
architecture practitioners such as enterprise architects
and solutions architects to prioritize candidates
solutions according to their ability to implement the
requirements and their contributions to satisfy the
software and stakeholders goals.

To provide an easy-to-use method that targets
a large community of architecture practitioners, we
chose the Open Group Archimate language (The
Open Group, 2019) to design the models. We also
needed a goal language that i) links the requirements,
solutions and goals, and ii) provides a mechanism
to evaluate the impact of the choice of solutions
on the business objectives. Among goal modeling
languages KAOS (Keep All Objects Satisfied) (van
Lamsweerde, 2004), GRL (ITU-T, 2012), and i * (Yu,
1997), we found that GRL is suitable to design our
method as it is a standard, lightweight, and easy to
integrate with the Archimate language.

288

2.1 ArchiMate Language

ArchiMate is an EA modeling language that has
been adopted as a standard by the Open Group
(Jonkers et al., 2011). Archimate allows the creation
of models to build an EA (Jonkers et al., 2017).
It is made up of two dimensions: the layer and
aspect dimensions (Gaydamaka, 2019; Jonkers et al.,
2017). The layers represent the successive levels of
abstraction at which a business is modeled and the
aspects represent the different concerns to be modeled
(Gaydamaka, 2019). Archimate is composed of
five layers, namely Strategy, Business, Application,
Technology, Implementation and Migration and four
aspects, namely Passive structure, Behavior, Active
Structure, and Motivation (The Open Group, 2019).

The Archimate aspects have been inspired by the
natural language. Active structure elements (e.g.,
actor, role, application component) are the subjects
that can perform behavior. = Behavior elements
represent the dynamic aspects (e.g., business process,
business interaction, event) of the organization.
Passive structure elements (e.g., product, business
object) can be accessed by behavior elements (The
Open Group, 2019). Motivation elements (e.g.,
goal, requirement) represent the reason behind the
architecture or the behavior (The Open Group, 2019).

Strategy layer elements are used to model the
strategic direction of the organization. These
elements are used to model how the organization
wants to create value, the resources needed, and
how it plans to use these resources. Business layer
elements (e.g., business service) allow to model
the operational aspects of the organization (The
Open Group, 2019). Business layer models are
technology-independent. Application layer elements
(e.g., application service, application component)
model the application architecture (The Open Group,
2019). Technology layer elements are used to model
the technology architecture of the organization (The
Open Group, 2019). Physical layer elements allow
modeling the physical world (The Open Group,
2019). These elements are included as an extension
to the technology layer. The Implementation and
Migration layers support the implementation of the
architectures and their migration (The Open Group,
2019).

2.2 GRL Language

GRL is a goal-oriented modeling language (ITU-T,
2012). It allows to model the requirements to be
achieved by the solutions, the goals to be satisfied,
the tasks and their relationships. Figure 2 presents

Passive Behavior Active Motivation

Structure Structure

Strategy
Business H

Technology

— Layers

H

Physical

Implementation
& Migration ||
L J

T
Aspects

Figure 1: Archimate language layers and aspects (The Open
Group, 2019).

the subset of the GRL intentional elements. A goals
are quantifiable elements. They usually refer to
functional requirements. Softgoals refer to qualitative
aspects (Amyot et al., 2010). Soft-goals are usually
related to non-functional requirements. A task is a
solution which achieves goals or satisfies softgoals
(Amyot et al., 2010).

Figure 3 shows the contribution and means-end
links that are used to connect goals, softgoals, and
solutions in a GRL model. It also illustrates the
contribution types (Section b). Means-End links
describe how goals (e.g., functional requirements)
are achieved (Amyot et al., 2010). Contribution
links specify desired impacts of one element on
another element (e.g., softgoal) (Amyot et al., 2010).
As shown in Figure 3, the contribution link can
have a qualitative contribution type, or a quantitative
contribution (e.g., integer values) (Amyot et al.,
2010). As shown in the Section b of Figure 3,
contribution links can be labeled using texts or icons.

o

Figure 2: Basic GRL intentional elements (adapted from
(Amyot et al., 2010)).

2.3 The Approach

Figure 4 illustrates the process of the proposed
method. The first step builds a goal model that
combines constructs from the Archimate and GRL
languages. This model connects the candidate
solutions, such as web services, to i) the objectives
they satisfy and ii) the requirements they implement.
The second step computes a satisfaction score
for each solution using a GRL-based evaluation
algorithm. This score measures the extent to which
each solution satisfies the objectives. The last step
ranks the solutions according to their satisfaction
score.

Towards a Goal-oriented Method for Software Solutions Prioritization

_—
Contribution

—D
Means-End

(a) GRL Links
i + o+

e

Make Help Some Positive Unknown
— — é
[]
Some Negative Hurt Break

(b) GRL Contributions Types

Figure 3: GRL links and contributions types (adapted from
(Amyot et al., 2010)).

To explain the proposed method, let’s consider a
medical clinic that wants to implement an efficient
document management system (DMS) to improve
the management of its patients medical files.
Currently, all client files are paper-based. The
main goal (higher business objective) to satisfy by
implementing an automated document management
solution is efficient file management. To satisfy
this goal efficiently, the architect has identified
three candidates solutions: Integrated Document
Management (IDM) service, Amazon Workdocs
service, and Miscrosoft SharePoint Document
Management Service.

2.4 Build the Archimate Goal Model

The goal of this subprocess step is to create an
Archimate-based goal model that links the solutions
(e.g., services) to the goals/objectives they satisfy
and to the requirements they implement. This step
is composed of two activities as shown in Figure 5.
The first activity builds a high-level goal model that
links the goals and sub-goals. The second activity
connects the solutions to i) the requirements they
implement and ii) the goal model obtained in the
previous activity.

2.4.1 Create the High-level Goal Model

This step consists of creating the high-level goal
model that contains the Archimate goals (GRL soft-
goals) to satisfy. A goal is an Archimate motivation
aspect. In this model, sub-goals are linked to high-
level goals using Archimate influence link (GRL
contribution link). Lets take the example of the
medical clinic. The highest goal to satisfy by
implementing an automated document management

289

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

This step computes a satisfaction
score per solution using a GRL-

based evaluation algorithm.

Build the Archimate-based
goal model

each solution

Compute the satisfaction score for Rank the solutions according to
their satisfaction score

Figure 4: Overall process of the proposed method.

Model the
high-level goals

Link the solutions to the
goals and requirements

Figure 5: The process of modeling the goal model.

system 1is efficient file management. This high-level
goal has four sub-goals, namely Secure solution,
Usable solution, Auditable solution, and Unified
solution. To create the high-level goal model, the
architect proceeds as follows:

1. Specity the importance of high-level goals. The
importance attribute of a goal indicates how
important it is for the system or the organization.
The proposed method uses importance values
from O to 100. However, the modeler can use non-
integer values from any range. The importance
value of a goal is shown in brackets. In our
example, the architect assigned an importance
value of 100 to the highest goal (i.e., efficient file
management) (see Figure 6).

2. Link sub-goals to the highest goals using the
Archimate influence link (GRL contribution link)
and specify the contribution value for each
influence link. The contribution value indicates
the desired impacts of a sub-goal on a higher-
level goal. As for importance values, we use
contribution values from 0 to 100. However,
the architect can use non-integer values from any
range.

3. Calculate the importance values for each sub-goal
using their contribution links’ values. Importance
values are propagated down from high-level goals
to sub-goals using the following formula (see
(Shamsaei et al., 2011)):

pGoal.iValue x sGoal.cValue
100

where sGoal.iValue and sGoal.cValue represent the
importance value and the evaluation value of the sub-
goal respectively and pGoal.iValue is the importance
value of the parent goal. For example, the importance
value of the sub-goal Usable solution is (1%0x50)

80.

sGoal.iValue =

290

Efficient file management (100) ©
A A L) A
100 80 80 100
L . .)
Secure solution © Usable solution © Auditable @ Unified solution ©
(100) (80) solution (80) (80)

Figure 6: DMS high-level goal model.

The resulting DMS high-level goal model is
shown in the Figure 6.

2.4.2 Link the Solutions to the Goals and
Requirements

A complete goal model contains goals, solutions and
requirements. The previous steps built an Archimate-
based goal model that contains only the goals (high-
level goals and sub-goals) to be satisfied. This step,
links the candidate solutions to the requirements and
the goal model obtained in the previous step. The
solutions are Archimate concepts that satisfy goals.
Solutions may refer to Archimate concepts such as
business services (from business layer), application
services or application components (from application
layer). The requirements are Archimate concepts
from the motivation layer. According to the GRL
language, the requirements elements can not be
linked directly to the goals elements. Thus, the
proposed method links the requirements to the goals
through the solutions. To add the solutions and the
requirements to high-level goal model, the architect
proceeds as follows:

1. Link the solutions to the goals using the
Archimate influence link (GRL contribution link).
Each link must be quantified using a contribution
value which indicates the impact of the solution
on the achievement of the goal.

2. Link the solutions to the requirements using the
Archimate realization link (GRL means-end link).

For the sake of simplicity and to better explain the
proposed method, we will retain two solutions for
the DMS: Integrated Document Management (IDM)
service and Amazon Workdocs service) and two
sub-objective: Secure solution and Usable solution.

Efficient file management
(100)

A

A
|
|
80

A
H
00
I
1
H
H

'
i
1
Usable solution

Secure solution ©0)

(100)

A A
A N ! |
i i |
i ! |
i / |
Manage ~ ! . / !
i / '
Documents 80 Yoo %080 80
A\ N H
i o / \
: 7 :
i |
| |
i |
i i i
Integrated Document g Amazon WorkDocs ©
Management Service Service

Figure 7: DMS complete goal model.

Figure 7 illustrates the complete goal model of the
DMS.

2.5 Compute the Satisfaction Score

GRL provides a quantitative algorithm to evaluate
goal models, allowing us to compute the satisfaction
score of each candidate solution. Our approach uses
an adaptation of the evaluation algorithm described
in (Amyot et al., 2010). The first step initializes the
evaluation values for each solution. By default, our
method gives all solutions an initial neutral value of
100, meaning that all solutions have the same initial
satisfaction score. The algorithm then propagates
the evaluation values using a bottom-up approach to
obtain evaluation values for each goal. The evaluation
values are propagated through the influence links. For
example, the evaluation value of the sub-goal Usable
solution is computed by 1) multiplying the evaluation
value of the solution Amazon Workdocs service (i.e.,
100) by the value of the influence link that connects
the solution (i.e., Amazon Workdocs service) to the
sub-goal (i.e., Usable solution) and ii) then dividing
the result by 100 (i.e., (12x80)).

Therefore, the evaluation value of a goal (g)
reached by one source element (solution or sub-goal)
denoted src through an influence link is computed as
follows.

src.eValue X src.cValue
100

where src.eValue refers to the evaluation value of
the source element src and src.cValue refers the
contribution value of the influence link that connects
src to the goal g.

When the goal is reached by n contribution links,
the evaluation value is computed as the average of the
calculated evaluation values of each influence links.

g-eValue =

Towards a Goal-oriented Method for Software Solutions Prioritization

((100 * 100) + (80 * 80)) / (2 * 100) = 82

Efficient file management

(100)
A A
| |
100 80
| |
(100 * 100)/ 100 =100 i E (100 * 80)/ 100 = 80,
Secure solution Usable solution
(100) (80)
N A
i |
i i
i i
100 80
i i
i 00) |
“ !
Manage Z/| i
Documgnts - Amazon WorkDocs &
Service

Figure 8: Evaluation of the DMS goal model.

Thus, the evaluation value of the high-level goal
Efficient file management is computed as follows.

((100 x 100) + (80 x 80))
2x 100

After propagating the evaluation values, the
algorithm computes the satisfaction score for each
solution using importance values and the evaluation
values of the goals. The satisfaction score of a
solution S is computed as follows.

=82

Z{-V:] gi-.iValue x g;j.eValue;
YN, gi.iValue

S.score =

where g.iValue and g.eValue are the importance value
and the evaluation value of the goal g respectively.
Thus, the satisfaction score of the solution Amazon
Workdocs service is computed as follows.

((100 x 100) + (80 x 80) + (100 x 82))
100 + 80 + 100

=87.86

3 RELATED WORK

A few research works so far proposed approaches
to prioritize software solutions. Kwong efr al.,
(Kwong et al., 2010) designed an interesting
approach that optimizes software components
selection for component-based software system
(CBSS) development. The approach uses an genetic
algorithm that maximizes the functional performance
of the CBSS and the cohesion and minimizes the
coupling of software modules. In (Min, 1992),
(Wei et al., 2005), authors proposed approaches to
select a suitable software using the analytic hierarchy
process (AHP), a structured technique which can be
effectively used with both qualitative and quantitative
factors to analyze complex decisions.

291

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

In (Badidi, 2013), Badidi designed a framework
for the selection of Software-as-a-Service (SAAS)
that relies on service level agreements (SLA) between
SaaS providers and consumers. The framework uses
an algorithm that ranks potential SaaS providers by
matching their offerings against the requirements of
the SLA.

In (Leshob et al., 2020), authors proposed an
approach to prioritize software requirements. They
used their method to rank the software solutions
based on the requirements they implement. These
approaches are based on a method that uses a one-
to-one mapping between candidate solutions and the
requirements. In the business analysis domain, the
BABOK (Business Analysis Body of Knowledge)
guide (IIBA, 2015) provided a technique based on the
value delivered by a solution to assess its performance
and prioritize it.

In (Radulescu, 2016), Radulescu provided
guidelines that allow business analysts to select and
prioritize security solutions. The guidelines were
summarized in a solution selection and prioritization
matrix based on security cost efficiency of the
solution and the average compliance gap subsequent
to its implementation. The author proposed to use
these guidelines to design a generic methodology
or process that can be uniformly applicable to any
organizational context, regardless of how information
security is addressed.

Maximilien and Singh (Maximilien and Singh,
2004) designed a framework for dynamic web
services selection. The framework uses an agent that
selects the web services based on a quality of service
(QOS) ontology.

Baker et al, (Baker et al., 2006) proposed
a method for ranking and selection of candidate
software components based on a series of features.
The method uses a greedy and simulated annealing
algorithms to determine a subset of components
that maximizes the total sum of weights (customer
desirability and expected revenue) while minimizing
the total cost (the cost of acquisition and development
time) of the selected components from a catalog of
components. In a similar work, Haghpanah et al.,
(Haghpanah et al., 2008) designed an algorithms
to automate component selection for component-
based software. The software component selection is
performed through a process of identifying a minimal
set of components that satisfy a set of requirements
and objectives while minimizing cost.

These approaches are interesting. However, they
all suffer from a number of limitations including
their usability and difficulty of implementation. The
contribution of this work is twofold. First, it proposes

292

a novel end-to-end method that takes into account
the contribution values of the solution to the business
objectives (softgoals). Second, from a usability point
of view, the method is easy to use by non-technical
users, such as business architects or analysts.

4 CONCLUSION AND FUTURE
WORKS

In this work, we designed a new method to prioritize
software solutions such as, services, components,
or any reusable software artefact in order to select
the solution that best meets business and stakeholder
needs. The prioritization process of the candidate
solutions is based on i) the requirements they
implement and ii) the goals (business objectives) they
satisfy. The proposed method is goal-oriented. It uses
two languages: the Archimate language, a language
for modeling EA and GRL, a goal language that
allows the assessment of the effectiveness of design
alternatives. First, the method builds an Archimate-
based goal model that links candidate solutions to
the functional requirements to be implemented and
the desired goals to be satisfied. The goal model
connects requirements, goals and solutions according
to GRL rules. Second, it computes automatically
satisfaction scores that measure the effectiveness of
each candidate solution. In the final step, the method
ranks the solutions according to their satisfaction
score obtained in the previous step.

This paper establishes guidelines and directions
to design an automatic end-to-end method that helps
architects and even non-technical users, such as
business analysts to identify effective solutions. We
plan to conduct experiments to validate the proposed
approach. We also plan to extend the method in order
to support other prioritization factors, such as the cost
and the complexity of implementation.

ACKNOWLEDGMENTS

This research was supported by the Natural Sciences
and Engineering Research Council of Canada
(NSERC).

REFERENCES

Amyot, D., Ghanavati, S., Horkoff, J., Mussbacher,
G., Peyton, L., and Yu, E. (2010). Evaluating
goal models within the goal-oriented requirement

language. International Journal of Intelligent
Systems, 25(8):841-877.

Badidi, E. (2013). A Framework for SOFTWARE-AS-A-
SERVICE Selection and Provisioning. International
Jjournal of Computer Networks and Communications.

Baker, P., Harman, M., Steinhofel, K., and Skaliotis,
A. (2006). Search based approaches to component
selection and prioritization for the next release
problem. In IEEE International Conference on
Software Maintenance, ICSM.

Czekster, R. M., Webber, T., Jandrey, A. H., and Marcon,
C. A. M. (2019). Selection of enterprise resource
planning software using analytic hierarchy process.
Enterprise Information Systems.

Gaydamaka, K. (2019). Archimate-based approach to
requirements engineering. International Journal
of Mathematical, Engineering and Management
Sciences.

Haghpanah, N., Moaven, S., Habibi, J., Kargar, M., and
Yeganeh, S. H. (2008). Approximation Algorithms
for Software Component Selection Problem.

IIBA (2015). A guide to the Business Analysis Body of
Knowledge, Version 3. Lightning Source inc.

ITU-T (2012). ITU-T,User Requirements Notation (URN)—
Language definition.

Jonkers, H., Groenewegen, L., Bonsangue, M., van Buuren,
R., Quartel, D. A., Lankhorst, M. M., and Aldea,
A. (2017). A language for enterprise modelling. In
Enterprise Engineering Series.

Jonkers, H., Proper, E., Lankhorst, M. M., Quartel, D. A.,
and lacob, M. E. (2011). ArchiMate® for integrated
modelling throughout the architecture development
and implementation cycle. In Proceedings - 13th
IEEE International Conference on Commerce and
Enterprise Computing, CEC 2011.

Kwong, C. K., Mu, L. F,, Tang, J. F., and Luo, X. G. (2010).
Optimization of software components selection
for component-based software system development.
Computers and Industrial Engineering.

Leshob, A., Hadaya, P., and Renard, L. (2020). Software
Requirements Prioritization with the Goal-Oriented
Requirement Language. In Lecture Notes on Data
Engineering and Communications Technologies.

Maximilien, E. M. and Singh, M. P. (2004). A framework
and ontology for dynamic web, services selection.
IEEE Internet Computing.

Min, H. (1992). Selection of Software: The Analytic
Hierarchy Process. International Journal of Physical
Distribution and Logistics Management.

Peffers, K., Tuunanen, T., Rothenberger, M. A., and
Chatterjee, S. (2007). A design science research
methodology for information systems research.
Journal of Management Information Systems.

Radulescu, M. C. (2016). Considerations on the selection
and prioritization of information security solutions.
Audit Financiar.

Shamsaei, A., Pourshahid, A., and Amyot, D. (2011).
Business process compliance tracking using key
performance indicators. In Lecture Notes in Business
Information Processing.

Towards a Goal-oriented Method for Software Solutions Prioritization

The Open Group (2019). The Open Group Standard:
ArchiMate 3.1 Specification.

van Lamsweerde, A. (2004). Goal-oriented requirements
enginering: a roundtrip from research to practice. In
12th IEEFE Int Requirements Engineering Conference,
pages 4-7.

Wei, C. C., Chien, C. F, and Wang, M. J. J. (2005).
An AHP-based approach to ERP system selection.
International Journal of Production Economics.

Yu, E. S. K. E. (1997). Towards modelling and
reasoning support for early-phase requirements
engineering. In Proceedings of the IEEE International
Conference on Requirements Engineering, pages 226—
235, Annapolis, USA. IEEE.

Ziaee, M., Fathian, M., and Sadjadi, S. J. (2006). A modular
approach to ERP system selection: A case study.
Information Management and Computer Security.

293

