
On the Use of Allen’s Interval Algebra in the Coordination of Resource
Consumption by Transactional Business Processes

Zakaria Maamar1 a, Fadwa Yahya2,3 b and Lassaad Ben Ammar2,3 c

1Zayed University, Dubai, U.A.E.
2Prince Sattam Bin Abdulaziz University, Al kharj, K.S.A.

3University of Sfax, Sfax, Tunisia

Keywords: Allen’s Interval Algebra, Business Process, Coordination, Resource, Transaction.

Abstract: This paper presents an approach to coordinate the consumption of resources by transactional business pro-
cesses. Resources are associated with consumption properties known as unlimited, limited, limited-but-
extensible, shareable, and non-shareable restricting their availabilities at consumption-time. And, processes
are associated with transactional properties known as pivot, retriable, and compensatable restricting their ex-
ecution outcomes in term of either success or failure. To consider the intrinsic characteristics of both con-
sumption properties and transactional properties when coordinating resource consumption by processes, the
approach adopts Allen’s interval algebra through different time-interval relations like before, overlaps, and
during to set up the coordination, which should lead to a free-of-conflict consumption. A system demonstrat-
ing the technical doability of the approach based on a case study about loan application business-process and
a real dataset is presented in the paper, as well.

1 INTRODUCTION

It is known that all organizations, whether private or
public, multinational or local, etc., rely on Business
Processes (BP) to achieve their goals, sustain their
competitiveness, improve their performance, etc. Ac-
cording to Weske, a BP “is a set of activities that
are performed in coordination in an organizational
and technical environment. These activities jointly
realize a business goal” (Weske, 2012). A BP has
a process model that is designed using dedicated
languages like Business Process Model and Nota-
tion (BPMN) (OMG,) and then, executed on top of a
Business Process Management System (BPMS). Prior
to executing BPs, their owners could have a “say” on
the expected outcomes. For instance, an owner insists
that her BP must succeed regardless of technical ob-
stacles, another accepts that her BP could fail, while
another approves the undoing of her BP despite the
successful execution. All these options from which
BPs’ owners can select are framed thanks to a set of
transactional properties referred to as pivot, retriable,

a https://orcid.org/0000-0003-4462-8337
b https://orcid.org/0000-0003-4661-1344
c https://orcid.org/0000-0002-4698-3693

and compensatable (Little, 2003).
On top of identifying who does what, where,

when, and why, a BP’s process model also identi-
fies the necessary resources that a BP is expected to
consume at run-time. These resources are of differ-
ent types including human capital, software, hard-
ware, and money. Contrarily to what some disciplines
assume that resources (whether logical or physical)
are abundant, we argue the opposite. It is common
that resources are limited (e.g., 2 hours to complete a
transaction), limited-but-extensible (e.g., 2-week va-
lidity for an access permit that can be renewed for an-
other week), and not-shareable (e.g., a delivery truck
is booked between 8am and 9am). In a previous
work, we captured resources’ characteristics with a
set of consumption properties referred to as unlim-
ited, limited, limited-but-extensible, shareable, and
non-shareable (Maamar et al., 2016). In this paper,
we examine from a temporal perspective the impact
of consumption properties on transactional properties
by raising questions like could a limited resource ac-
commodate a retriable BP knowing that this resource
could become unavailable after a certain number of
necessary execution retrials of this BP? And, could a
limited-but-extensible resource accommodate a com-
pensatable BP knowing that extending this resource

Maamar, Z., Yahya, F. and Ben Ammar, L.
On the Use of Allen’s Interval Algebra in the Coordination of Resource Consumption by Transactional Business Processes.
DOI: 10.5220/0010887600003176
In Proceedings of the 17th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2022), pages 15-25
ISBN: 978-989-758-568-5; ISSN: 2184-4895
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

15

would be required to support the undoing of this BP?
To address these questions, we proceed as follows.

First, we blend time with consumption properties al-
lowing to define a resource’s availability-time inter-
val. Second, we blend time with transactional proper-
ties allowing to define a BP’s consumption-time in-
terval. Finally, we resort to Allen’s interval alge-
bra, (Allen, 1983), to examine the potential relations
between availability-time interval and consumption-
time interval. The choice of this algebra is motivated
by its exhaustive coverage of the possible relations
between time intervals along with the possibility of
reasoning over these relations. Examples of Allen’s
time relations include equals, overlaps, starts, and
during. Our objective is to recommend the actions to
take when a BP’s consumption-time interval overlaps
with a resource’s availability-time interval, when a
BP’s consumption-time interval is during a resource’s
availability-time interval, when a BP’s consumption-
time interval and a resource’s availability-time inter-
val start or finish at the same time, etc. In a nut-
shell, could a BP consume a resource considering
both the BP’s temporal-transactional properties and
the resource’s temporal-consumption properties?

Our contributions are, but not limited to, (i) tem-
poral analysis of consumption and transactional prop-
erties, (ii) illustration of how resources’ availability
times are adjusted to accommodate BPs’ transactional
properties, (iii) identification of Allen’s relevant time
relations between consumption-time and availability-
time intervals, and (iv) development of a system al-
lowing the reasoning over the identified Allen’s rele-
vant time relations. The rest of this paper is organized
as follows. Section 2 is an overview of consumption
properties, transactional properties, and Allen’s inter-
val algebra and presents some related works. Sec-
tion 3 suggests a case study. Section 4 discusses
the temporal coordination of processes consuming re-
sources. Implementation details and concluding re-
marks are included in Sections 5 and 6, respectively.

2 BACKGROUND

We discuss consumption properties of resources,
transactional properties of tasks, and Allen’s interval
algebra, and then, present some related works.

2.1 Resources’ Consumption Properties

In compliance with our previous work on social co-
ordination of BPs (Maamar et al., 2016), the con-
sumption properties of a resource (R) could be un-
limited (u), shareable (s), limited (l), limited-but-

extensible (lx), and non-shareable (ns). A resource
is limited when its consumption is restricted to an
agreed-upon period of time (capability, too, but not
considered). A resource is limited-but-extensible
when its consumption continues to happen after ex-
tending the (initial) agreed-upon period of time. Fi-
nally, a resource is non-shareable when its concur-
rent consumption needs to be coordinated (e.g., one
at a time). A resource is by default unlimited and/or
shareable. The consumption cycles (cc) of the 5 prop-
erties are captured into Fig. 1. However, only 2 are
listed below due to lack of space.

R .ccul : not-made-available start−→ made available
waiting−to−be−bound−→ not-consumed

consumption−approval−→
consumed

no−longer−use f ul−→ withdrawn.
R .cclx : not-made-available start−→ made available

waiting−to−be−bound−→ not-consumed
consumption−approval−→

consumed
consumption−update−→ done

renewable−approval−→
made available. The transition from done to made
available allows a resource to be regenerated for an-
other cycle of consumption.

2.2 Tasks’ Transactional Properties

The following definitions of transactional properties
of a BP’s tasks are reported in the literature, for in-
stance (Frank and Ulslev Pedersen, 2012) and (Little,
2003). A task (T) is pivot (p) when the outcomes
of its successful execution remain unchanged forever
and cannot be semantically undone. Should this ex-
ecution fail, then it would not be retried. A task is
compensatable (c) when the outcomes of its success-
ful execution can be semantically undone. Like pivot,
should this execution fail, then it would not be retried.
Finally, a task is retriable (r) when its successful exe-
cution is guaranteed to happen after several finite ac-
tivations. It happens that a task is both compensat-
able and retriable. The transactional cycles (tc) of the
3 properties are listed below:

T .tc1
p: not-activated start−→ activated commitment−→ done

or T .tc2
p: not-activated start−→ activated

f ailure−→ failed.

T .tc1
r : not-activated start−→ activated 0[

f ailure−→ failed
retrial−→ activated]* commitment−→ done.

T .tc1
c : not-activated start−→ activated commitment−→ done,

T .tc2
c : not-activated start−→ activated

f ailure−→ failed, or
T .tc3

c : not-activated start−→ activated commitment−→ done
compensation−→ compensated.

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

16

start

Locked

lock

consumption

approval

Unlocked

release

Not made

available

renewable approval

Made available

waiting

to be bound

Not consumed

consumption

update

consumption

rejection

��

Withdrawn

Done

co
n

su
m

p
ti

o
n

co
m

p
le

ti
o

n

no-longer

useful

consumption update

co
n

su
m

p
tio

n

ap
p

ro
v

al

Consumed

Legend

�

Final state

Initial state

Figure 1: Representation of a resource’s consumption cycles (from (Maamar et al., 2016)).

2.3 Allen’s Interval Algebra

Table 1 presents some potential relations (in fact,
there exist 13) between time intervals, i.e., pairs of
endpoints, allowing to support multiple forms of tem-
poral reasoning in terms of what to do when 2 time
intervals start/end together, when a time interval falls
into another time interval, etc. (Allen, 1983).

2.4 Related Work

Resource allocation to tasks has been dealt with using
various techniques such as data mining, probabilis-
tic allocation, and even manual allocation. Recently,
process mining is also used to allocate resources to
tasks. In this section, we restrict ourselves to works
that adopt time-centric techniques and process mining
techniques to address resource allocation concern.

In (Michael et al., 2015), Michael et al. propose
a process mining-based framework for resource al-
location. The framework recommends resources at
the sub-process level instead of task-level by con-
sidering criteria and historical information extracted
from event logs. To this end, the framework uses the
best position algorithm to combine different criteria.
In (Renuka et al., 2016), Sindhgatta et al. propose
an approach for making decisions about resource al-
location to tasks. The approach uses event log to ex-
tract information about the process context and per-
formance from past executions. These information
are analyzed using data mining techniques to dis-
cover past resource allocation decisions. The knowl-
edge about past decisions are used by the approach
to improve resource allocations in new process in-
stances. In (Weidong et al., 2016), Zhao et al. con-
sider resource allocation to tasks as a multi-criteria
decision problem. They propose an entropy-based
clustering ensemble approach for allocating resources
to BPs. Recommending resources to tasks depends
on tasks’ requirements and preference patterns es-
tablished based on past executions. In addition, the

authors adopt a heuristic technique to support dy-
namic resource allocation in the context of multi-
ple process instances running concurrently. In a re-
cent work (Zhao et al., 2020), the same authors ad-
dress the problem of human resource allocation using
team faultlines. They describe resources’ character-
istics from demographic and past execution perspec-
tives. They also use clustering to identify and measure
team faultlines with multiple subgroups of resources
and different characteristics. On top of the identi-
fied team faultlines, Zhao et al. adopt neural network
for the allocation human resources to tasks. In (Ra-
nia Ben et al., 2020), Ben Halima et al. propose an
approach that ensures time-aware allocation of cloud
resources to BPs. The approach prevents violating
time constraints on the processes while minimizing
the deployment cost of these processes. First, the ap-
proach uses timed automata for a formal verification
of the matching between BPs’ temporal constraints
and cloud resources’ time availabilities. Then, linear
programming is used to optimize costs. In (Alessan-
dro et al., 2020), Stefanini et al. suggest a process
mining-based approach to support the planning of re-
sources in healthcare services. The approach allows a
semi-automatic extraction and evaluation of the tasks,
service times, and resource consumption for specific
medical conditions from the event logs. Indeed, the
approach estimates the expected resource consump-
tion for a pre-defined period. In (Delcoucq et al.,
2020), Delcoucq et al. consider that process mining
techniques are mainly used to address control-flow re-
lated problems like BP’s performance or compliance.
However, limited works exist on using these tech-
niques to address resource allocation. Our proposal is
a step in this direction as we adopt Allen’s interval al-
gebra to assign availability intervals to resources and
consumption intervals to tasks. We also adopt process
mining to allocate resources to tasks based on their re-
spective availability and consumption intervals.

On the Use of Allen’s Interval Algebra in the Coordination of Resource Consumption by Transactional Business Processes

17

Table 1: Representation of some Allen’s time-interval relations.

x
 y

time

x

y

x

y

x

y

time

x before y x equals y x meets y x overlaps y

3 CASE STUDY

To illustrate task-resource coordination from a time
perspective, we adapt the case study of loan-
application BP that was used in the context of
BPI challenge 2017 (van Dongen, 2017).

The process model of the loan-application BP be-
gins when a customer submits an online application
that a credit staff checks for completeness. Should
any documentation be missing, the staff would con-
tact the customer prior to processing the application
further. Otherwise, the staff would do some addi-
tional work like assessing the customer’s eligibility
based on the requested amount, income, and history.
Should the customer be eligible, the staff would pre-
pare a proposal that the customer has to either accept
or reject according to a deadline. After this deadline
and in the absence of a response, the application is
automatically cancelled. Otherwise, the staff would
finalize the necessary paperwork by seeking the man-
ager’s approval. Finally, the customer would be in-
formed of the approval concluding the whole process.

For our needs, we split the loan-application BP
into 3 parts, review application, prepare proposal, and
make decision, that are subject to temporal constraints
that, if not met, would terminate the application. To
complete the review-application part, the customer
has to submit any missing documentation during a
certain time period. This period can be extended ac-
cording to how far the credit staff is from her monthly
target of loan applications to process.

To complete the prepare-proposal part, the credit
staff checks the customer’s eligibility, waits for some
additional details like credit score that the central
bank provisions, and finally prepares the proposal.
All this needs to happen within 15 days from the sub-
mission date as instructed by the central bank.

To complete the make-decision part, the staff must
receive the customer’s response to the proposal and
seek the manager’s approval before the 15 days limit.
Otherwise, the application is cancelled.

Based on the description above, we identify some
concerns that task/resource coordination is expected
to address. Firstly, ensuring resource availability im-
pacts the outcomes of some tasks. For instance, the
customer’s response to the bank’s proposal must be

received while the credit staff is on duty and within
the 15 days limit. Should the staff be off duty, then
analysing the response should be allocated to a differ-
ent staff while satisfying this limit as well. Secondly,
extending resource availability permits to accommo-
date the execution of more tasks instead of cancelling
them. For instance, securing customers’ approvals
about any potential delays would help the bank re-
main compliant with the 15 days limit. Finally, pro-
viding an efficient resource allocation plan would im-
prove the process performance.

4 COORDINATION OF TASKS
CONSUMING RESOURCES

This section details our approach for coordinat-
ing task/resource consumption from a time perspec-
tive (Fig. 2). The approach goes through 3 stages
though the first 2 happen concurrently. In the first
stage, the approach blends time with consumption
properties allowing to define the availability-time in-
terval of a resource (Section 4.1). In the second stage,
the approach blends time with transactional proper-
ties allowing to define the consumption-time interval
of a task (Section 4.2). Finally, the approach exam-
ines the overlap between availability-time interval and
consumption-time interval according to Allen’s inter-
val algebra (Section 4.3). This overlap corresponds
to the coordination that should take place when tasks
consume resources. The approach also mines pro-
cesses by analysing logs to guide task and resource
coordination. More details about Fig. 2’s modules,
repositories, and operations are given in Section 5.

4.1 Time/Consumption Properties
Blend

To decide when a task (Ti) would con-
sume (coni{ j=1...}, one-to-many times) a re-
source (Rk), we proceed as follows. First, we
associate the effective consumption with a time
interval, T Rk

i [xconi j ,yconi j], that will be defined at
run-time (Section 4.3). Second, we associate unlim-
ited, limited, limited-but-extensible properties with

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

18

Providers
 Designers

R-Definition
module

initiate

p
ro

d
u

ce

T-Definition
module

initiate

p
ro

d
u

ce

1
d
 1
d

in
p

u
t

Consumption

properties

in
p

u
t

Transactional

properties

Resource's consumption cycle

....

state

j

state

1

state

2

Task's transactional cycle

....

state

j

state

1

state

2

initiate

in
je

ct

R-Injection
module

2
d

in
je

ct

T-Injection
module

2
d

initiate

Timed

resources

Timed

tasks

notify

notify

Design time

Run time

Legend

i

Chronology of

operations

Repository

in
p

u
t

Resources

in
p

u
t

Tasks

in
p

u
t

Allen's

relations

Coordination
module
 1
r

C
o

o
rd

in
ated

task
s-reso

u
rces

Log

input

Execution
 module

2
r

update

BPMS

Figure 2: Approach for coordinating tasks consuming resources from a time perspective.

3 intervals defining a resource’s availability time,
Rk[b,e[, Rk[b,e], Rk[b,e 0[+δ]∗], where b, e, δ, and
0[. . .]∗ stand for begin-time, end-time, extra-time1,
and 0-to-many times. Third, we associate shareable
and non-shareable properties with tolerating the con-
current consumption (conin,con jn′ , . . .) of a resource
by separate tasks (Ti,T j, . . .) during the availability
time of this resource, e.g., ((T Rk

i [bconin ,econin] ⊆
Rk[b,e]) ∧ (T Rk

j [bcon jn′ ,econ jn′] ⊆ Rk[b,e]) ∧ . . .)

where i, j ∈ 1..N, N is the number of tasks, and
n,n′ ∈ N∗. Finally, we ensure that an unlimited
resource accommodates any task’s multiple con-
sumption requests. Using Table 2 that refers to
T1,2,3 and their different resource consumption such
as T1’s con11 and T3’s con31,32,33,34, we discuss
the impact of limited and limited-but-extensible
properties on a resource’s availability-time interval.

1. Limited property means that a resource’s avail-
ability time, Rk[b,e], set at design-time, re-
mains the same at run-time despite the addi-
tional resource consumption coming from the
same tasks (after their first consumption). A
task requesting to consume a limited resource
is confirmed iff the task’s first consumption-
time falls into the resource’s availability time
(e.g., T Rk

2 [bcon21 ,econ21] ⊂ Rk[b,e] in Table 2 (a)
where bcon21 > b and econ21 < e) and, then, any ex-
tra consumption times must fall into the resource’s

1Could be repeated but not indefinitely.

same availability time (e.g., T Rk
2 [bcon22 ,econ22] ⊆

rk[b,e] in Table 2 (a) where bcon22 = econ21 and
econ22 = e).

2. Limited-but-extensible property means that a
resource’s availability time, Rk[b,e], set at design-
time, can be adjusted at run-time, Rk[b,e 0[+δ]∗],
so, that, additional resource consumption
coming from the same tasks (after their first
consumption) are accommodated. A task re-
questing to use a limited-but-extensible resource
is confirmed iff the task’s first consumption-
time falls into the resource’s availability
time (e.g., T Rk

3 [bcon31 ,econ31] ⊂ Rk[b,e] in
Table 2 (b) where bcon31 > b and econ31 < e)
and, then, any extra consumption times still
fall into either the resource’s same availability
time (e.g., T Rk

3 [bcon32 ,econ32] ⊂ Rk[b,e] in Ta-
ble 2 (b) where bcon32 = econ31 and econ32 < e)
or the resource’s extended availability time
(e.g., T Rk

3 [bcon33 ,econ33] ⊂ Rk[e,e + δ] in Ta-
ble 2 (b) where bcon33 = econ32 and econ33 < e+δ).

In the 2 cases above, we assume that any addi-
tional resource consumption happens immediately af-
ter the end of the previous resource consumption,
i.e., bconi j = econi j+1 . Another option is to have a
gap (γ) between the 2 consumption, i.e., bconi j =
econi j+1 +γ, but this is not considered further and does
not impact the whole coordination approach.

On the Use of Allen’s Interval Algebra in the Coordination of Resource Consumption by Transactional Business Processes

19

Table 2: Representation of a resource’s availability-time intervals during consumption.

b
 e

con

11

con

21

con

31

con

41

availability

time

consumption

time

con

22

b
 e

con

11

con

21

con

12

con

31

con

32

con

33

con

34

availability

time

consumption

time

extended

availability time

(a) limited resource (b) limited-but-extensible resource

4.2 Time/Transactional Properties
Blend

In Section 4.1, we refer to T Rk
i [xconi j ,yconi j] as a task’s

effective consumption-time interval with regard to a
resource. This interval will be defined based on a
task’s expected consumption-time interval, Ti[et, lt],
where et and lt are earliest time and latest time, re-
spectively. While the expected consumption time is
set at design-time, the effective consumption time will
be set at run-time as per Section 4.3 and will happen
anytime between the earliest time and latest time. We
discuss below how we foresee the impact of a task’s
transactional properties on a resource’s availability-
time intervals.

1. Pivot: a resource’s availability-time interval ac-
commodates the execution of a task whether this
execution leads to success or failure.

2. Compensatable: a resource’s availability-time in-
terval accommodates the execution of a task
whether this execution leads to success or fail-
ure. Prior to undoing the execution outcomes after
success (assuming an undoing decision has been
made), there will be a need to check whether the
resource’s remaining availability time accommo-
dates the undoing. Should the accommodation
be not possible, extra availability time would be
requested subject to checking the resource’s con-
sumption property.

3. Retriable: a resource’s availability-time interval
accommodates the execution of a task along with
an agreed-upon number of retrials, if deemed nec-
essary, that are all expected to lead to success.
Should this number of retrials still lead to failure,
extra availability time would be requested sub-
ject to both checking the resource’s consumption
property and ensuring that the extra number of re-
trials (that are expected to lead to success) do not
go over a threshold.

4.3 Task/Resource Time-connection

To define the effective consumption-time interval of a
resource by a task, we examine potential overlaps be-
tween the task’s expected consumption-time interval
and resource’s availability-time interval. We resort
to Allen’s interval algebra to identify these overlaps,
i.e., T Rk

i [bconin ,econin] where n is the consumption
number. In the following, T H , Rk(b|e), and Ti(et|lt)
correspond to threshold during retriable execution,
lower|upper values of a resource’s availability-time
interval, and lower|upper values of a task’s excepted
consumption-time interval, respectively. Due to lack
of space, equals and overlaps relations are detailed
and during relation is summarized.
Consumption-time Interval Equals Availability-
time Interval. Since the expected consumption-time
interval and availability-time interval are the same,
the following would happen considering both the re-
source’s consumption property and the task’s transac-
tional property:

1. limited: the effective consumption-time interval,
T Rk

i [bconi1 ,econi1], falls into the availability-time
interval in a way that bconi1 ≥ Rk(b) and econi1 ≤
Rk(e).

- pivot: Ti execution happens during
T Rk

i [bconi1 ,econi1].
- compensatable: Ti execution happens during

T Rk
i [bconi1 ,econi1]. Should there be an undoing

of this execution’s outcomes, then the remain-
ing availability time would accommodate the
undoing, T Rk

i [bconi2 ,econi2] and bconi2 = econi1 ,
subject to verifying that Rk(e) − econi1 > 0.
Should the verification fail, then the compen-
sation would be canceled. Despite the can-
cellation, Ti execution is still compliant with
the requirements of a compensatable property
(i.e., done is a final state).

- retriable: Ti execution and potential agreed-

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

20

upon retrials happen during T Rk
i [bconi1 ,econi1].

Should there be extra retrials to ensure success-
ful execution, then the remaining availability
time would accommodate these extra retrials,
T Rk

i [bconin ,econin] and bconin = econi(n−1) , subject
to verifying that Rk(e)− econi(n−1) > 0 where
1 < n < T H . Should the verification fail, then
the retrials would be stopped making Ti execu-
tion uncompliant with the requirements of a re-
triable property (i.e., failed is not a final state).

2. limited-but-extensible: the effective
consumption-time interval, T Rk

i [bconi1 ,econi1],
falls into the availability-time interval in a way
that bconi1 ≥ Rk(b) and econi1 ≤ Rk(e).

- pivot: Ti execution happens during
T Rk

i [bconi1 ,econi1].
- compensatable: Ti execution happens during

T Rk
i [bconi1 ,econi1]. Should there be an un-

doing of this execution’s outcomes, then the
remaining availability time would accommo-
date the undoing, T Rk

i [bconi2 ,econi2] and bconi2 =
econi1 , subject to verifying that Rk(e)− econi1 >
0. Should the verification fail, then the re-
source’s availability time would be extended,
Rk(e) + δ, in a way that T Rk

i [bconi2 ,econi2] ⊆
Rk[econi1 ,e + δ], bconi2 = econi1 , and econi2 ≤
Rk(e) + δ. Whether the extension happens
or not, Ti execution is still compliant with
the requirements of a compensatable property
(i.e., both done and canceled are final states).

- retriable: Ti execution and potential agreed-
upon retrials happen during T Rk

i [bconi1 ,econi1].
Should there be extra retrials to ensure suc-
cessful execution, then the remaining avail-
ability time would accommodate these ex-
tra retrials, T Rk

i [bconin ,econin] and bconin =
econi(n−1) , subject to verifying that Rk(e) −
econi(n−1) > 0 where 1 < n < T H . Should
the verification fail, then the resource’s avail-
ability time would be extended a certain
number of times, Rk(e) + 1[δ]∗, in a way
that T Rk

i [bconin ,econin]⊆Rk[econi(n−1) ,e+1[δ]∗],
bconin = econi(n−1) , econin ≤ Rk(e) + δ, and 1 <

n < T H . Thanks to the extension, Ti execu-
tion is still compliant with the requirements of
a retriable property (i.e., done is a final state).

Consumption-time Interval Overlaps Availability-
time Interval. Since the expected consumption-time
interval and availability-time interval have some time
in common, the lower value of the task’s expected

consumption-time interval is adjusted in a way that it
matches the lower value of the resource’s availability-
time interval, i.e., Ti = [Rk(b), lt]. After this adjust-
ment, the following would happen considering both
the resource’s consumption property and the task’s
transactional property:

1. limited: the effective consumption-time inter-
val, T Rk

i [bconi1 ,econi1], falls into a part of the
availability-time interval in a way that bconi1 ≥
Rk(b) and econi1 < Rk(e). The remaining part of
the availability-time interval, that corresponds to
[econi1 ,(Rk(e)− econi1)], could be used to accom-
modate additional consumption (Table 2-(a)).

- pivot: Ti execution happens during
T Rk

i [bconi1 ,econi1].
- compensatable: Ti execution happens during

T Rk
i [bconi1 ,econi1]. Should there be an undoing

of this execution’s outcomes, then the remain-
ing availability time would accommodate the
undoing, T Rk

i [bconi2 ,econi2] and bconi2 = econi1 ,
subject to verifying that Rk(e) − econi1 > 0.
Should the verification fail, then the compen-
sation would be canceled. Despite the can-
cellation, Ti execution is still compliant with
the requirements of a compensatable property
(i.e., done is a final state).

- retriable: Ti execution and potential agreed-
upon retrials happen during T Rk

i [bconi1 ,econi1].
Should there be extra retrials to ensure suc-
cessful execution, then the remaining availabil-
ity time would accommodate these extra re-
trials, T Rk

i [bconin ,econin] and bconin = econi(n−1) ,
subject to verifying that Rk(e)− econi(n−1) > 0
where 1 < n < T H . Should the verification
fail, then the extra retrials would be stopped
making Ti execution uncompliant with the re-
quirements of a retriable property (i.e., failed is
not a final state).

2. limited-but-extensible: the effective
consumption-time interval, T Rk

i [bconi1 ,econi1],
falls into a part of the availability-time interval in
a way that bconi1 ≥ Rk(b) and econi1 < Rk(e). The
remaining part of the availability-time interval,
that corresponds to [econi1 ,(Rk(e)− econi1)], could
be used to accommodate additional consumption
before considering to extend this availability-time
interval (Table 2-(b)).

- pivot: Ti execution happens during
T Rk

i [bconi1 ,econi1].
- compensatable: Ti execution happens during

T Rk
i [bconi1 ,econi1]. Should there be an un-

On the Use of Allen’s Interval Algebra in the Coordination of Resource Consumption by Transactional Business Processes

21

doing of this execution’s outcomes, then the
remaining availability time would accommo-
date the undoing, T Rk

i [bconi2 ,econi2] and bconi2 =
econi1 , subject to verifying that Rk(e)− econi1 >
0. Should the verification fail, then the re-
source’s availability time would be extended,
Rk(e) + δ, in a way that T Rk

i [bconi2 ,econi2] ⊆
Rk[econi1 ,e + δ], bconi2 = econi1 , and econi2 ≤
Rk(e) + δ. Whether the extension happens
or not, Ti execution is still compliant with
the requirements of a compensatable property
(i.e., both done and canceled are final states).

- retriable: Ti execution and potential agreed-
upon retrials happen during T Rk

i [bconi1 ,econi1].
Should there be extra retrials to ensure suc-
cessful execution, then the remaining avail-
ability time would accommodate these ex-
tra retrials, T Rk

i [bconin ,econin] and bconin =
econi(n−1) , subject to verifying that Rk(e) −
econi(n−1) > 0 where 1 < n < T H . Should
the verification fail, then the resource’s avail-
ability time would be extended a certain
number of times, Rk(e) + 1[δ]∗, in a way
that T Rk

i [bconin ,econin]⊆Rk[econi(n−1) ,e+1[δ]∗],
bconin = econi(n−1) , econin ≤ Rk(e) + δ, and 1 <

n < T H . Thanks to the extension, Ti execu-
tion is still compliant with the requirements of
a retriable property (i.e., done is a final state).

Availability-time Interval Overlaps Consumption-
time Interval. Although “availability-time interval
overlaps consumption-time interval” looks similar to
“consumption-time interval overlaps availability-time
interval”, there are 2 adjustments that need to take
place considering the fact that availability-time in-
terval and expected consumption-time interval have
some time in common. The first adjustment con-
sists of matching the lower value of the resource’s
availability-time interval with the lower value of the
task’s expected consumption-time interval, i.e., Rk =
[b′,e] and b′ = Ti(et). The second adjustment is con-
ditional since it applies to limited-but-extensible re-
sources2, only, and consists of matching the highest
value of the resource’s availability-time interval with
the highest value of the task’s expected consumption-
time interval, i.e., Rk = [b′,e′] and e′ = Ti(lt). Ex-
tending from the beginning permits to offer a com-
plete coverage of tasks’ expected consumption-time
intervals instead of waiting for these tasks’ extension
requests. As a result of the second adjustment, the

2Considering limited resources could be an option. But,
this would require reducing a task’s expected consumption-
time interval, which might not be practical in real-life.

analysis of “availability-time overlaps consumption-
time” becomes similar to “availability-time equals
consumption-time” after dropping limited resources
from the analysis.
Availability-time Interval during Consumption-
time Interval. 2 adjustments need to happen as fol-
lows. The first adjustment consists of adjusting the
lower value of the task’s expected consumption-time
to match the lower value of the resource’s availability-
time interval, i.e., Ti = [Rk(b), lt]. The second ad-
justment is applicable only if the resource is limited-
but-extensible. This consists of extending the re-
source availability-time interval so, that, its highest
value matches the highest value of the task’s expected
consumption-time interval, i.e., Rk = [b,e′] and e′ =
Ti(lt). As a result of these adjustments, the analy-
sis of “availability-time interval during consumption-
time interval” becomes similar to “availability-time
interval equals consumption-time interval”.

5 IMPLEMENTATION

To demonstrate the technical doability of our ap-
proach for coordinating the consumption of resources
by processes from a time perspective, we deployed
an in-house testbed that uses BPI-Challenge-2017’s
real dataset (van Dongen, 2017). The dataset is
about a credit application system’s execution traces
and is available in eXtensible Event Stream (XES). In
conjunction with this dataset, we developed several
Python programs and performed several experiments.

5.1 Dataset Preprocessing

Necessary steps for preprocessing BPI-Challenge-
2017’s dataset are detailed below:

• Data transformation from XES into pandas
DataFrame3 format aims at tapping into pandas
library’s predefined routines which we applied to
the next preprocessing steps. DataFrame is suit-
able for manipulating data and building prediction
models.

• Data reduction/sampling downsized the dataset to
make it manageable. We applied sampling to
extract a representative set, 30%, of the original
dataset. This number was chosen for performance
purposes, given the dataset’s initial size and time
spent considering other data volumes.

• Feature selection considered a subset of the fea-
tures describing relevant data. The objective is
3pandas.pydata.org/docs/reference/api/pandas.

DataFrame.html.

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

22

to obtain a concise representation of the available
data in the reduced dataset such as org:resource,
lifecycle:transition, and time:timestamp. Fea-
ture selection also permits to drop irrelevant
data such as case:LoanGoal, MonthlyCost, and
case:RequestedAmount that could slowdown our
system or affect the inaccuracy of the results.

• Feature creation generated new features that aim
at capturing the most important data in a dataset
much more efficiently than the original dataset.
We used 2 techniques, feature extraction and fea-
ture construction. In the former technique, we ex-
tracted the resource’s availability time, Rk[b,e],
from the time:timestamp feature in the dataset.
For each resource Rk, b and e refer, respectively,
to the lowest and highest values per date of the
time part in the time:timestamp feature. In the lat-
ter technique, we performed a deep analysis of the
reduced dataset to define the consumption-time
interval of the resource, T Rk

i [xconi j ,yconi j]. For
each task, we computed the time between its in-
stances and their successors. The average time is
then considered as the consumption-time interval
for that task.
Once a resource’s availability-time interval and
consumption-time interval are defined, we worked
on task/resource time-connection as per Sec-
tion 4.3. In addition, the analysis of the dataset
and several papers on the BPI challenge 2017 al-
lowed us to work on the consumption property of
each resource and transactional property of each
task. For instance, we noticed that the execution
of some tasks was suspended when the resource
availability-time ended. Hence, we assigned lim-
ited property to this resource. As for the trans-
actional property, we associated compensatable
property with make offer task since 3% of offers
were canceled or refused after their successful ex-
ecution according to (Bolt, 2017). Finally, we
added the consumption and transactional proper-
ties to the preprocessed dataset.

5.2 Task/Resource Recommendations

To enact task/resource coordination, we resorted
to process mining that is known for addressing
BP decision-making problems and providing recom-
mendations to improve future BP executions. In this
context, a good number of recommendations tech-
niques are reported in the literature. We opted for De-
cision Trees (DT)4 known for easiness, performance,
and ability to visually communicate choices. We cre-

4scikit-learn.org/stable/modules/tree.html.

ated a prediction model following 2 stages, offline and
online, allowing to build and process the required pre-
diction model.
Offline Stage. We built a prediction model by refer-
ring to an open-source Python library called Sklearn5.
It supports a variety of built-in prediction models
(e.g., DT, KNN, and SVM). Building a prediction
model with Sklearn usually starts with preparing the
dataset in the most suitable format as per Section 5.1
that is Pandas DataFrame in our case. Then, the target
of the prediction model must be defined. This latter is
about the recommendation of the actions to take when
a resource is assigned to a task (e.g., adjusting the
resource-availability time or consumption-time inter-
val). Finally, the set of variables that may affect the
recommendations such as resource’s availability-time
and consumption-time are defined.

In terms of technical details, we, first, selected
the DT model and then, set its parameters namely,
attribute selection criterion (Entropy or Gini index)
and maximum depth of the tree. These parameters
are critical to the accuracy of the results and are usu-
ally set manually after several trials to find the best
results. Afterwards, we fitted the DT model into the
specified data. We had to split the reduced dataset
into training dataset and test dataset using Sklearn’s
TRAIN TEST SPLIT6 built-in function. Finally, we
evaluated the accuracy of our model by comparing the
result of the prediction to the real data included in the
test dataset as per Section5.3.
Online Stage. The objective here is to recommend
actions to take when a resource is assigned to a task in
the new executions. Obviously, recommendations are
determined using the prediction model built during
the offline stage. We carried out some experiments to
predict the actions to perform for each task-resource
with respect to some new simulated BP instances. We
checked how accurate our prediction model is. Dur-
ing the experiments, we considered 30 simulated in-
stances of the BP. The accuracy of results are dis-
cussed next.

5.3 Discussions of the Results

To appreciate our DT-based prediction model’s rec-
ommendations, we also adopted the k-Nearest Neigh-
bors (KNN) as another technique for developing pre-
diction models. As for the DT prediction model, the
experiments showed encouraging results during either
the offline stage or the online stage. In this context,

5scikit-learn.org/stable/index.html.
6scikit-learn.org/stable/modules/generated/sklearn.

model selection.train test split.html.

On the Use of Allen’s Interval Algebra in the Coordination of Resource Consumption by Transactional Business Processes

23

Test dataset Simulated dataset

93 8987
76

Datasets used during the experiments

A
cc

ur
ac

y

DT
KNN

Figure 3: Accuracy of DT versus KNN.

we used Accuracy as a performance measure (Equa-
tion 1).

Accuracy =
TrueObservations
TotalObservations

(1)

First, we computed Accuracy after applying the
DT prediction model to the test dataset as per the of-
fline stage. We obtained 93% Accuracy, which we
treated as an acceptable value. Then, we computed
Accuracy again after applying our prediction model
during the online stage to the simulated instances. We
obtained 89% Accuracy that also proves the high per-
formance of our DT prediction model. Last but not
least, we used KNN prediction model. Similarly to
the DT prediction model, we used our preprocessed
dataset to build the KNN prediction model and, then,
we applied it to the simulated instances. The objec-
tive is to compare the results obtained using both tech-
niques (DT and KNN). The results show an Accuracy
of 87% and 76% when the KNN prediction model
is applied to the test dataset and the simulated in-
stances. These results are in line with those of the
DT and proves its performance. Fig. 3 illustrates the
comparison between the Accuracy values obtained by
DT and KNN prediction models using both the test
dataset and the simulated instances.

6 CONCLUSION

This paper presented an approach for coordinating
the consumption of resources by business processes.
The coordination took place from a time perspective
thanks to specific relations defined by Allen’s interval
algebra. Examples of relations included equals, over-
laps, starts, and finishes. The coordination also con-
sidered both the consumption properties of resources
(unlimited, limited, limited-but-extensible, shareable,
and non-shareable) and the transactional properties

of business processes (pivot, retriable, and compen-
satable). Since resources and processes were associ-
ated with availability-time intervals and consumption-
time intervals, respectively, different types of reason-
ing took place leading sometimes to adjusting some
time intervals and/or allowing some re-executions. A
system demonstrating the technical doability of the
approach based on a case study about loan applica-
tion business-process was implemented. We built a
decision-tree prediction model using a real dataset
from the BPI Challenge 2017. The evaluation of this
prediction model proved its performance. In addition,
to consolidate these results, we carried out a second
experiment using KNN whose results were in line
with those of DT and have proven its performance.
In term of future work we would like to examine the
remaining Allen’s time relations, the scalability of the
system when a large number of processes are under-
execution, and finally, the impact of resource failure
on process execution.

REFERENCES

Alessandro, S., Davide, A., Elisabetta, B., Riccardo, D.,
and Valeria, M. (2020). A Data-driven Methodology
for Supporting Resource Planning of Health Services.
Socio-Economic Planning Sciences, 70.

Allen, J. (1983). Maintaining Knowledge about Temporal
Intervals. CACM, 26(11).

Bolt, A. (September 2017). BPI Challenge 2017 Pro-
cess Variability Analysis over Offers. https:
//www.win.tue.nl/bpi/lib/exe/fetch.php?media=2017:
bpi2017 paper 22.pdf,visitedMay∼2021.

Delcoucq, L., Lecron, F., Fortemps, P., and van der Aalst,
W. M. (2020). Resource-centric Process Mining:
Clustering using Local Process Models. In Proceed-
ings of SAC’2020, online.

Frank, L. and Ulslev Pedersen, R. (2012). Integrated Dis-
tributed/Mobile Logistics Management. TLDKS, 5.

Little, M. (2003). Transactions and Web Services. CACM,
46(10).

Maamar, Z., Faci, N., Sakr, S., Boukhebouze, M., and Bar-
nawi, A. (2016). Network-based Social Coordination
of Business Processes. IS, 58.

Michael, A., Eric, R., Jorge, M., and Marcos, S. (2015).
A Framework for Recommending Resource Alloca-
tion based on Process Mining. In Proceedings of
BPM’2015 Workshops, Innsbruck, Austria.

OMG. Business Process Model and Notation.
www.omg.org/spec/BPMN/2.0.2.

Rania Ben, H., Kallel, K., Gaaloul, W., Maamar, Z., and
Jmaiel, M. (2020). Toward a Correct and Optimal
Time-aware Cloud Resource Allocation to Business
Processes. FGCS, 112.

Renuka, S., Aditya, G., and Hoa Khanh, D. (2016).
Context-aware Analysis of Past Process Executions to

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

24

Aid Resource Allocation Decisions. In Proceedings
of CAiSE’2016, Ljubljana, Slovenia.

van Dongen, B. (2017). BPI Challenge 2017. data.4tu.nl/
articles/dataset/BPI Challenge 2017/12696884.

Weidong, Z., Haitao, L., Weihui, D., and Jian, M. (2016).
An Entropy-based Clustering Ensemble Method to
Support Resource Allocation in Business Process
Management. KIS, 48(2).

Weske, M. (2012). Business Process Management Archi-
tectures. In Business Process Management. Springer.

Zhao, W., Pu, S., and Jiang, D. (2020). A Human Resource
Allocation Method for Business Processes using Team
Faultlines. Applied Intelligence, 50(9).

On the Use of Allen’s Interval Algebra in the Coordination of Resource Consumption by Transactional Business Processes

25

