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Abstract: Naive Bayes is a popular probabilistic model appreciated for its simplicity and interpretability. However, the
usual form of the related classifier suffers from two significant problems. First, as caring about the observa-
tions’ law, it cannot consider complex features. Moreover, it considers the conditional independence of the
observations given the hidden variable. This paper introduces the original Neural Naive Bayes, modeling the
classifier’s parameters induced from the Naive Bayes with neural network functions. This method allows for
correcting the first default. We also introduce new Neural Pooled Markov Chain models, alleviating the con-
ditional independence assumption. We empirically study the benefits of these models for Sentiment Analysis,
dividing the error rate of the usual classifier by 4.5 on the IMDB dataset with the FastText embedding, and
achieving an equivalent F1 as RoBERTa on TweetEval emotion dataset, while being more than a thousand
times faster for inference.

1 INTRODUCTION

We consider the hidden random variable X , tak-
ing its values in the discrete finite set ΛX =
{λ1, ...,λN}, and the observed random variables
Y1:T = (Y1, ...,YT ),∀t,Yt ∈ ΩY . The Naive Bayes is a
probabilistic model considering these variables. This
probabilistic model is defined with the following joint
law:

p(X ,Y1:T ) = p(X)
T

∏
t=1

p(Yt |X). (1)

It can be represented in Figure 1. It is especially ap-
preciated for its simplicity, its interpretability, and it is
one of the most famous probabilistic graphical models
(Koller and Friedman, 2009; Wainwright and Jordan,
2008).

The Bayes classifier (Devroye et al., 2013; Duda
et al., 2006; Fukunaga, 2013) of the Maximum A
Posteriori (MAP) can be written as follows, with the
realization y1:T of Y1:T (we use the shortcut notation
p(X = x) = p(x):

φ(y1:T ) = arg max
λi∈ΛX

p(X = λi|y1:T ) (2)
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Figure 1: Probabilistic oriented graph of the Naive Bayes.

Therefore, the MAP classifier induced from the
Naive Bayes is based on the posterior law, ∀λi ∈
ΛX , p(X = λi|y1:T ), usually written as follows:

p(X = λi|y1:T ) =
p(X = λi,y1:T )

∑
λ j∈ΛX

p(X = λ j,y1:T )

=

p(X = λi)
T
∏

t=1
p(Yt |X = λi)

∑
λ j∈ΛX

p(X = λ j)
T
∏

t=1
p(Yt |X = λ j)

=

π(i)
T
∏

t=1
b(t)i (yt)

∑
λ j∈ΛX

π( j)
T
∏

t=1
b(t)j (yt)

with, ∀λi ∈ ΛX ,y ∈ΩY , t ∈ {1, ...,T}:
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• π(i) = p(X = λi);

• b(t)i (y) = p(Yt = y|X = λi).

Thus, the classifier is:

φ
NB(y1:T ) = arg max

λi∈ΛX


π(i)

T
∏

t=1
b(t)i (yt)

∑
λ j∈ΛX

π( j)
T
∏

t=1
b(t)j (yt)

 (3)

We consider for all this paper the stationary case
for all models, i.e., the different parameters are not
depending on time t. Thus, for the Naive Bayes, we
set b(t)i (y) = bi(y).

The classifier induced from the Naive Bayes for
classification with supervised learning always uses
the form (3), depending on the parameters π and b
(Jurafsky and Martin, 2009; Ng and Jordan, 2002;
Metsis et al., 2006; Liu et al., 2013). It is applied
in many applications, such as Sentiment Analysis or
Text Classification (Jurafsky and Martin, 2009; Kim
et al., 2006; McCallum et al., 1998).

However, it is is mainly criticized for two major
drawbacks (Ng and Jordan, 2002; Sutton and McCal-
lum, 2006). First, through the parameter b, it cares
about the observations’ law. It implies that one can-
not consider complex features with the usual Naive
Bayes classifier. Indeed, assuming that Yt ∈ Rd , and
modeling b by a Gaussian law, the number of param-
eters to learn is equal to:

d︸︷︷︸
for the mean

+
d(d +1)

2︸ ︷︷ ︸
for the covariance matrix

If it is tractable for relatively small values of d, it
quickly becomes intractable when d increases. For
example, with Natural Language Processing (NLP),
it is common to convert words to numerical vectors of
size 300 (Pennington et al., 2014), 784 (Devlin et al.,
2019), or even 4096 (Akbik et al., 2018), which be-
comes impossible to estimate. This process is called
word embedding and is mandatory to achieve rele-
vant results. One can suppose the independence be-
tween the different components, also called features,
of Yt , resulting in estimating only d parameters for
the covariance matrix, but this process achieves poor
results. We select the Gaussian law as an example,
but this problem happens for every law. This “fea-
ture problem” is even more significant when the fea-
tures belong to a discrete space, and approximation
methods remain limited (Brants, 2000; Azeraf et al.,
2021b).

Another main drawback of the Naive Bayes con-
cerns the conditional independence assumption of the

observed random variables. It implies not considering
the order of the different observations with the classi-
fier induced from the stationary Naive Bayes model.

In this paper, inspired by the writing of the clas-
sifier in (Azeraf et al., 2021a) and the Hidden Neu-
ral Markov Chain in (Azeraf et al., 2021c), we pro-
pose the Neural Naive Bayes. This model consists in
defining the classifier induced from the Naive Bayes
written in a discriminative manner with neural net-
works functions (LeCun et al., 2015; Ian Goodfellow
and Courville, 2016). This neural model corrects the
first default of the usual Naive Bayes classifier, as it
can consider complex features of observations. More-
over, we propose the Neural Pooled Markov Chains,
which are neural models assuming a conditional de-
pendence of the observations given the hidden ran-
dom variables, modeling them as a Markov chain.
Therefore, they also correct the second drawback of
the usual Naive Bayes classifier. Finally, we empiri-
cally study these different innovations’ contributions
to the Sentiment Analysis task.

This paper is organized as follows. In the next
section, we present the classifier of the Naive Bayes
written discriminatively, i.e., which does not use the
observations’ law, the Pooled Markov Chain (Pooled
MC) and Pooled Markov Chain of order 2 (Pooled
MC2) models and their classifiers. The third section
presents a different way to compute the classifiers,
estimating parameters with neural network functions.
Then, we empirically evaluate the contributions of our
neural models applied to Sentiment Analysis. Conclu-
sion and perspectives lie at the end of the paper.

To summarize our contributions, we present (i)
three original neural models based on probabilistic
models, and (ii) we show their efficiency compared
with the usual form of the Naive Bayes classifier for
Sentiment Analysis.

2 NAIVE BAYES AND POOLED
MARKOV CHAINS

2.1 The Classifier Induced from the
Naive Bayes Written
Discriminatively

A classifier is considered “written generatively” if its
form uses some p(YA|XB), with A,B non-empty sub-
sets of the observed and hidden variable sets. If it
is not written generatively, a classifier is written dis-
criminatively. These notions rejoin the usual ones
about generative and discriminative classifiers (Ng
and Jordan, 2002; Jebara, 2012). For example, (3)
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Figure 2: Probabilistic oriented graph of the Pooled Markov
Chain.

is the classifier induced from the Naive Bayes written
generatively, as its form uses bi(yt) = p(Yt = yt |Xt =
λi).

(Azeraf et al., 2021a) presents how to write the
classifier induced from the Naive Bayes written dis-
criminatively:

φ
NB(y1:T ) = arg max

λi∈ΛX
norm

(
π(i)1−T

T

∏
t=1

Lyt (i)

)
(4)

with, ∀λi ∈ ΛX , t ∈ {1, ...,T},y ∈ΩY :
Ly(i) = p(X = λi|Yt = y),

and the norm function defined as, ∀x ∈ RN :

norm : R→ R,xi→
xi

N
∑
j=1

x j

.

2.2 Pooled Markov Chain

We introduce the Pooled Markov Chain model, con-
sidering the same random variables as the Naive
Bayes. It is defined with the following joint law:

p(X ,Y1:T ) = p(X)p(Y1|X)
T−1

∏
t=1

p(Yt+1|X ,Yt) (5)

This model generalizes the Naive Bayes, insofar as
the latter is a special case of it, supposing that the ob-
served random variables follow a Markov chain given
the hidden variable, while the Naive Bayes supposes
the conditional independence. It is represented in Fig-
ure 2.

The classifier induced from the Pooled MC writ-
ten discriminatively is defined as:

φ
MC(y1:T ) =

arg max
λi∈ΛX

norm

(
LMC,1

y1
(i)

T−1

∏
t=1

LMC,2
yt ,yt+1(i)

LMC,1
yt (i)

)
.

(6)

with the following parameter of the stationary Pooled
MC, ∀λi ∈ ΛX ,y1,y2 ∈ΩY :

• LMC,1
y1 (i) = p(X = λi|Yt = y1);

• LMC,2
y1,y2 (i) = p(X = λi|Yt = y1,Yt+1 = y2).

The proof is given in the appendix.

X
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Figure 3: Probabilistic oriented graph of the Pooled Markov
Chain of order 2.

2.3 Pooled Markov Chain of Order 2

The Pooled Markov Chain of order 2, represented in
Figure 3 is defined with the joint law:

p(X ,Y1:T ) = p(X)p(Y1|X)p(Y2|X ,Y1)

T−2

∏
t=1

p(Yt+2|X ,Yt ,Yt+1)

(7)

This probabilistic model generalizes the two others,
considering the observations follow a Markov chain
of order 2 given the hidden variable.

The classifier induced from the Pooled MC2 writ-
ten discriminatively is defined as:

φ
MC2(y1:T ) =

arg max
λi∈ΛX

norm

(
LMC2,1

y1,y2
(i)

T−1

∏
t=1

LMC2,2
yt ,yt+1,yt+2(i)

LMC2,1
yt ,yt+1(i)

)
.

(8)

with the following parameter of the stationary Pooled
MC2, ∀λi ∈ ΛX ,y1,y2,y3 ∈ΩY :

• LMC2,1
y1,y2 (i) = p(X = λi|Yt = y1,Yt+1 = y2);

• LMC2,2
y1,y2,y3(i) = p(X = λi|Yt = y1,Yt+1 = y2,Yt+2 =

y3).

The proof is also given in the appendix.

3 NEURAL NAIVE BAYES BASED
MODELS

3.1 Neural Naive Bayes

We consider the classifier induced from the Naive
Bayes written discriminatively (4). We assume the
functions π and L, allowing to define this classifiers,
are strictly positive, and ΩY = Rd ,d ∈ N∗. (4) can be
written as follows:

φ
NB(y1:T ) = arg max

λi∈ΛX
norm

(
π(i)1−T

T

∏
t=1

Lyt (i)

)
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= arg max
λi∈ΛX

norm

(
π(i)

T

∏
t=1

Lyt (i)
π(i)

)
= arg max

λi∈ΛX
softmax(

log(π(i))+
T

∑
t=1

log
(

Lyt (i)
π(i)

))
.

(9)

with the softmax function defined as, ∀x ∈ RN :

softmax : R→ R,xi→
exp(xi)

N
∑
j=1

exp(x j)

.

Moreover, we suppose, ∀i∈ {1, ...,N}, that the in-
fluence of log(π(i)) is negligible in (9), which is true
if the classes of X have the same probability, or if T
is big enough.

We set NNNB a neural network function with yt as
input and the output of size N. We define it as follows:

NNNB(yt)i = log
(

Lyt (i)
π(i)

)
with NNNB(yt)i the i-th component of the vector
NNNB(yt).

Therefore, (4) is approximated with:

φ
NB(y1:T )≈ arg max

λi∈ΛX
sotfmax

(
T

∑
t=1

NNNB(yt)i

)
(10)

As (10) is the classifier induced from the Naive Bayes
parametrized with neural networks, we call this appli-
cation the Neural Naive Bayes.

3.2 Neural Pooled Markov Chains

We consider the Pooled MC model, and we assume
the same hypothesis as above about the parameter
functions. The classifier of the Pooled MC (6) can
be written:

φ
MC(y1:T ) = arg max

λi∈ΛX
softmax(

log
(
LMC,1

y1
(i)
)
+

T−1

∑
t=1

log

(
LMC,2

yt ,yt+1(i)

LMC,1
yt (i)

))
.

(11)

As above, we suppose that log
(

LMC,1
y1 (i)

)
is neg-

ligible. We define a neural network function, NNMC,
with the concatenation of yt and yt+1 as input, and an
output of size N. It is used to model:

NNMC(yt ,yt+1)i = log

(
LMC,2

yt ,yt+1(i)

LMC,1
yt (i)

)

Therefore, (11) is approximated as follows:

φ
MC(y1:T )≈ arg max

λi∈ΛX
sotfmax(

T−1

∑
t=1

NNMC(yt ,yt+1)i

) (12)

We called (12) the Neural Poooled Markov Chain
(Neural Pooled MC) function.

In the same idea, the Neural Pooled Markov Chain
of order 2 (Neural Pooled MC2) is defined with:

φ
MC2(y1:T )≈arg max

λi∈ΛX
sotfmax(

T−2

∑
t=1

NNMC2(yt ,yt+1,yt+2)i

) (13)

with NNMC2 a neural function having the concatena-
tion of yt ,yt+1, and yt+2 as input, and an output of size
N.

To go further, ∀k ∈ N∗, we introduce the Neu-
ral Pooled Markov Chain of order k (Neural Pooled
MC(k)):

φ
MCk(y1:T )≈ arg max

λi∈ΛX
sotfmax(

T−k

∑
t=1

NNMCk(yt ,yt+1, ...,yt+k)i

) (14)

with NNMCk a neural function having the concatena-
tion of yt to yt+k as input, and an output of size N.

4 APPLICATION TO SENTIMENT
ANALYSIS

Sentiment Analysis is an NLP task consisting of pre-
dicting the sentiment of a given text. In this sec-
tion, we are going to apply the usual classifier in-
duced from the Naive Bayes (3), the Neural Naive
Bayes (10), the Neural Pooled MC (12), and the Neu-
ral Pooled MC2 (13) for Sentiment Analysis. The goal
is to observe the improvement brought by our new
classifiers compared to the usual one usually.

We use two different embedding methods: Fast-
Text (Bojanowski et al., 2017) and ExtVec (Komninos
and Manandhar, 2016), allowing to convert each word
in a given sentence to a vector of size 300. Therefore,
ΩY = R300 in this use-case.

Every parameter of neural models,
NNNB,NNMC,NNMC2, is a feedforward neural
network with the adapted input size, a hidden layer of
size 64 followed by a ReLU (Nair and Hinton, 2010)
activation function, and an output layer of size N, the
latter depending on the dataset.
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Table 1: Accuracy errors of the usual classifier induced from the Naive Bayes and our proposed neural models on IMDB
dataset with FastText and ExtVec embeddings.

Usual Naive Bayes Neural Naive Bayes Neural Pooled MC Neural Pooled MC2
FastText 49.49% 12.46%±0.19 11.37%±0.24 11.01%±0.05
ExtVec 46.64% 13.40%±0.34 12.68%±0.17 12.34%±0.14

Table 2: Accuracy errors of the usual classifier induced from the Naive Bayes and our proposed neural models on SST-2
dataset with FastText and ExtVec embeddings.

Usual Naive Bayes Neural Naive Bayes Neural Pooled MC Neural Pooled MC2
FastText 48.00% 15.32%±0.20 14.50%±0.17 14.10%±0.26
ExtVec 49.80% 17.22%±0.22 16.14%±0.29 15.88%±0.14

Table 3: F1 scores of the usual classifier induced from the Naive Bayes and our proposed neural models on TweetEval dataset
with FastText and ExtVec embeddings.

Usual Naive Bayes Neural Naive Bayes Neural Pooled MC Neural Pooled MC2
FastText 17.68 71.15±0.16 71.32±0.20 72.00±0.28
ExtVec 15.68 68.17±0.37 69.07±0.46 69.28±0.45

Table 4: F1 scores of the usual classifier induced from the Naive Bayes and our proposed neural models on Financial Phrase-
bank dataset with FastText and ExtVec embeddings.

Usual Naive Bayes Neural Naive Bayes Neural Pooled MC Neural Pooled MC2
FastText 31.83±0.99 82.87±0.53 84.61±0.91 86.02±0.49
ExtVec 34.48±1.39 82.60±0.58 85.01±0.77 85.14±1.06

4.1 Dataset Description

We use four datasets for our experiments:

• the IMDB dataset (Maas et al., 2011), com-
posed of movie reviews, with a train set of 25000
texts and a test set of the same size, with ΛX =
{Positive,Negative}.

• the SST-2 dataset (Socher et al., 2013) from
GLUE (Wang et al., 2019), also composed of
movie reviews, with a train set of 67349 texts, a
test set of 1821 texts, and a validation set of 872
texts, with ΛX = {Positive,Negative};

• the TweetEval emotion dataset (Barbieri et al.,
2020; Mohammad et al., 2018), composed with
Twitter data, with a train set of 3257 texts, a test
set of 1421 texts, and a validation set of 374 texts,
with ΛX = {Anger,Joy,Optimism,Sadness};

• the Financial Phrasebank (FPB) dataset (Malo
et al., 2014), which consists in English sen-
tences from financial news. We select the
“All agree” data of 2264 sentences with ΛX =
{Positive,Neutral,Negative}. We set aside 453
randomly for test set. To avoid biases, we do a
different draw at every experiment.

All these datasets are freely available with the datasets
library (Lhoest et al., 2021).

4.2 Parameter Learning and
Implementation Details

On the one hand, the parameter π and b from (3) are
learned with maximum likelihood estimation. For π,
it consists of estimating it by counting the frequencies
of the different patterns:

π(i) =
Ni

∑
j

N j

with Ni the number of times X = λi in the training set.
We model b with a gaussian law. As the estimation
of the covariance matrix of size 300× 300 for each
class is intractable and result in computational prob-
lems when used, we select the vector’s mean as the
observation of each word. It estimates a mean and a
variance of size 1 for each class. Therefore, for each
λi ∈ ΛX ,bi ∼ N (µi,σi), with µi and σi estimated by
maximum likelihood.

On the other hand, parameters NNNB,NNMC, and
NNMC2 are estimated with stochastic gradient descent
algorithm using Adam (Kingma and Ba, 2014) opti-
mizer with back-propagation (Rumelhart et al., 1986;
LeCun et al., 1989) and Cosine Annealing gradient
method (Loshchilov and Hutter, 2016). We minimize
the Cross-Entropy loss function with a learning rate
of 0.001 and a mini-batch size of 64 - selected af-
ter a K-fold cross-validation step. For the IMDB and
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FPB datasets, where the validation set is not directly
given, we construct it with 20% of the train set, drawn
randomly. For each experiment, we train our model
for 5 epochs (except for TwetEval, which requires 15
epochs, and FPB, requiring 25 epochs), and we keep
the one achieving the best score on the validation set
for testing. As it is a stochastic algorithm, every ex-
periment with a Neural Naive Bayes based model is
realized five times, and we report the mean and the
95% confidence interval. Every experiment is real-
ized 10 times for FPB, even for the usual classifier,
due to the test set drawing.

About the implementation details, all the codes
are written in python. We use the Flair (Akbik et al.,
2019) library for the word embedding methods, and
PyTorch (Paszke et al., 2019) for neural functions and
training. All experiments are realized with a CPU
having 16Go RAM.

4.3 Results

We apply the usual classifier induced from Naive
Bayes, the Neural Naive Bayes, the Neural Pooled
MC, and the Neural Pooled MC2 to the four datasets.
The accuracy errors are available in Table 1 and 2 for
IMDB and SST-2, and the F1 scores in Table 3 and 4
for TweetEval and FPB.

As expected, one can observe important improve-
ments with the neural models related to the usual
classifier induced from the Naive Bayes. Indeed,
for example, with FastText embedding on the IMDB
dataset, this error is divided by about 4.5 with the
Neural Pooled MC2. It confirms the importance of
considering complex features.

As one can observe in Table 1, 2, 3, and 4, increas-
ing the Markov chain’s order allows to improve re-
sults. It shows the effect of alleviating the conditional
independence condition. This observation is expected
as the model becomes more complex and extended.
Indeed, for each k ∈ N, the Pooled Markov Chain
of order k is a particular case of the Pooled Markov
Chain of order k + 1. To observe the limits of this
case, we also apply the Neural Pooled MC(k), with
k ∈ {3,5,7,10}. All these models achieve slightly
equivalent results as the Neural Pooled MC2, with-
out significant improvements, showing the empirical
limits of this method.

Moreover, we can compare our models’ results
with other popular ones. First, we precise that our
models are lights, as training and inference time are
very fast: about 5 minutes to train a model and about
1.5 milliseconds for inference. Therefore, we com-
pare our results only with models reputed as “light”
and not heavy models as the ones based on Trans-

former (Vaswani et al., 2017), or LSTM-CRF (Akbik
et al., 2018). These light models present the benefit
of being easy to serve for industrial purposes. Thus,
about IMDB, our models are largely better than SVM
with TF-IDF, Convolutional Neural Networks (Tang
et al., 2015), or even the classic FastText algorithm for
text classification (Joulin et al., 2017), which achieve
accuracy errors of 59.5%, 62.5%, and 54.8%, respec-
tively. About TweetEval, our models achieves bet-
ter results than the BiLSTM (66.0), FastText (65.2),
SVM (64.7), and even equivalent result as RoBERTa
(Barbieri et al., 2020; Liu et al., 2019) (72.0), the lat-
ter being an heavy model based on the Transform-
ers, requiring about 2 seconds for inference. We
can make the same observation for FPB, with LSTM
(0.74), LSTM with ELMO (0.77), and other models
available in (Araci, 2019). These results show our
proposed models’ interest regarding the other popu-
lar ones. Therefore, they are a great alternative con-
sidering the training and inference time/performances
threshold.

5 CONCLUSION AND
PERSPECTIVES

This paper presents the original Neural Naive Bayes
and Neural Pooled Markov Chain models. These
models significantly improve the usual Naive Bayes
classifier’s performances, considering complex obser-
vations’ features without constraints, modeling their
parameters with Neural Network functions, and al-
leviating the conditional independence hypothesis.
They allow to achieve great performances and sim-
plicity, and present an original way to define the clas-
sifier induced from probabilistic models with neural
network functions.

Moreover, these new neural models can be viewed
as original pooling methods for textual data. Indeed,
starting from word embedding methods, a usual way
for text embedding consists of summing the embed-
ding of the words of the text. Our methods, which
benefit from being computationally light, propose a
new way to do this document embedding process and
can be included in any neural architecture. Therefore,
going further in this direction can be a promising per-
spective.
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APPENDIX

Proof of the Classifier Induced from the
Pooled MC Written Discriminatively

The joint law of the Pooled MC is given with (5). For
all λi ∈ ΛX and the realization Y1:T = y1:T , it can be
written:

p(X = λi,y1:T )

= p(X = λi)p(y1|X = λi)
T−1

∏
t=1

p(yt+1|X = λi,yt)

= p(X = λi)
p(X = λi,y1)

p(X = λi)

T−1

∏
t=1

p(X = λi,yt ,yt+1)

p(X = λi,yt)

= p(y1)
T−1

∏
t=1

p(yt+1|yt)LMC,1
y1

(i)
T−1

∏
t=1

LMC,2
yt ,yt+1(i)

LMC,1
yt (i)

Therefore, the posterior law of the Pooled MC can
be written using the Bayes rule, allowing to define the
Bayes classifier with the MAP criterion of the Pooled
MC as (6).

Proof of the Classifier Induced from the
Pooled MC2 Written Discriminatively

The joint law of the Pooled MC2 is given with (7).
For all λi ∈ ΛX and the realization Y1:T = y1:T , it can
be written:

p(X = λi,y1:T )

= p(X = λi)p(y1|X = λi)p(y2|X = λi,y1)

×
T−2

∏
t=1

p(yt+2|X = λi,yt ,yt+1)

= p(X = λi)
p(X = λi,y1)

p(X = λi)

p(X = λi,y1,y2)

p(X = λi,y1)

×
T−2

∏
t=1

p(X = λi,yt ,yt+1,yt+2)

p(X = λi,yt ,yt+1)

= p(y1,y2)
T−2

∏
t=1

p(yt+2|yt ,yt+1)

×LMC2,1
y1,y2

(i)
T−2

∏
t=1

LMC2,2
yt ,yt+1,yt+2(i)

LMC,1
yt ,yt+1(i)

Therefore, the posterior law of the Pooled MC2
can be written using the Bayes rule, allowing to de-
fine the Bayes classifier with the MAP criterion of the
Pooled MC2 as (8).
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