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Abstract: In this paper, we present a multi-object 6D detection and tracking pipeline for potentially similar and non-
textured objects. The combination of a convolutional neural network for object classification and rough pose
estimation with a local pose refinement and an automatic mismatch detection enables direct application in
real-time AR scenarios. A new network architecture, trained solely with synthetic images, allows simultaneous
pose estimation of multiple objects with reduced GPU memory consumption and enhanced performance. In
addition, the pose estimates are further improved by a local edge-based refinement step that explicitly exploits
known object geometry information. For continuous movements, the sole use of local refinement reduces
pose mismatches due to geometric ambiguities or occlusions. We showcase the entire tracking pipeline and
demonstrate the benefits of the combined approach. Experiments on a challenging set of non-textured similar
objects demonstrate the enhanced quality compared to the baseline method. Finally, we illustrate how the
system can be used in a real AR assistance application within the field of construction.

1 INTRODUCTION

The detection and subsequent registration of 3D rigid
objects in videos are key components in augmented re-
ality (AR) systems. When interacting with real-world
objects, their relative pose with respect to a camera
has to be known to enrich them with additional infor-
mation. Specifically, there are two subtasks: global
6D pose estimation without prior knowledge of the
pose and local frame-to-frame tracking where an ini-
tial pose is known from the previous frame. This paper
connects current literature on the research areas in a
dynamic system and contributes new ideas to both to
balance them for optimal AR usage.

We target challenging industrial or construction
scenarios, involving manual object assembly or sorting.
They require stable detection and tracking, as well
as real-time capability and occlusion handling. In
addition, the objects are often untextured, similar in
shape and color, and produced in small batches.

This presents particular hurdles for pose estimation.
While convolutional neural network(CNN)-based 6D
pose estimators from single-camera images have ad-
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vanced rapidly in recent times, their ability to perform
multi-object pose estimation has received only limited
attention. Often best results for multiple objects are
achieved by training a separate network for each object
(Song et al., 2020; Park et al., 2019; Peng et al., 2019).
Not only does this require more memory than a single-
network solution, but also classification is more diffi-
cult. Either each network must be tested if an object of
unknown type is visible, or even another network must
be trained to identify the objects. However, knowl-
edge of multiple similar objects helps distinguish them
and prevents false-positive estimates. We extend a
well-known pose estimator PVNet (Peng et al., 2019)
by using object-specific parameters locally within the
estimated semantic masks. This improves the distin-
guishing of similar objects with a single network and
the handling of shape ambiguities.

Next, objects produced in small batches make the
collection of real-world training images infeasible.
The use of synthetic renderings allows to create unlim-
ited amounts of perfectly labeled data to flexibly add
new objects to the system. We see local refinement as
a key to solving different problems. First, the so-called
domain gap limits the accuracy of CNNs trained on
synthetic data tested on real data (Wang et al., 2020).
Second, a CNN usually processes images with limited
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(a) (b) (c) (d)
Figure 1: After the left object is uncovered (a, b) tracking starts immediately. Local tracking keeps active for the right object
also if the CNN detects a wrong (c) or no object (d). Rows from top to bottom: camera image, estimated semantic segmentation,
camera image with rendered overlay.

resolution, limiting also the accuracy of the pose esti-
mates. Contrary to the trend to make the training data
more realistic (Hodaň et al., 2019), refinement narrows
the domain gap and enables us to use simple domain
randomized training data (To et al., 2018). Even only
single object images are used for training, although
the use in a multi-object system is intended. The lo-
cal edge-based refinement matches the 3D model with
image edges on high-resolution images. Third, false-
positive detections may arise from the CNN due to
shape ambiguities. Object edges provide a cue to sup-
press them. Poses are validated only if it is possible
to accurately match the projected contour of the 3D
model with the image edges, using an edge deviation
error from local pose refinement.

Even though the CNN-based solutions are real-
time capable, we show that it is often beneficial to
prioritize local refinement in video sequences (Fig-
ure 1c,d), e.g. in situations not explicitly modelled in
the training data. Only if local refinement fails due to
occlusion or fast motion, edge-based pose validation
actively triggers reinitialization (Figure 1a,b), so that
otherwise no CNN evaluation is required.

In summary, we present a pipeline for tracking
and 6D detection of multiple similar objects in AR
systems, with automatable training, and evaluate the
individual components with 13 similar objects from
a real AR application. We demonstrate our pipeline
on synthetic images with domain gap and real video
sequences and show benefits and limitations of individ-
ual components and possibilities of the overall system.

2 RELATED WORK

Augmented Reality for Assembly. Providing guid-
ance e.g. via head-mounted displays during assembly
and construction tasks is an essential AR use case,
motivated by the reduced time needed to complete
a task compared to paper manuals (Henderson and
Feiner, 2010). User acceptance is an important chal-
lenge (Masood and Egger, 2020), and reliable track-
ing is a key factor to achieving immersive, easy-to-
use systems. While stable localization is already in-
tegrated into widely used hardware (Vassallo et al.,
2017), pipelines with easy automatic extendibility for
new objects as well as stable 6D tracking for AR are
still rare. (Zubizarreta et al., 2019) provide a frame-
work based on chamfer matching with conic priors to
detect and register CAD models of machine-made ob-
jects in monocular images. A limitation is that objects
have to consist of conics to be recognized, and it is
unclear whether the system works for geometrically
similar objects. Recognition of subtle differences is
studied in the field of assembly state detection (Liu
et al., 2020). Assembly state detection has also been
paired with pose estimation (Su et al., 2019), but with-
out combining it with frame-to-frame pose refinement,
it does not provide stable tracking for AR applications.

Multi-object 6D Pose Estimation. A common way
to infer the pose of known objects from a monocular
image is to use a CNN to find the location of the
2D image projection of 3D points, e.g. object-specific
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keypoints or dense coordinate maps, and estimate the
pose with a Perspective-n-Point (PnP) algorithm (Peng
et al., 2019; Song et al., 2020; Zakharov et al., 2019;
Tremblay et al., 2018; Li et al., 2019; Park et al., 2019).

As an example, PVNet (Peng et al., 2019) segments
objects and simultaneously predicts unit vector fields
inside the estimated mask pointing towards the 2D
projections of keypoints. The intersection of two ran-
domly selected points leads to a 2D estimate, which is
validated with a RANSAC-based voting scheme. This
generates a high level of robustness against occlusions.
To detect multiple objects with a single network, they
propose to simply increase the number of classes and
also the number of estimated vector fields. Neverthe-
less, with PVNet and the other approaches mentioned
above, the best results are achieved when a single
network is trained for every object. In addition, the
amount of GPU memory needed in training drastically
increases with the number of outputs, and training
becomes slower and more difficult.

(Sock et al., 2020) describe a performance drop
due to scalability problems for a backbone that uses a
similar trivial multi-object extension (Rad and Lepetit,
2017). To close this gap, they add object-specific nor-
malization parameters to the CNN using Conditional
Instance Normalization (CIN) (Dumoulin et al., 2017).
With CIN, the right normalization parameters can only
be selected if the object identity information is known,
e.g. by using a bounding box detector, and only one
pose can be estimated in one inference.

In this work, we improve the PVNet architecture
to choose the correct normalization parameters auto-
matically. Class-adaptive instance (de)normalization
(CLADE) (Tan et al., 2021) selects object-specific pa-
rameters based on the semantic class of each pixel.
The resulting network can easily be trained for multi-
ple objects, the multi-object gap is narrowed, and all
known objects in one image can be found during one
inference without knowing their identity in advance.

Local Object Tracking. Although pose estimation
with CNNs has recently developed very rapidly, state-
of-the-art results for model-based frame-to-frame
tracking are still achieved with non-learning-based
methods. For potentially non-textured objects and
image-based tracking, existing approaches can roughly
be separated into edge and region-based methods.

Region-based methods use either global (Prisacariu
and Reid, 2012) or temporary local color (Tjaden et al.,
2018; Zhong and Zhang, 2019) histograms to separate
an object from the background and optimize the pose
to maximize the discrimination. They are best suitable
for objects, which are distinct from the background,

but easily fail for objects, which have a similar color
to the background (Sun et al., 2021).

Edges or contours are suitable visual cues for track-
ing non-textured objects. Based on the RAPID al-
gorithm (Harris and Stennett, 1990), 2D-3D corre-
spondences are searched on scanlines perpendicular
to the object contour. Extensions filter those corre-
spondences with respect to the contour orientation
(Huang et al., 2020), a global or local color histogram
(Seo et al., 2013; Wang et al., 2015; Huang et al.,
2020) or consider multiple hypotheses per scanline.
Other edge-based algorithms do not explicitly include
point-to-point correspondences, but instead minimize
a pixel-based distance metric directly on the intensity
image (Dong et al., 2020; Wang et al., 2019).

Similarly, analysis-by-synthesis-based methods
(Seibold et al., 2017; Gard et al., 2019) try to syn-
thetically recreate the camera image with a rendered
representation and minimize image distance by mo-
tion compensation with respect to the optical-flow con-
straint. A comparable representation between real and
synthetic images has to be found, either by explicitly
modelling scene or image-parameters such as motion
blur (Seibold et al., 2017), or simplification, e.g. by
using robust edge-images (Gard et al., 2019).

Our tracking algorithm combines correspondence
and non-correspondence-based tracking, independent
of color information, and is suitable for textured and
non-textured objects. It bridges larger pose differ-
ences during RAPID-based iterations. A subsequent
analysis-by-synthesis optimization makes fine adjust-
ments and also accounts for inner edges.

3 REGISTRATION PIPELINE

This section covers our multi-object tracking and iden-
tification pipeline. Our system should not need any
photos of the real object before being able to recognize
it. In an offline phase, renderings are generated as train-
ing data for our pose estimation CNN (Section 3.1).
The CNN constantly scans the video stream and esti-
mates an initial pose for each visible, known object
(Section 3.2). After detection, a local refinement step
maps the edges of the 3D model to the image edges
(Section 3.3). A validation step (Section 3.4) evaluates
the quality of these matches and either validates or
invalidates the pose. For objects with validated poses,
it is sufficient to proceed with local refinement for the
next image.
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Figure 2: Synthetically rendered training images and the cor-
responding color-coded vector fields that, within the object
mask, point to the 2D projection of a 3D keypoint.

3.1 Data Generation

The Input of the data generation step is a set of multiple
3D models to be detected and tracked. They may have
similar shapes and may be untextured or from the same
material but should not be rotationally symmetric. The
models are centered at their 3D bounding box and k
keypoints, the object center and k− 1 points on the
object surface, are determined using the Farthest Point
Sampling algorithm (Peng et al., 2019).

We create a dataset consisting of synthetic render-
ings using NDDS (To et al., 2018), an Unreal Engine
plugin for generating annotated training images. To
address the domain gap, i.e. the different properties
of real and synthetic images that affect the accuracy
of a CNN trained on synthetic data only, we use do-
main randomization (Tobin et al., 2017). We render
the objects in front of a random background, which
is either a photo or a randomly generated procedural
graphic. In half of the images, the objects are rendered
over a flat surface to introduce shadows. Also, the
position of light sources, the orientation and position
of the object, the texture of the object, and the posi-
tion of the camera are randomized. Randomly placed
distractor objects introduce partial occlusion. In each
image, only one target object is visible, which simpli-
fies the recompilation of new datasets for different sets
of objects.

Contrary to other publications (Hodaň et al., 2019;
Thalhammer et al., 2021), we do not render near-photo-
realistic images and instead deal with inaccurate pose
estimates by refining the pose locally and filtering
wrong pose estimates by our pose validation step. We
further reduce the domain gap and focus on shape
differences by using grayscale images only. For each
training image, a mask of the visible part of the object,
its pose, and the position of the keypoints in 3D and
2D space are stored (Figure 2).

3.2 6D Detection Network

Our pose estimator first establishes 2D-3D correspon-
dences with a correspondence estimation CNN. It pre-
dicts n+1 pixel-level masks for the background and
n known objects, as well as k joint vector fields. The
number of keypoints is the same for each object. In
a vector field, two coordinate maps form 2D vectors
pointing to the image location of the keypoint belong-
ing to the object a pixel is assigned to in the semantic
segmentation.

As with PVNet (Peng et al., 2019), the intersec-
tions of randomly selected vector pairs within an object
mask result in 2D location estimates that are validated
with a RANSAC-based voting procedure. The object
pose is found with a PnP algorithm. Contrary to them,
the joint vector field reduces the number of output
maps for the vector fields from 2nk to 2k and is in-
dependent of the number of objects. This makes the
network much easier and faster to train, reduces the
required GPU memory during training, and the data
transfer between GPU and CPU after inference. E.g.
for 13 objects with 9 keypoints the number of output
maps are reduced from 248 to 32.

The following modifications are made to PVNet.
1. The semantic segmentation and the vector fields

are predicted with two different decoders con-
nected to the same encoder.

2. In the keypoint decoder, the batch normaliza-
tion is replaced with a class-adaptive instance
(de)normalization (CLADE) (Tan et al., 2021).

3. The estimated semantic segmentation is used as a
side input for the CLADE layers to select object-
specific weights with the Guided Sampling (Tan
et al., 2021) strategy, based on the class a pixel
belongs to.

The object-specific weights increase the capacity of
the network for multi-object pose estimation. The spa-
tial selection of those weights allows correspondences
for multiple objects to be estimated with one inference.
In the decoder blocks, the semantic mask is downsam-
pled so that its size matches with the output of the.
convolution.

To achieve better convergence during training, the
ground truth mask instead of the estimated mask is
used as side input. During inference, the intermediate
logits of the segmentation are normalized with a scaled
softmax function with high temperature value. Our
CNN architecture is visualized in Figure 3.

3.3 Local Refinement

Poses estimated by the CNN are not stable enough
for AR use, as even small jitter significantly reduces
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Figure 3: The input image is processed with a segmentation
branch that guides the vector field prediction for 2D-3D
correspondence estimation.

visual quality. Furthermore, a domain gap between
camera images and synthetic training images affects
the accuracy of the tracking. Therefore, we apply an
additional local analysis-by-synthesis refinement to
stabilize the pose estimation. If possible, only the
local refinement is used, since it can bridge the small
frame-to-frame movements.

The refinement starts from an approximate pose
given by 3×3 rotation matrix R and translation vector
t. This pose is either the output of the global CNN
detection or the output of local refinement at time step
t − 1. A synthetic image Î and a depth map D are
generated by an off-screen renderer using meshes of
the detected objects. The goal is to find the pose offsets
∆t, ∆R that compensate the difference between camera
image I and Î.

If p̂ = [px, py, pz]
T is a 3D point on the model sur-

face in Î, it is transformed to p and projected into
the image point x with the intrinsic matrix K and a
homogenization operation π(p) = [px/pz, py/pz]

T .

p = ∆R(p̂− t)+ t+∆t (1)

x = π(Kp) (2)

As in (Steinbach et al., 2001), under small motion
assumption, a linearized rotation matrix with three
unknown parameters ∆r = [∆rx,∆ry,∆rz]

T is used and
the displacement error is expressed as a linear equation
using first order Taylor expansion. Our optimization
algorithm obtains a two-stage structure of two con-
secutively solved minimization problems. The usage
of an image pyramid and an iteratively reweighted
least squares (IRLS) scheme (Zhang, 1997) stabilize
convergence and reduce the influence of outliers.

3.3.1 Contour-based Optimization

Inspired by other work (Huang et al., 2020; Harris and
Stennett, 1990), we implement an edge-based registra-
tion algorithm. The depth map D allows generating a
silhouette mask from which m edge points ei and the
corresponding 3D points p̂e

i are extracted.
We extract match hypotheses along m scanlines

li, along the unit vector si perpendicular to the pro-
jected contour at a given point. We sample I along li
and convolve each sample with pre-computed 5× 5
rotated Sobel kernels to extract edges with similar ori-
entation to the projected edge. All locations where the
convolved value is a local maximum along the scan-
line and larger than a threshold te, are stored as edge
hypothesis points hi, j. We minimize the error function

E(∆R,∆t) =
m

∑
i=0

ω(ri)(si
T (hi−π(Kpe

i ))) (3)

whereby the pose delta transforms p̂e
i to pe

i (Equa-
tion 1) and hi is the hypothesis with the smallest
spatial distance to the observed contour point. By
using the Taylor approximation of the displacement
error, we solve an overdetermined linear equation sys-
tem for the pose parameters. The weighting func-
tion ω(x) = 1/

√
x2 + ε2 applies the robust Charbon-

nier penalty (Sun et al., 2010) with ε = 0.001 on the
hypothesis residual ri from the previous IRLS iteration.
Two or three weight updates stabilize the estimation
against outliers.

Each pyramid stage consists of four to six repe-
titions. The off-screen renderer and the hypothesis
selection are only executed initially. Consecutively,
only the extracted 3D contour is transformed. More-
over, on the smallest pyramid level, we only solve for
translation and rotation within the 2D image plane.

3.3.2 Dense Refinement

The contour-based optimization may be affected by
mismatches along the scanlines. We use a subsequent
dense optimization minimizing the image distance
with respect to the general optical flow equation (Horn
and Schunck, 1981)

∂Î
∂X̂1

um +
∂Î

∂Ŷ s1
vm ≈ Î− I (4)

which is reformulated to be a linear equation system.
This system is solvable with respect to the unknown
pose parameters using the coefficients a from (Stein-
bach et al., 2001).

a
(

∆r
∆t

)
= Î− I (5)
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Every pixel inside the silhouette of the rendered ob-
ject results in one equation for the iterative reweighted
least squares solution.

Adaptive thresholding (Gard and Eisert, 2018;
Gard et al., 2019) makes the rendered image and the
camera image comparable. First, a thresholded Sobel
filter extracts edges in the rendered image, then the
threshold for the camera image is adapted over a 2D
grid to reproduce a similar distribution of edge and
non-edge pixels in each grid cell. This also reduces
the influence of illumination.

Both edge images are smoothed with a box filter to
introduce smooth gradients around the detected edges
before minimizing the image distance. The optimiza-
tion is suitable for textured and non-textured objects.
Due to the application of simple shading in the off-
screen renderer, sharp geometric edges will be visible
in the Sobel image.

Since all operations are applied pixel-wise, the
processing can be executed on the GPU by custom
compute-shaders. Also, the equation coefficients are
combined on the GPU. The least squares problem is
formulated in Ax = b form and each iteration only
needs a transfer of the symmetric 6× 6 matrix AT A
and the 6× 1 vector AT b between GPU and CPU,
where the system is solved.

3.4 Pose Validation

In a single-camera system, objects with small geomet-
ric differences can lead to ambiguities that have to be
filtered reliably. A pose validation filters wrong pose
estimates due to drift or false-positive detections.

Detection Validation. The RANSAC-based voting
(Peng et al., 2019) during detection needs a minimum
number of positive samples (e.g. 25) to validate a 2D
keypoint hypothesis. After the initial pose estimation,
the reprojection error must be smaller than a threshold
(12 pixels in our experiments) for at least 4 points.

Refinement Validation. The initial pose can still
be coarse, so pose validation including acceptance
or rejection is performed on the refined poses. It re-
quires the projected contour of the object to match with
the image content. We find the error of the RAPID-
inspired local registration suitable to measure this.
Here, eIRLS is the mean residual value in the last it-
eration in the lowest pyramid level, eDist is the mean
distance between points on the projected contour and
the closest correspondence hypothesis, and evalid is
the ratio of the number of scanlines to the number of

scanlines on which a correspondence hypothesis was
found. We define the edge matching score as

eedge = eIRLS× eDist × evalid . (6)

An initial pose is refined and eedge of the first frame
is stored as initial error einit . If it is smaller than a
threshold ẽinit an initial pose is accepted. Otherwise,
we keep the object as a candidate and further refine
the pose locally for the next frames as long as eedge
decreases. If the error increases compared to the last
frame, a detection is discarded.

Then, eedge is monitored continuously and the run-
ning mean average êedge is updated as long as the
object remains valid. As long as eedge is smaller than
a maximum value ẽmax and êedge× f , where f is a pre-
defined factor, an object keeps its validity. If not, the
object is in a borderline state. The pose is not updated
and a mismatch counter increases for every following
invalid frame until either the pose becomes valid again
or two invalid frames appear in a row, which sends the
object to an uninitialized state.

4 IMPLEMENTATION DETAILS

4.1 CNN Training and Architecture

Our training dataset consists of ∼15000 synthetic im-
ages per object. Our CNN is trained for 125 epochs
using the ADAM optimizer. The initial learning rate
of 0.002 is divided by two every 25 epochs. The back-
bone of our network provides features for both de-
coders and is connected via skip connections to both
of them. It is a pretrained ResNet-18 (He et al., 2016)
obtaining the same modifications as in (Peng et al.,
2019). In the keypoint decoder, each convolution is
followed by a CLADE layer. The CLADE layers ex-
tend the CNN by 1024 trainable parameters per object.
In total, the number of trainable weights increases by
about 14% by the second decoder.

Training images have a size of 3202. The images
are augmented by random contrast and brightness, ad-
ditional normally distributed noise, and random rota-
tion and translation variations. The input images are
grayscale. To use the pretrained weights of ImageNet,
the intensities are stacked to form a three-channel im-
age. We use differentiable proxy voting loss (DVPL)
(Yu et al., 2020) and smooth l1-loss to learn the vec-
tor field. We use softmax cross-entropy loss to learn
semantic segmentation.

During training, we input the ground truth segmen-
tation to the CLADE layers of the vector field decoder.
The numbers given for PVNet are computed with our
Tensorflow port of the original code.
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4.2 CNN Inference and Live Tracking

The inference in our tracking software uses the
OpenCV DNN module with its CUDA extension. Ini-
tial poses are estimated from 2D-3D correspondences
with EPNP (Lepetit et al., 2009).

The refinement exploits an off-screen OpenGL ren-
derer to compute the intermediate images. While the
contour-based part is fast on CPU, the dense refine-
ment relies on custom GLSL compute shaders for all
image processing and the formation of the equation
system. Only solving the equation system is done on
the CPU, minimizing data transfer.

The resolution of all test images is 10242, input
size of the CNN is 4002. The local tracking uses three
pyramid levels. The length of the scanlines is 15.

Two tracking modes have been implemented. In
Close-Range mode, the subsampled camera image is
passed to the detection network. Multiple objects are
searched at the same time and objects are tracked in-
dependently. The distance between the objects and the
camera matches the training data.

In Far-Range mode, the distance between object
and camera is much larger than in the training data. We
propose to pass image patches to the CNN in which
the size of the object relative to the patch size matches
the median size of the objects in the training images.

5 EXPERIMENTS

We evaluate our registration pipeline with synthetic
data first and then describe general observations on
real data in the scenario of AR-guided construction.
Within that example use case, the evaluation models
are part of a miniaturized model of a grid shell fa-
cade, consisting of 13 node elements (Figure 4) and 42
connector sticks. The node elements are particularly
interesting since they all have similar but not identical
shapes and geometric ambiguities can arise easily.

The 2D projection metric (Brachmann et al.,
2016) is used to judge the detection accuracy. The
vertices of the models are projected into the image
with the estimated pose and the ground-truth pose. A
pose is correct if the average distance is smaller than 5
pixels and the percentage of correct estimates is listed.

5.1 Benefits of the Multi-object
Detection Network

The objects in commonly used pose estimation
datasets, like Linemod (Hinterstoisser et al., 2012) or
YCB Video (Xiang et al., 2018), are clearly identifiable
by varying color and shape. We focus on the benefit of

Figure 4: Renderings of the 13 objects (I01 -I13) used in our
experiments, numbered from top left to bottom right.

Figure 5: Two images from our synthetic evaluation set.

our multi-object model to differentiate between similar
objects.

Our evaluation dataset contains 200 images per
object. Images are generated synthetically but a dif-
ferent render engine is used to introduce a domain
gap between training and testing data. The synthetic
data generator BlenderProc (Denninger et al., 2019)
based on Blender allows rendering nearly-photo real-
istic images. Two examples are shown in Figure 5.
In each image, the object is placed on a flat surface
with varying texture and is surrounded by distractor
objects. The camera, object, and light source poses
vary between the images. First, we compare three
multi-object models:

1. PV-M uses the trivial multi-object extension of
PVNet. With every added object, 19 channels are
added to the network output.

2. PV-M-C is a modification of the baseline architec-
ture that outputs joint vector fields.

3. CLADE-PV uses our proposed network structure,
as described in Section 3.2.

Table 1 lists the results for the different network
structures with respect to the 13 objects. Our model im-
proves the detection accuracy compared to the baseline
model by a large margin. It is important to note that
CLADE-PV requires much less GPU memory than
PV-M during training. With CLADE-PV, seven times
larger batch sizes were possible on the same hardware,
resulting in much faster training. The PV-M-C variant
was designed to be trainable with the same batch size
as CLADE-PV but performed worst.
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Table 1: Accuracies of our method and the baseline methods
on our evaluation dataset using 2D projection metric.

Method PV-M PV-M-C CLADE-PV
(ours)

I01 75.0 60.0 79.0
I02 78.0 54.5 79.0
I03 71.0 54.0 76.5
I04 82.5 68.0 86.5
I05 93.5 62.5 95.5
I06 66.5 41.5 85.0
I07 80.0 70.0 90.0
I08 73.3 54.2 82.4
I09 53.5 49.5 87.0
I10 75.0 80.0 94.0
I11 85.0 68.5 91.5
I12 69.0 53.5 77.0
I13 84.0 72.5 90.0
Avg. 75.9 60.6 85.6

Table 2: Comparison of single-object models to our multi-
object model using 2D projection metric.

Method PV-S PV-S+ CLADE-PV
(ours)

I01 76.5 80.5 79.0
I02 71.0 70.0 79.0
I03 63.5 61.0 76.5
I04 84.5 77.0 86.5
I05 93.5 87.0 95.5
I06 86.5 78.0 85.0
Avg. 79.3 75.6 83.6

In the next experiment (Table 2), we compare
multi and single-object models. We train two sep-
arate PVNet configurations for six different objects,
differing in the training data used. PV-S sees only the
images of one object. It produces false-positive detec-
tions most of the time for all other objects. PV-S+ also
sees the same amount of randomly selected images of
other objects to learn to distinguish its own object from
the others. Still, if the identity of the objects present in
the image is unknown, all networks have to be tested
with the input image which will result in computational
overhead. In conclusion, on average the single-object
models perform slightly better than the multi-object
competitors, confirming the multi-object gap, but also
worse than our proposed modified network.

5.2 Benefits of the Combined Approach

Local Refinement. We first show, how the pose re-
finement stabilizes the estimations of the CNN. The
raw initial poses are refined using the algorithm from
Section 3.3. While the CNN is limited by the input res-
olution, the refinement uses the full image resolution.

Table 3: Improvement of refinement on initial poses.

Method Iter. 2D<5 2D<1 ∅R P++
init. − 26.4 0.0 3.50° −
S1 1 76.5 45.7 1.44° 92.3
S2 1 73.8 27.3 1.54° 97.8
S1+2 1 84.3 64.7 0.74° 97.1
S1 3 78.7 52.9 1.20° 90.0
S2 3 83.7 57.8 0.85° 97.7
S1+2 3 86.5 73.9 0.59° 96.5

In Table 3, we list the percentage of valid frames
regarding the 2D projection metric with respect to the
high resolution and use thresholds of 5 (2D<5) and
1 (2D<1) pixel. Also, the average rotational (Tjaden
et al., 2018) error (∅R) over all valid frames (5-pixel
threshold), and the percentage of estimates where the
projection error is reduced (P++) are listed. The results
for init. correspond to the result from the last section
but refer to the higher resolution. We compare using
contour-based (S1) or dense refinement (S2) alone
with the combined approach (S1+S2), in which the
two processes are alternated in the image pyramid.

We see that one iteration through the image pyra-
mid (Iter.) of S1+S2 improves the accuracy more than
three iterations of S1 or S2 alone. S1 converges fast, in
the first iteration and can potentially bridge larger gaps,
while S2 is more likely to converge in the right direc-
tion (see P++). S1+S2 joins both advantages, which
is beneficial for real-time systems. More iterations
further improve the accuracy.

Pose Validation. During the pose refinement, the er-
ror value eedge is the criteria for acceptance or rejection
of poses. Ideally, it is larger than ẽinit if the estimated
pose is wrong and smaller than ẽinit if the estimated
pose is correct.

Table 4 shows the influence of ẽinit . The whole
dataset is passed through the registration pipeline (Sec-
tion 3) and every object is searched in every image.
Three iterations of refinement are allowed. We list the
following percentages: 1) correct estimates (5-pixel
threshold) correctly validated (2DPro j) (relative to
amount of images), 2) correct estimates correctly vali-
dated (COK) (relative to amount of correct detections),
3) wrong estimates correctly declined (FOK) (rela-
tive to amount of incorrect detections), 4) wrong es-
timates correctly declined using ADD (Hinterstoisser
et al., 2012) to judge pose quality (FOKADD) (relative
to amount of incorrect detections), 5) false-positive
detection of absent object incorrectly validated (FP)
(relative to amount of images).

The choice of ẽinit is a trade-off, between possibly
declining correct estimates, if too low, or possibly
accepting false detections, if too high. For our test set,
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Table 4: Pose validation results with different initialization
thresholds.

ẽinit 2DPro j COK FOK FOKADD FP
0.08 80.4 94.1 95.2 99.5 0.12
0.10 83.2 96.7 92.6 98.6 0.27
0.12 85.4 98.7 89.3 98.6 0.46
0.14 85.5 99.1 85.5 97.7 0.81
0.16 85.6 99.6 77.5 94.7 0.86

ẽinit = 0.12 is a good choice. 2DPro j decreases quickly
for smaller values and FOK decreases quickly for larger
values. Furthermore, FOKADD confirms that most of the
drastically wrong poses are filtered correctly.

False-positively detected objects often provide
strong perspective shape ambiguities, since not only
the wrong object is detected, but also its projected
edges overlap with the image. An interesting observa-
tion is that the CNN partitions the segmentation output
between multiple candidates, when unclear about the
object identity (Figure 8). This may result in multiple
identity/pose estimates for a single object. If a correct
pose cannot be verified, it is likely that a large part
of the contour is covered or not visible. False pose
detections of present objects can result from false ini-
tial estimates converging to local minima, with large
edge overlap. In both cases, a small object or cam-
era movement is often sufficient in AR applications
with continuous video to find a starting position that
converges correctly.

5.3 Benefits in Real Video Sequences

While previous experiments justified the different com-
ponents of our system under domain gap, we show the
applicability to real-world data on captured sequences.
The recordings come from a live AR demonstrator
guiding a construction scenario in two phases. First,
the objects are sorted in the right order (Close-Range
mode), then they are mounted in that order (Far-Range
mode). Videos showing the sequences including over-
lays are part of the supplementary material.

Close-Range Mode. We exemplary demonstrate our
pipeline in two sequences, captured with 25 fps and
10242 pixels with an industrial camera. While Seq. 1
has a white table background, Seq. 2 has a textured
bubble wrap background with stronger gradients and
light reflections. Multiple randomly picked objects are
moved in front of the camera by hand. The sequences
depict fast movements, indirect movements, simulta-
neous movement of multiple objects, occlusion, and
disappearing and reappearing objects.

To evaluate the tracking quality, we apply the multi-
object tracking on the sequences and decide whether

to refine or reinitialize individual objects for the next
frame based on the validation criteria (Section 3.4).
The result confirms our choice of ẽinit = 0.12. Objects
with eedge < ẽinit provide a nearly pixel-accurate over-
lay. The local and global registration benefit from each
other in multiple ways:

1) During training, the network has never seen multi-
ple objects in an image; during testing, the network
is able to estimate the poses of multiple objects
simultaneously. Accuracy degradations are com-
pensated by local refinement (Figure 6a).

2) Occlusions between detectable objects were not
seen during training, but even if the network is
unable to find the occluded object, tracking will
continue as long as local tracking remains valid
(Figure 7).

3) Fast movements or heavy occlusions possibly stop
the local tracking, but it continues as soon as the
object is clearly visible again (Figure 1b).

4) False-positive detections of the network are sup-
pressed since the projected contour does not match
image content well enough.

The textured background in Seq. 2 has no impact
on the tracking accuracy (Figure 6b). In the course of
the sequence, the objects are also moved on the palm
of a hand, whereby tracking as well as initialization
also succeed in that situation (Figure 6c).

Table 5 shows quantitative results. For each object,
we first count the number of frames in which it is
either in motion or partially but no more than half
(three out of six connectors are visible), occluded by a
moving hand/object. We compare two configurations,
one using the CNN and refinement independent of
the previous pose for every frame (Init.+Ref.), and
one dynamically selecting if the CNN is needed by
pose validation (Init.+Ref.+Valid.). It can be seen
that the number of correctly validated frames increases
by the latter since the knowledge of the previous pose
is often more meaningful than the result of the CNN.
Nevertheless, on average more than half of the frames
could be used for reinitializing local tracking. Fairly
low values for I01 and I06 result from fast movements
with motion blur, possibly under occlusion.

In Seq. 1, ambiguous appearance of an object
during rotation triggers a false-positive detection (Fig-
ure 8). While the network is sure of the correct classi-
fication in the next frame, local tracking continues at
first and only fails after a few frames if the projected
contour deviates too much from the image content.

Far-Range Mode. We also use the approach to track
objects from a bird’s eye static camera that captures
their assembly in a target structure (Figure 9). Only
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Table 5: Evaluation of real-data sequences. For each object, the number of frames with edge error smaller ẽinit = 0.12 is listed.
Only frames where interaction with the object (movement or occlusion) happens are considered.

Seq. Method valid I01 I04 I06 I08 I10 I11 FP
1 Init.+Ref. 52.7% 6/34 24/154 17/64 447/646 156/376 72/96 1/1215
1 Init.+Ref.+Valid. 87.5% 16/34 138/154 29/64 614/646 313/376 89/96 3/1215
2 Init.+Ref. 78.0% 371/501 − 311/373 − − − 0/727
2 Init.+Ref.+Valid. 90.4% 460/501 − 330/373 − − − 0/727

(a) Appearing objects. (b) Movement over textured background. (c) Movement on hand palm.

Figure 6: Tracking and detection of objects in different situations: (a) is from Seq. 1, (b) and (c) are from Seq. 2.

Figure 7: Local tracking remains valid (right), while the
CNN (semantic segmentation, left) would be unreliable.

Figure 8: Geometric ambiguity: For a frame (left) the object
can be identified (semitransparent mask overlay), while for
the next frame (2nd) the mask is partitioned in two parts,
resulting into two possible object poses (f.l.t.r.).

one object is tracked at a time, so the detection network
is not needed at all, as long as local tracking succeeds.
In the images, the object appears much smaller than
in training data. To compensate for this, the CNN

is applied to the content of a square bounding box
around the last detection or a predefined start position.
In our setup, its side length is half the image size.
Alternatively, it could be scaled dynamically based
on the size of the object in the previous frame. An
additional global detection network is avoided. Of
course, it would also be possible to depict a larger
variation of object-camera distances in the training
dataset. The proposed reconfiguration should not be
seen as a limitation, but as a way to use the trained
network more flexibly. We found that for more distant
objects only two instead of three pyramid levels and a
lower value of einit are preferable.

5.4 Performance

An inference of our CNN with OpenCV requires ∼20
ms on an Nvidia GTX 2080 Ti and image size 4002.
When the network is used for each frame in Close-
Range mode, frame rates of 25-30 frames per sec-
ond are achieved (slightly depending on the size of
the object in the image) when a single object is also
tracked locally. We currently execute the local re-
finement sequentially, so the performance degrades if
more objects are present. One way to improve that
is to render an extra mask of object IDs and then do
the optimization step for multiple objects simultane-
ously. Thereby, occlusions between known objects
can be explicitly modelled and further improve the
local tracking (Huang et al., 2020). High frame rates
keep the distance between frames small and therefore
stabilize local tracking, with less need for reinitializa-
tion. If, like in the Far-Range mode, the network is
not evaluated for every image and the object is small
compared to the image size, the local refinement runs
at ∼60 fps.
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Figure 9: Tracking an object in Far-Range mode. The initialization area is highlighted by a green box.

6 CONCLUSION

We have presented a pipeline for multiple object de-
tection and tracking that combines the advantages of
current CNNs for 6D pose estimation with a local
pose optimizer and a reliable metric for triggering
reinitialization. We use only synthetic training data, al-
lowing fully automatic training without manual image
labeling, and show that local-refinement is suitable to
bridge the domain gap. In addition, we have presented
an extension for a state-of-the-art CNN to better handle
multiple, potentially similar objects, and demonstrate
its benefits using a set of 13 similar, uncolored and
non-textured objects.

In real sequences, difficult situations not encoun-
tered in training can be better handled with a combined
approach that draws on knowledge from previous im-
ages. We argue that such combined approaches are a
very useful option for AR systems. The advantage of
the easy generation of training data outweighs the ex-
tra effort of additional local optimization. The system
is already being used in an AR demonstrator, although
under relatively controlled conditions. In future work,
we will further improve robustness by explicitly mod-
elling occlusions between objects and possibly lift the
self-imposed restriction of using only grayscale im-
ages.
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