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Abstract: The brain electroencephalogram is treated as a set of electrical activity bursts in various spectral ranges. 
Spectral integrals calculated by the wavelet transform method are used to study time-frequency properties of 
such bursts. The mathematical theory has been developed to describe quantitatively the change in the shape 
of EEG bursts while their propagating along the cerebral cortex. The proposed model of neural activity uses 
nonlinear approximation of EEG record as a sum of several Gaussian peaks moving along different trajectories 
with different speeds. Such model together with the continuous wavelet transform provides an opportunity to 
receive analytical solutions. The proposed method allows us to draw the maps showing the trajectories of 
EEG bursts moving along the cerebral cortex. It also becomes possible to study the change in the shape of 
bursts in the process of their motion. The method was applied to study EEG records of a healthy subject at 
rest with his eyes closed. 

1 INTRODUCTION 

At the macro level, the electrical activity of numerous 
neural ensembles is recorded as an 
electroencephalogram signal (EEG) from many brain 
channels in different spectral ranges , 

where -rhythm (0,5–4 Hz), -rhythm (4–7,5 Hz), 

-rhythm (7,5–14 Hz), -rhythm (14–30 Hz) 

(Nunez and Srinivasan 2006; Gnezditskii 2004; 
Ivanitsky et al. 2009; Tong and Thakor 2009; Zenkov 
2013). This is the most common non-invasive 
research method. It is known that EEG is an 
inherently unsteady process. Even at rest, in the 
absence of any external stimuli, we observe numerous 
temporary bursts due to spontaneous fluctuations in 
the level of electrical activity caused by 
synchronization and desynchronization processes 
associated with individual characteristics of mental 
activity during registration (Hramov et al. 2015).  

EEG structure represents various forms of 
oscillatory patterns related to the electrical activity of 
neural ensembles and reflecting the functional states 
of the brain (Borisyuk and Kazanovich 2006; Quiles 
et al. 2011; Chizhov and Craham 2008; Tafreshi et al. 
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2019). It was shown (Kaplan and Borisov 2003) that 
the amplitude, temporal, and spatial characteristics of 
neural activity segments indicate the rate of 
formation, the lifetime, and the rate of decay of neural 
ensembles. In this work, it is noted that the duration 
of the quasi-stationary segments of alpha activity is 
approximately equal to 𝜏 ൎ300 - 350 ms depending 
on the channel. This value exceeds approximately 
three times the characteristic period of alpha 
oscillations 𝑇ఈ ൌ 1/𝑓ఈ ൎ100 ms, where 𝑓ఈ ൌ 10Hz. 
As a rule, to analyse the variation in spectral 
properties of the signal, the Short Time Fourier 
Transform (STFT) is applied. We have good 
resolution of temporal behaviour of the signal in the 
case when the window duration 𝑊  satisfies the 
condition1/𝑓ఈ ൏൏ 𝑊 ൏൏ 𝜏 . However, in the case 
when the condition  𝜏 ൎ 3𝑇ఈ  is satisfied, the 
application of the STFT method leads to incorrect 
determination of spectral properties.  

One of the most difficult tasks in EEG processing 
is to determine the localization of spatial and temporal 
sources of neural activity from the signals recorded on 
the outer surface of the skull. Such a problem relates to 
the inverse problems of mathematical physics. Even in 
the case of the most simplified model of neural activity 
sources as electric dipoles located in a homogeneous 
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sphere, the problem does not have a unique solution. 
The real topology of the cortex has a complex structure 
with a lot of convolutions and furrows. In addition, we 
should notice that the spatial form of brain anatomical 
structures is individual for each person. In solving 
these problems, it is also necessary to take into account 
the anisotropy of brain conductivity in various 
directions (Lopes de Silva 1991; Pfurtscheller et al. 
1990; Verkhlyutov et al. 2019; Ozaki et al. 2012). 

The experiments show the successive shifts of 
electrical activity maxima over different trajectories. 
This movement can be interpreted as wave propagation 
in certain direction along the surface of the brain. The 
work (Manjarrez et al., 2007) calculated the trajectories 
of waves in  -rhythm range, originating mainly in 
the frontal or occipital region. The trajectories of these 
waves always cross the central zones of the brain. The 
characteristic velocity of such waves is 2.1 ± 0.29 ms. 
Currently, it is believed that EEG wave generators are 
a group of combined nerve cells (columns or dipoles) 
that transmit their excitation to neighboring neural 
centers (Ng et al. 2014). 

The Fast Fourier transform (STFT) with dividing 
the entire EEG record into separate epochs lasting 4 s 
is used to solve the problem of the propagation of 
disturbances over the surface of the brain in the articles 
(Massimini et al. 2004; Riedner et al. 2007). By using 
cross-correlation analysis (Kulaichev 2016), the work 
(Belov et al. 2014) studies the influence of 
interhemispheric asymmetry and the patient’s 
psychological type on the characteristics of the 
“traveling EEG wave”. The method of segmentation of 
EEG signals with the subsequent use of indicators of 
coherence and synchronism (Phase-locking value) was 
used to quantify the performance of traveling EEG 
waves in (Trofimov et al. 2015; Bahramisharif et al. 
2013). In the article (Getmanenko et. al. 2006), 
temporary mismatches in the electrical activity of the 
cerebral cortex are calculated from the shift in the 
maximum of cross-correlation function. However, it 
was shown (Kulaichev 2016) that the coherence value 
of the two signals depends very much on the averaging 
procedure, on the choice of the window size, on the 
window function, on the magnitude of the window 
pitch shift. Consequently, the coherence value cannot 
be considered as a sufficiently accurate quantitative 
measure of the correlation of two signals 𝑍ூሺ𝑡ሻ  and 
𝑍௄ሺ𝑡ሻ , where 𝐼  and 𝐾  are the numbers of EEG 
channels. 

The velocities of travelling waves (TW) 
propagation in various spectral ranges are calculated in 
(Patten et al. 2012). In this work, it was shown that 

-waves (the speed of 6.5 m/s) propagate faster than 
-waves having the speed of 4 m/s. According to the 

theory of diffuse signal transmission through nerve 
tissue (Lopes da Silva 1991; Pfurtscheller and Lopes 
da Silva 1999), the signal pathway consists of many 
fibers with different conduction speeds. TW are 
associated with switching the activity of different brain 
centers. With each such switching, the outburst of 
neural activity being compact at the beginning 
stretches in time and decreases in amplitude due to the 
dispersion of the medium. 

Currently, the dynamics of the cerebral cortex of 
clinical patients is often analyzed by using 
intracranial electrocorticogram record (ECoG) 
(Zhang et al. 2018; Belov et al. 2016). The review 
(Muller et al. 2018) presents the conceptual basis of 
the traveling wave phenomenon as a response 
generated by intra-cortical contours to external 
stimuli. The analysis of traveling waves as a non-
stationary process caused by the internal or external 
stimulus allows us to obtain information not only 
about the spatial localization of the stimulus, but also 
about the time it occurred (Muller et al. 2018; Patten 
et al. 2012). When studying the memory mechanisms 
(Zhang et al. 2018), the traveling waves were 
identified at different frequencies in a wide frequency 
range (from 2 to 15 Hz) and with various electrode 
configurations, in most cases, traveling waves 
propagate from the posterior to the anterior regions of 
the brain (Voytek et al. 2010; Zhang et al. 2018). The 
main mathematical tools for studying traveling waves 
are neural network methods (Villacorta et al. 2013; 
Terman et al. 2001). The wavelet transform method 
(Patten et al. 2012; Alexander et al. 2013; Zhang et al. 
2018) is also widely used in the quantitative 
description of the dynamics of neural ensembles. 

This work proposes a new mathematical model of 
neural activity based on the nonlinear approximation 
of each EEG burst in the form of the sum of moving 
Gaussian peaks. The maxima of electrical activity 
bursts calculated in all spectral ranges 𝜇 ൌ
ሼ𝛿, 𝜃, 𝛼, 𝛽ሽ take place at different points in time. The 
movements of the activity maxima calculated for a 
given channel show the trajectories of EEG waves 
propagating through the cerebral cortex. Using the 
proposed special model and wavelet based 
mathematical tools, the trajectories and speeds of 
neural activity bursts along the cerebral cortex can be 
found. The studies have been carried out by 
calculating the correlation in time of the electrical 
activity bursts in various EEG channels (Bozhokin 
and Suslova 2015) based on the continuous wavelet 
transform method (CWT –continuous wavelet 
transform) and on the analysis the time variation of 
spectral integrals.   
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The advantage of using the wavelet methods in 
this article is the ability to correctly describe the 
behavior in time of the EEG activity bursts in any 
spectral range 𝜇 ൌ ሼ𝛿, 𝜃, 𝛼, 𝛽ሽ. This approach gives 
the opportunity to study EEG bursts in all spectral 
ranges and their evolution in time. The new model of 
EEG bursts together with the new techniques related 
to CWT allows us finding both the trajectories of the 
motion and the change in the shape of EEG bursts 
while their travelling along the cerebral cortex. In 
addition, the proposed model gives analytical 
solution, which can be used to check the numerical 
procedures. Thus, we can consider the proposed 
methods as giving some additional information and 
capabilities in the study of brain waves propagation. 

2 MATERIALS AND METHODS 

In this work, we processed the spontaneous EEG of a 
healthy subject at rest with his eyes closed (Anodina-
Andrievskaya et al. 2011). Background EEG activity is 
a desynchronized activity of neural ensembles of the 
cerebral cortex. In addition to the background activity, 
the EEG signal contains various oscillatory patterns, 
which are continuously appearing and disappearing 
bursts of rhythms characterizing the coherent electrical 
activity of neural ensembles. When recording the EEG, 
the standard channels were used according to the 10-
20% scheme, where the index J= 1,2, ... 21 takes the 
values J = {Fp1, Fpz, Fp2; F7, F3, Fz, F4, F8; T3, C3, 
Cz, C4, T4; T5, P3, Pz, P4, T6; O1, Oz, O2}. The shifts 
of the maxima of electrical activity on the cerebral 
cortex are approximately equal to 5-10 ms, therefore, 
the signal sampling frequency should be at least = 500 
Hz. The duration of the EEG recording is 
approximately equal to 𝑇 = 30 s.  

2.1 Continuous Wavelet Transform 
(CWT) and Spectral Integrals 

The modified form 𝑉ሺ௃ሻሺ𝜈, 𝑡ሻ  of the continuous 
wavelet transform (СWT) for an EEG signal 𝑍ሺ௃ሻሺ𝑡ሻ 
from EEG channel J, depending on the frequency 𝜈 
and time 𝑡, as well as the explicit form of the Morlet 
mother wavelet function, which we will use in this 
paper, are given in (Bozhokin and Suvorov 2008; 
Bozhokin et al. 2017).  Fig.1 shows the absolute value 
ห𝑉ሺ௃ሻሺ𝜈, 𝑡ሻห  for the occipital channel 𝐽 ൌ 𝑂௭ . The 
spectral integrals 𝐸ఓሺ𝐽, 𝑡ሻ, which represent the local 
density of signal energy spectrum integrated over the 
given frequency range 𝜇 , are determined in 
(Bozhokin and Suslova 2015).  

We define a burst of EEG activity in 𝜇-frequency 
range as the appearance and disappearance of a group 
of waves different from the background EEG in 
frequency, shape and amplitude. This can continue 
for a certain period of time. The maximum of the 
electrical activity of such a burst is localized at a 
certain point in time 𝑡௠௔௫ (the center of the burst). 

 
Figure 1: CWT modulus ห𝑉ሺ௃ሻሺ𝜈, 𝑡ሻห depending on 
frequency ν and time t for the EEG channel 𝐽 ൌ 𝑂௓. 

The burst has its beginning and end, and we can 
calculate the time-behavior of the local 
frequency 𝐹ఓ (t), which corresponds to the maximal 
value of ห𝑉ሺ௃ሻሺ𝜈, 𝑡ሻห at fixed moment of time in the 
given frequency range 𝜇. Fig.1 shows that the real 
EEG signal from the given brain channel can be 
treated as a set of EEG activity bursts taking place at 
different time moments in different spectral ranges. 

Fig.2 shows spectral integrals 𝐸ఈሺ𝐽, 𝑡ሻ in 𝛼-range 
for three brain channels 𝐽 ൌ ሼ𝐹௣௭; 𝐶௭; 𝑂௭ሽ . Based 
entirely on Fig.2, we conclude that in 𝛼-range, brain 
activity is a sequence of bursts (in this case, sleep 
spindles), and the intensity of 𝛼-bursts in the occipital 
channel is much higher than in the frontal. Fig.2 
demonstrates the strong non-stationarity of the EEG, 
expressed in the fact that the amplitude and spectral 
properties of such a signal strongly depend on time. 

By examining the performance of spectral 
integrals 𝐸ఈሺ𝐽, 𝑡ሻ , and by setting the cut off level 
relative to the maximum level, we can represent the 
EEG in the entire observation interval for each 
channel 𝐽 as a set of bursts with certain duration. 

 
Figure 2: Spectral integrals 𝐸ఈሺ𝐽, 𝑡ሻdepending on 𝑡, 𝑠 for 𝑂௭- 
brain channel (thin line), 𝐶௭ (dot line), and 𝐹௣௭ (bold line). 
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The maximum of each burst is also localized in 
time and frequency. The wavelet images of the EEG 
signals from the other brain channels are similar in 
general, but different in patterns. The bursts differ in 
the form, and their maximums also vary in values and 
times of occurrence (Fig.1). The quantitative 
parameters characterizing each burst, and their 
classification are given in (Bozhokin and Suslova 
2014; Bozhokin and Suslova 2015). 

2.2 Mathematical Model of a Complex 
EEG Burst 

Let us develop a mathematical theory, which will 
allow us to describe quantitatively the change in the 
shape of EEG bursts while their moving over the 
cerebral cortex. In the spectral range 𝜇 ൌ ሼ𝛼, 𝛽, 𝛾, 𝛿ሽ, 
the EEG burst detected in the given brain channel 𝐽 is 
characterized by spectral integral 𝐸ఓሺ𝐽, 𝑡ሻ . First, to 
develop a mathematical model 𝐸෨ఓሺ𝐽, 𝑡ሻ of the burst, 
we consider a single Gaussian peak  

𝐺ሺ�⃗�, 𝑡ሻ ൌ 𝑎ଵ 𝑒𝑥𝑝ሾെሺ𝑡 െ 𝑏ଵሻଶ/2𝑐ଵ
ଶሿ (1)

depending on time 𝑡 , and the vector �⃗�ଵ ൌ
ሺ𝑎ଵ; 𝑏ଵ; 𝑐ଵሻwith the parameters: 𝑎ଵ − the amplitude, 
𝑏ଵ− the time localization center, 𝑐ଵ− the peak’s width. 
Then, we represent mathematical model 𝐸෨ఓሺ𝐽, 𝑡ሻ as a 
sum of  𝑛 Gaussian peaks 𝐺ሺ�⃗�௦, 𝑡ሻ: 

𝐸෨ఓሺ𝐽, 𝑡ሻ ൌ ෍ 𝐺ఓ

௡

௦ୀଵ

ሺ𝐽, �⃗�௦, 𝑡ሻ, (2)

where �⃗�௦  is the vector corresponding to 𝑠-peak. As 
the simplest example, we take the sum of three 
Gaussian peaks (with nine parameters �⃗�ଵ; �⃗�ଶ; �⃗�ଷ) to 
simulate 𝛼 -burst ( 𝜇 ൌ 𝛼 ). The parameters of the 
Gaussian peaks for a fixed burst are selected from the 
condition 

𝛥ଶ ൌ
1
𝑁

෍ሾ𝐸ఈሺ𝐽, 𝑡௜ሻ െ 𝐸෨ఈሺ𝐽, 𝑡௜ሻሿଶ

ே

௜ୀଵ

→ 𝑚𝑖𝑛 (3)

where 𝐸ఈሺ𝐽, 𝑡ሻ  is the burst observed 
experimentally; 𝐸෨ఈሺ𝐽, 𝑡ሻ is the theoretical model (2); 
𝛥 is the standard error of approximation. In (3) the 
value of 𝛥  represents the standard error of the 
approximation. The summation in (3) is carried out 
over all time instants 𝑡௜  for the selected burst 
localized in the time interval ሾ𝑡ଵ; 𝑡ଶሿ  in the alpha 
range. To find the minimum (3), we applied the 
modified Newton method with accuracy control. The 
program was tested on the example of determining 
the parameters of Gaussian peaks, when the program 

input 𝐸଴ሺ𝑡ሻ consists of three ideal Gaussian peaks 
with the parameters �⃗�௜ ൌ ሺ𝑎௜; 𝑏௜; 𝑐௜ሻ (1) close to the 
real situation: �⃗�ଵ= (0.49938; 8.2785; 0.15001); �⃗�ଶ= 
(1.5194; 8.6258; 0.11486); �⃗�ଷ = (2.0357; 8.9427; 
0.16810). The result of the program is shown in Fig.3. 
Analysing this dependence, it is important to note: the 
true peaks of the Gaussian curves and the peaks of the 
signal 𝐸଴ሺ𝑡ሻ can occupy different positions in time. 
This conclusion will be important in the study of real 
records of EEG activity bursts. In addition, a slight 
change in the values of �⃗�௜ ൌ ሺ𝑎௜; 𝑏௜; 𝑐௜ሻ  can 
significantly change the topology of the overall 
picture 𝐸଴ሺ𝑡ሻ. The approximation of the system of 
nonlinear equations 𝐸෨଴ሺ𝑡ሻ  using the nonlinear 
approximation program (3) reproduces, with 
accuracy to the fifth decimal place, the parameters 
�⃗�ଵ; �⃗�ଶ; �⃗�ଷ of the test signal 𝐸଴ሺ𝑡ሻ. The mean square 
error between 𝐸෨଴ሺ𝑡ሻ and 𝐸଴ሺ𝑡ሻ  is 𝛥 ൌ 8.3 ⋅ 10ି଺ , 
therefore, the curves in Fig.3 merge. 

To increase the accuracy of approximation (3), the 
experimentally observed values 𝐸ఈሺ𝐽, 𝑡ሻ  were 
interpolated using the theory of splines. This led to 
the fact that the signal sampling step 𝛥𝑡 = 2 ms was 
reduced by 20 times. The calculations showed that 
most real EEG bursts are satisfactorily described by 
three-Gaussian approximation ( 𝑛 ൌ 3 ), and the 
standard deviation between the experimental and 
theoretical models is Δ ൏ 0.03. 

 

Figure 3: Three Gaussian peaks with the parameters 
�⃗�ଵ; �⃗�ଶ; �⃗�ଷ  are shown by dots, dashes, and thin lines, 
respectively. The bold line corresponds to the sum of three 
ideal Gaussian peaks with the parameters�⃗�ଵ; �⃗�ଶ; �⃗�ଷ . The 
curve 𝐸଴ሺ𝑡ሻ and its approximation 𝐸෩଴ሺ𝑡ሻmerge entirely into 
the bold line. 

2.3 Results 

2.3.1 Comparison of EEG Simulation 
Results and Experimental Data 

Let us construct the mathematical model of EEG 
burst with the duration [8-9.15 s] in 𝛼 -spectral range, 
and follow the change in the shape of this burst while 
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moving between two occipital electrodes 𝐽 ൌ 𝑂௓ →
𝐽 ൌ 𝑂ଶ. 

For the burst in the interval [8-9.15 s], the 
difference (3) between the model 𝐸෨ఈሺ𝐽, 𝑡ሻ  and 
experimental 𝐸ఈሺ𝐽, 𝑡ሻ  is 𝛥ሺ𝑂ଶሻ ൎ 0.024 , and 
𝛥ሺ𝑂௓ሻ ൎ 0.027.   

 

Figure 4: Comparison of the spectral 
integrals  𝐸ఈሺ𝐽, 𝑡ሻobtained for the experimental record of 
EEG burst in the interval [8–9.15 s] with their mathematical 
models 𝐸෨ఈሺ𝐽, 𝑡ሻ: thin line −𝐸ఈሺ𝑂௓; 𝑡ሻ; bold line −𝐸෨ఈሺ𝑂௓; 𝑡ሻ; 
dash line −𝐸ఈሺ𝑂ଶ; 𝑡ሻ; dot line −𝐸෨ఈሺ𝑂ଶ; 𝑡ሻ. 

When the burst propagates in the direction𝑂௓ →
𝑂ଶ, the behavior of three Gaussian peaks, which form 
the model burst in the range [8–9.15 s], is different 
(Fig.4). The amplitude of the left peak increases: 
𝑎ଵሺ𝑂ଶሻ/𝑎ଵሺ𝑂௓ሻ = 1.26, the time shift between the 
peaks 𝑂௓ → 𝑂ଶ  is positive 𝛥𝑡 ൌ 𝑏ଵሺ𝑂ଶሻ െ 𝑏ଵሺ𝑂௓ሻ = 
0.0424 s. The amplitude of the central peak decreases 
𝑎ଶሺ𝑂ଶሻ/𝑎ଶሺ𝑂௓ሻ = 0.74. The time shift of the central 
peak is negligible 𝛥𝑡 ൌ 𝑏ଶሺ𝑂ଶሻ െ 𝑏ଶሺ𝑂௓ሻ= –0.004. 
The amplitude of the right peak decreases 𝑎ଷሺ𝑂ଶሻ/
𝑎ଷሺ𝑂௓ሻ = 0.712, and its maximum lags behind the 
maximum of the central peak 𝛥𝑡 ൌ 𝑏ଷሺ𝑂ଶሻ െ 𝑏ଷሺ𝑂௓ሻ 
= 0.0037. The characteristic widths of all three peaks 
ሺсଵ; 𝑐ଶ; 𝑐ଷሻ  during their propagation 𝑂௓ → 𝑂ଶ vary 
slightly.  

 

Figure 5: Comparison of the spectral integrals 
𝐸ఈሺ𝐽, 𝑡ሻobtained for the experimental record of EEG burst 
in the interval [16.2-17.2 s] with their mathematical models 
𝐸෨ఈሺ𝐽, 𝑡ሻ: thin line −𝐸ఈሺ𝑂௓; 𝑡ሻ; bold line −𝐸෨ఈሺ𝑂௓; 𝑡ሻ; dash 
line −𝐸ఈሺ𝑂ଶ; 𝑡ሻ; dot line −𝐸෨ఈሺ𝑂ଶ; 𝑡ሻ. 

Fig.5 represents the curves 𝐸ఈሺ𝐽, 𝑡ሻ and 𝐸෨ఈሺ𝐽, 𝑡ሻ 
for 𝑂௓  and 𝑂ଶ  channels, which correspond to the 
burst in the time interval [16.3-17.2 s] (compare with 
Fig.4). For such a burst, the agreement between 
experiment and theory is better: 𝛥ሺ𝑂ଶሻ ൎ 0.003 , 
𝛥ሺ𝑂௓ሻ ൎ 0.02, as compared to that in the interval [8–
9.15 s]. 

For the burst in the interval [16.2-17.2 s] 
propagating in the direction 𝑂௓ → 𝑂ଶ  (Fig.5), the 
amplitude of the left main peak decreases: 
௔భሺைమሻ

௔భሺைೋሻ
ൌ 0.258. The time shift between two main 

peaks is positive: 𝛥𝑡 ൌ 𝑏ଵሺ𝑂ଶሻ െ 𝑏ଵሺ𝑂௓ሻ =0.007s. 
Provided the distance between the nearest (𝑂௓ → 𝑂ଶ) 
electrodes 𝐿 ൌ 5cm, the propagation velocity of this 
alfa-rhythm peak is 𝑉ఈሺ𝑂௓ → 𝑂ଶሻ ൌ 𝐿/𝛥𝑡 , where 
𝑉ఈ ൌ 7.4 ms. Note that the amplitude of the rightmost 
peak of this burst increases slightly: 𝑎ଶሺ𝑂ଶሻ/
𝑎ଶሺ𝑂௓ሻ=1.06. The time shift between the third peaks 
during the transition 𝑂௓ → 𝑂ଶ is also positive: 𝛥𝑡 ൌ
𝑏ଷሺ𝑂ଶሻ െ 𝑏ଷሺ𝑂௓ሻ= 0.002 s, and its width becomes 
larger 𝑐ଷሺ𝑂ଶሻ/𝑐ଷሺ𝑂௓ሻ= 1.21. Such an expansion of 
the right peak of the burst and a slight increase in its 
amplitude can be observed in Fig.5 at time 𝑡 ൎ 17.1s. 

2.3.2 The Trajectories of the EEG Bursts in 
α -range and the Map of Cerebral 
Cortex Electrical Activity 

Let us consider the methodology for calculating the 
propagation rates of bursts moving along the cerebral 
cortex on the example of EEG bursts in α-range.) We 
study two bursts in α-range but in different time 
intervals: one evolves in the time interval [8–9.15 s] 
(Fig.4), the second in [16.3–17.2 s] (Fig.5). .For each 
brain channel, the coordinates of the maximum value 
of the spectral integral in the given time interval are 
indicated in brackets. 

𝐸ఈሺ𝐽; 𝑡ሻ 

t, s 

Figure 6a: Spectral integral in the channel C3 (9.444;0.998) 
in the interval [8–9.15 s]. 
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𝐸ఈሺ𝐽; 𝑡ሻ 

t,s 

Figure 6b: Spectral integral in the channel Cz (9.456;1.003) 
in the interval [8–9.15 s]. 

𝐸ఈሺ𝐽; 𝑡ሻ 

t, s 

Figure 6c: Spectral integral in the channel C4 (9.018;0.815) 
in the interval [8–9.15 s]. 

𝐸ఈሺ𝐽; 𝑡ሻ 

t, s 
Figure 6d: Spectral integral in the channel P3 (9.454;1.226) 
in the interval [8–9.15 s]. 

𝐸ఈሺ𝐽; 𝑡ሻ 

t, s 

Figure 6e: Spectral integral in the channel Pz (8.982;1.56) 
in the interval [8–9.15 s]. 

𝐸ఈሺ𝐽; 𝑡ሻ 

t, s 

Figure 6f: Spectral integral in the channel P4 (8.970;1.518) 
in the interval [8–9.15 s]. 

𝐸ఈሺ𝐽; 𝑡ሻ 

t, s 

Figure 6g: Spectral integral in the channel 01 (8.724;0.888) 
in the interval [8–9.15 s]. 

𝐸ఈሺ𝐽; 𝑡ሻ 

t, s 

Figure 6h: Spectral integral in the channel 0z (8.920;2.13) 
in the interval [8–9.15 s]. 

𝐸ఈሺ𝐽; 𝑡ሻ 

t, s 

Figure 6i: Spectral integral in the channel 02 (8.934;1.514) 
in the interval [8–9.15 s]. 
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Fig.6 shows the behavior of spectral integrals 
𝐸ఈሺ𝐽; 𝑡ሻ   in all central channels  𝐽 ൌ
ሼ𝐶ଷ, 𝐶௓, 𝐶ସ; 𝑃ଷ, 𝑃௓, 𝑃ସ; 𝑂ଵ, 𝑂௓, 𝑂ଶሽon a single scale in 
the interval [8–9.15 s] The development of the burst 
during time interval [8–9.15 s] starts in the occipital 
channel 𝑂ଵ. Then it reaches a maximum in 𝑂௭, and, 
gradually decreasing in size, reaches the central 
channels 𝑃ସ and 𝑃௭. After that, the burst arrives into 
the channel 𝐶ସ, decreasing in amplitude by 2.6 times 
compared with the maximum in 𝑂௭. In addition, the 
maximum of the burst from the channel 𝑃௭  moves 
along the trajectory 𝐶ଷ → 𝑃ଷ → 𝐶௭  (Fig.7). So, the 
disturbance spreads from occipital to central and 
parietal regions with its activity decreasing in time.  

 

Figure 7: The trajectory of the burst activity maximum in 
the time interval [8-9.15 s]. 

This can be considered as a certain wave process 
associated with the excitation of local neural 
ensembles caused by some stimuli. 

It is important to note that for the peripheral 
channels 𝐽 ൌ ሼ𝐹଻; 𝐹 ; 𝑇ଷ; 𝑇ସ; 𝑇ହ; 𝑇଺ሽ  the values of 
𝐸ఈሺ𝐽, 𝑡ሻ in α-range fall by more than 𝑒 ൌ 2,72 times 
as compared to the maximum value of the burst 
observed in the central occipital. The numerical 
values 𝐸ሺ𝐽, 𝑡௠௔௫ሻ  are given for each  𝐽, where 𝑡௠௔௫ 
is the time moment in seconds at which the maximum 
value of the spectral integral for the given channel is 
reached. Figures 6 show that the intensities and 
shapes of bursts are different for each channel. 
Moreover, the maximums of the bursts also vary in 
amplitude and time localization, so we may talk about 
bursts moving at a certain speed along their own path, 
that is, about a wave propagating in a dispersive 
medium. The study of Fig.6 makes it possible to find 

the trajectories of the maxima of the bursts along the 
cerebral cortex. This can be done, if we trace the 
maxima of the corresponding spectral integrals in 
different channels and connect them. 

A different trajectory characterizes the burst in 
[16.3-17.2 s] (Fig.8-9). The burst of small amplitude 
(0.844) occurs in the central channel 𝐶௭. This burst 
also reaches its maximum value (2.664) in 𝑂௭ . A 
careful analysis of the shape of the bursts in Fig.4, 
Fig.5 shows that an individual burst often has a 
complex shape and consists of several peaks. In this 
case, the trajectories of the burst maximum do not 
take into account the changes in the intensity maxima 
redistribution of inside the burst itself. It turns out that 
in the case of approximating the total burst 𝐸ఈሺ𝐽, 𝑡ሻ 
by the mathematical model (2), the velocities, 
amplitudes, and widths of each Gaussian peak 
appeared to be individual. 

The results of calculation of spectral integrals 
𝐸ఈሺ𝐽; 𝑡ሻ  for different EEG channels in the time 
interval [16.3-17.2 s] are shown in Fig.8. 

𝐸ఈሺ𝐽; 𝑡ሻ 

t, s 

Figure 8a: Spectral integral in the channel C3 
(16.600;0,726) in the interval [16.3-17.2 s]. 

𝐸ఈሺ𝐽; 𝑡ሻ 

t, s 

Figure 8b: Spectral integral in the channel Cz 
(16.602;0,844) in the interval [16.3-17.2 s]. 
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𝐸ఈሺ𝐽; 𝑡ሻ 

t, s 

Figure 8c: Spectral integral in the channel C4 (16.606;0,78) 
in the interval [16.3-17.2 s]. 

𝐸ఈሺ𝐽; 𝑡ሻ 

 t, s 

Figure 8d: Spectral integral in the channel P3 
(16.616;1,378) in the interval [16.3-17.2 s]. 

𝐸ఈሺ𝐽; 𝑡ሻ 

t, s 

Figure 8e: Spectral integral in the channel Pz (16.628;1,947) 
in the interval [16.3-17.2 s]. 

𝐸ఈሺ𝐽; 𝑡ሻ 

t, s 

Figure 8f: Spectral integral in the channel P4 (16.636;1,722) 
in the interval [16.3-17.2 s]. 

𝐸ఈሺ𝐽; 𝑡ሻ 

t, s 

Figure 8g: Spectral integral in the channel 01 (16.640;1,164) 
in the interval [16.3-17.2 s]. 

𝐸ఈሺ𝐽; 𝑡ሻ 

t, s 

Figure 8h: Spectral integral in the channel 0z (16.638;2,664) 
in the interval [16.3-17.2 s]. 

𝐸ఈሺ𝐽; 𝑡ሻ 

t, s 

Figure 8i: Spectral integral in the channel 04 (16.650;1,721) 
in the interval [16.3-17.2 s]. 

Just like the Figures 6, the Figures 8 show 
significant change in intensities and shapes of bursts 
in different EEG channels. The maximums of the 
bursts also vary in amplitude and time of occurrence, 
which indicates the movement of an excitement along 
the brain cortex.  
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Figure 9: The trajectory of the burst activity maximum in 
the time interval [16.3-17.2 s]. 

2.4 Discussion and Conclusion 

In this paper, we propose the mathematical model of 
EEG bursts propagating over the cerebral cortex as a 
combination of Gaussian peaks with their centers 
moving along different trajectories at different 
speeds. Each Gaussian peak in the burst is 
characterized by its amplitude, maximum in time and 
width. In accordance with the nonlinear 
approximation model, we approximate each burst by 
the sum of three Gaussian peaks with vectors �⃗�௜ ൌ
ሺ𝑎௜; 𝑏௜; 𝑐௜ሻ , where 𝑖 ൌ 1,2,3.  Calculating the 
parameters of each burst makes it possible to 
determine changes in the amplitude, shape, direction 
of motion, and velocity of the whole burst. 

For mapping the movement of bursts over the 
cerebral cortex, we used continuous wavelet 
transform (CWT) with the Morlet mother wavelet 
function, and the temporary analysis of spectral 
integrals. By the method of CWT, the spectral 

integrals of non-stationary EEG signal have 

been calculated for each brain channel 𝐽  in all 
frequency ranges 𝜇 ൌ ሼ𝛼, 𝛽, 𝛾, 𝛿ሽ. The advantage of 
CWT applied in this work over the traditional 
window Fourier transform is that the latter requires 
the choice of window size 𝑊, which is the additional 
problem. For CWT the window size is adjusted 
automatically depending on the frequency 𝜈. When 
studying signals at low frequencies, the window 
becomes wide. In the high-frequency part of the 
spectrum (𝛼 and 𝛽  rhythms), the window becomes 
narrow. In the case when the EEG signal is a 
superposition of several non-stationary signals with a 
wide spread in characteristic durations and 

frequencies, the choice of a single value 𝑊 optimal 
for all spectral components 𝜇 may not be possible at 
all. 

The spectral integrals  used in this work 

represent the value of the local density of the signal 
spectrum integrated over a certain frequency range 𝜇. 
An EEG record is presented as some non-stationary 
signal − a sequence of bursts, each of which is 
characterized by its spectral composition, beginning 
and end, and also by the time of electrical activity 
maximum. By using the EEG analysis in 𝛼 -range as 
an example, it is shown that there are various 
scenarios for the appearance and propagation of 
bursts in the cerebral cortex. Comparing the 
propagation of two bursts, we detected that in one 𝛼 -
burst, an increase in perturbation occurs from the 
parietal region of the brain to the occipital. In another 
burst, the disturbances spread from the occipital 
region. Such a burst fades in the parietal and central 
brain channels. Based on the calculation of 𝐸ఈሺ𝑡ሻ, the 
map of activity in those areas of the brain, where the 
bursts reach the maximum values, is defined. 

In the article (Anodina-Andrievskaya EM et al 
2011) on the correlations of various EEG channels at 
solving cognitive problems, it was shown that the 
correlation map is individual for each person. We 
may assume that the map of velocities and directions 
of motion (Fig.7, 9) is individual for each person too. 
The intensity of the activity bursts and their 
localization in time and space recorded in EEG and 
ECoEG reflects the spatio-temporal picture of local 
neural ensembles reorganization. 

The method of tracking the path of the disturbance 
propagation over the cerebral cortex can have many 
applications. It can be applied in the quantitative 
analysis and classification of transients that 
characterize the properties of the central nervous 
system of a person at the macro level. The method of 
restoring the movement of perturbation along the 
surface of the brain was used to determine the 
dynamics of assimilation and forgetting the rhythm of 
photo-stimulation for non-stationary EEG under the 
influence of flash. Thus, the mathematical techniques 
proposed in the article are the tool for processing 
numerous experimental data related to both the 
diagnosis of diseases and the study of cognitive 
processes in the human brain. 
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