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With the advent of deep-learning, finger-photo verification, a.k.a finger-selfies, is an upcoming research area

in biometrics. In this paper, we propose the Siamese Neural Network (SNN) architecture for finger photo
verification. Our approach consists of a MaskRCNN network used for finger photo segmentation from an input
video frame and the proposed Siamese Neural Network for finger-photo verification. Extensive experiments
are carried out on the public dataset consisting of 400000 images extracted from 2000 videos in five different
sessions. The dataset has 200 unique fingers, where each finger is captured in 5 sessions, 2 sample videos each
with 200 frames. We define protocols for testing in the same session and different sessions with/without using
the same subjects replicating the real-world scenario. Our proposed method achieves an EER in the range of
8.9% to 34.7%. Our proposed method does not use COTS and uses only a deep neural network.

1 INTRODUCTION

Smartphone biometrics usage increases with time,
attributed to high-quality smartphone cameras, in-
creased compute capability, and dedicated sensors on
smartphones. The broader use of smartphone bio-
metrics is due to their portability, cost-effectiveness,
and growing consumer market acceptance (Das et al.,
2018). With the advent of smartphone-banking ap-
plications such as Apple-Pay (App, ), it is essential
to have biometric authentication-based solutions in
them (Stokkenes et al., 2018). Traditionally biomet-
ric authentication is performed using face, iris, and
fingerprint modalities. Apple Face ID (App, 2017), &
Touch ID (App, 2013) are used for face and finger-
print authentication on an iPhone, which provides a
high level of accuracy. However, these require ded-
icated sensors, which are an additional cost to the
smartphone manufacturer.

Recently, Finger-Photo, a.k.a 2D touchless finger-
print, a new modality for biometric verification, has
emerged due to its direct usage with a smartphone
camera. Finger-Photo verification is an active re-
search area, as pointed out in a recent survey by Busch
et al. (Priesnitz et al., 2021). Malhotra et al. (Malho-
tra et al., 2017) performed a short survey on Finger-
Photo recognition with the smartphone as a capture
device. Labati et al. (Labati et al., 2019) conducted
a more detailed survey on fingerprint recognition sys-
tems, including their weakness and challenges. The
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main challenges in Finger-Photo verification systems
based on smartphones are sensor-to-finger distance,
sharpness, quality, and focus, which can be alleviated
using preprocessing, the region of interest (ROI), and
a robust color space (Priesnitz et al., 2021). Stein et
al. (Stein et al., 2012) had one of the early works in
finger photo recognition. They developed an Android
Application for this purpose which took a sequence of
finger photo images in multiple lighting conditions,
followed by Region of Interest (ROI) extraction and
binarization. The matching scores on binarized im-
ages were computed by open-source minutae extrac-
tor FingerJetFXOSE from Digital Persona (Persona,
2020). However, this method was unable to handle
defocussed finger photo images. Lee et al. (Lee et al.,
2005b) by a real-time scheme that took the most fo-
cussed image from an image sequence addressed the
issue of sharpness during finger-photo capture and
was achieved by using Variance-Modified-Laplacian
of Gaussian (VMLOG) algorithm. The issue of con-
trast, and color which is an important issue, has been
addressed by many authors. Lee et al. (Lee et al.,
2005a) handled this issue by using skin color proper-
ties & guided machine learning. The main limitation
of their approach was that they required user input
for Finger-Photo segmentation. Malhotra et al. (Mal-
hotra et al., 2017) handled this by using the ma-
genta channel in CMYK color space. Raghavendra et
al. (Raghavendra et al., 2013) proposed an approach
using the Mean Shift Segmentation (MSS) based sys-
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Figure 1: Illustration showing conversion of Finger-Photo
to Fingerprint like pattern using Frangi (Frangi et al., 1998)
used by Wasnik et al. (Wasnik et al., 2018).

tem. They used multiple features after MSS consisted
of preprocessing and scaling to segment the finger in
challenging real-world environments accurately.

Wasnik et al. (Wasnik et al., 2018) used the
Frangi Vesselness filter (Frangi et al., 1998) filter
to convert a Finger-Photo to a fingerprint-like pat-
tern as shown in Figure 1. However, their method
requires commercial-off-the-shelf (COTS) for verifi-
cation. Malhotra et al. (Malhotra et al., 2020) pro-
posed the use of Invariant Scattering Networks from
Bruna et al. (Bruna and Mallat, 2013). The input to
their method is a full-frame finger photo which was
then segmented using a weighted combination of vi-
sual saliency (Erdem and Erdem, 2013) followed by
OTSU thresholding (Otsu, 1979), and Skin Colour
based segmentation (Sawicki and Miziolek, 2015).
This is followed by computing wavelet-like features
from the second-order decomposition of the cropped
finger photo image (Bruna and Mallat, 2013). The di-
mension of these features is very high 209 x width/8 x
height/8 = 809875, for which they use PCA (Jol-
liffe, 1986) to reduce the dimension to 99% of its en-
ergy. This is followed by the use of Random Decision
Forests (Ho, 1995).

1.1 Contributions of the Paper

We summarize the contributions of the proposed ap-
proach:

* Finger-Photo segmentation is a challenge for most
of the presented methods. This issue is not en-
tirely resolved in previous methods as some part
of the background which acts as noise for the
matching algorithm is present. We handled this
issue by the Mask RCNN based Finger-Photo seg-
mentation and produced a tightly cropped Finger-
Photo. We require only a loosely cropped bound-
ing box as an input to the Mask RCNN network.

* We provide an end-to-end approach for Finger-
Photo verification, including segmentation and
matching. The matching is done by the use of
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the proposed siamese neural network. This is an-
other contribution of this paper, as most previous
methods depend on either COTS or existing open-
source algorithms.

* The proposed approach uses the proposed con-
volutional neural (SNN) decisions directly as the
classification labels.

* We define challenging protocols for matching to
simulate the real-world scenario where the data
environment or subjects are not seen by the ver-
ification algorithm beforehand.

In the rest of the paper, we present the proposed
method in Section 2, describe the experimental setup
& results in Section 3, and conclude the paper by pro-
viding conclusions & future work in Section 4.

2 PROPOSED METHOD

In this section, we describe the proposed method as
shown in Figure 2. The proposed method consists
of the following components, Finger-Photo segmen-
tation & cropping for a pair of input images, feature
extraction with the proposed Siamese Network-based
Architecture for finger photo verification, and then
classification. We now describe each of these com-
ponents in the following sub-sections:

2.0.1 Finger-photo Segmentation & Cropping

We describe the approach for finger-photo segmenta-
tion in this subsection. The public dataset consists of
finger videos from which frames are extracted. This
is followed by bounding box-based cropping, where
a loose bounding box with some extra region is de-
fined on the once for the dataset basis. The bound-
ing box crop is followed by Finger-Photo segmenta-
tion using fine-tuned MaskRCNN Network from He
et al. (He et al., 2017). Then we apply a Region of
Interest (ROI) on the segmented Finger-Photo. The
stages are shown in Figure 2. This approach’s main
advantage is that the user does not need to do either
finer level of cropping or bounding box generation for
a single Finger-Photo (Wasnik et al., 2018) (Lee et al.,
2005a).

2.0.2 Classification using Proposed Siamese
Architecture based Network

Feature Extraction uses Siamese Neural Network Ar-
chitecture proposed by Chopra et al. (Chopra et al.,
2005) for Face Verification which consists of two con-
volution neural networks with shared weights. Our
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Figure 2: Illustration showing system diagram of the proposed approach, where first block shows finger segmentation &
cropping, and second shows proposed siamese network based architecture.

proposed siamese network has the architecture as
shown in Figure 2. It consists of the identical layers
for both left, & right halves, and each half includes
a Resnet-50 as the backbone network with an image
dimension of 208 x 224. The output is taken at the
last activation of 2048 dimensions connected to our
custom layers of flattening, a dense layer (1024 di-
mensions with ’relu’ activation), a dense layer (128
dimensions with sigmoid activation). A distance layer
(Ceuclidean’ distance) is then used. We choose Resnet
as the base network as it offers good generalization
according to He et al. (He et al., 2020), and Resnet-
50 because it provides a balance between computing
required, & accuracy. We further use only a small
number of layers for fine-tuning as the number of im-
ages we use in training are much lower than Imagenet
dataset (Deng et al., 2009). The loss function used
during training is binary cross-entropy, mainly chosen
as a balanced two-class classification problem. The
features for each Finger-Photo are computed as the
output from the dense layer of 128 dimensions. The
features are extracted from the final dense layer of
128 dimensions, and euclidean distance is computed
between them to perform classification. We then ap-
ply a threshold of 0.5 to classify the input pair of fin-
gers as genuine or impostor. We use a classifier-less
system, and our proposed approach does not require
other classifiers after using the proposed network.

3 EXPERIMENTAL SETUP &
RESULTS

This section describes the training methodology, re-
sults, and a discussion on the obtained results.

3.1 Dataset Details

We now describe the generation of training, val-
idation, and testing pairs. @ We use the public
dataset (Raghavendra et al., 2020) for training and
evaluating our proposed method. The dataset consists
of 200 unique fingers, where each finger is captured
in 5 sessions, 2 sample videos with 200 frames each.
Thus, overall number of frames in the current dataset
uses is 200 x 5 x 2 x 200 = 40000 which is summa-
rized in Table 1.

3.2 Protocol Details

3.2.1 Training Mated/Non-mated Pairs

We include 100 subjects for training, and for training
mated pairs, a total of 50 frames are selected from
the two video samples, three pairs for each frame.

The frame number is the same in the first pair, and
in the second & third pairs, the frame numbers are
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Figure 3: Illustration showing training accuracy, and loss for the proposed siamese based network.

Table 1: Table showing dataset details.

Dataset Details

Subjects | Fingers | Sessions

Sample Videos | Total Frames

50 4 5

2 40000

Table 2: Table showing training, validation, and testing partitions.

Training Mated/Non-Mated Details
Category Subjects | Frames | Samples | Total Pairs | Actual Pairs Used
Training Mated 100 50 3 15000 13800
Training Non-Mated 100 2 1 18000 16744
Validation Mated/Non-Mated Details
Category Subjects | Frames | Samples | Total Pairs | Actual Pairs Used
Validation Mated 100 25 3 7500 6900
Validation Non-Mated 100 1 1 9900 8372
Testing Mated/Non-Mated Details
Category Subjects | Frames | Samples | Total Pairs | Actual Pairs Used
Testing Mated 100 20 3 6000 5760
Testing Non-Mated 100 1 1 9900 9120

chosen randomly between 0 to 50. This makes the
total number of mated pairs 50 x 3 x 100 = 15000,
which due to failure to extract from Mask RCNN of
some samples is 13800. For training non-mated pairs,
we choose all pairs of fingers (100 x 99, with multiple
pairs for each selected pair of a finger (2), we thus get
100 x 99 x 2 = 18000, which due to failure to extract
from Mask RCNN of some samples is 16744.

3.2.2 Validation Mated/Non-mated Pairs

For validation mated pairs we select 25 frames, and 3
pairs, giving (100 x 25 x 3 = 7500, with 6900 actual
pairs), and validation non mated pairs, we select 1 pair
giving (100 x 99 = 9900, with 8372 actual pairs).

3.2.3 Testing Mated/Non-mated Pairs

We include the rest 100 subjects for testing, and for
testing mated pairs we select 20 frames, and 3 pairs
for each frame, which makes the total number of test-
ing mated pairs 100 x 20 x 3 = 6000 with 5760 actual
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pairs, and testing non mated pairs are 100 x 99 = 9900
with 9120 actual pairs.

3.3 Evaluation Protocols

e TD1: Testing on the Same Session, with Unseen
Reference and Probe Subjects.
This protocol uses the 100 subjects from the test-
ing partition to evaluate the proposed method,
which gives S2 vs. S2.

* TD2: Testing on a Different Session, with Seen
Reference and Unseen Probe.
In this protocol, we use the 100 subjects used dur-
ing training where reference is from the training
session 2, and a probe is from unseen session 2 to
6, which gives S2 vs. S3, S2 vs. S4, S2 vs. S5,
and S2 vs. S6.

e TD3: Testing on Different Session, with Unseen
Reference and Unseen Probe.
In this protocol, we use the 100 subjects from the
testing partition where reference is from the test-
ing partition of session 2, and the probe is from
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Table 3: EER of the built models.

Sessions Error Equal Rate (EER)
Baseline | Baseline + DA | Baseline + DN
TDI1 | S2vsS2 | 13.06% | 8.95% 17.70%
TD2 | S2vs S5 | 33.68% | 32.75% 20.53%
TD3 | S2vsS5 | 41.50% | 34.71% 30.99%
TD4 | S4vsS4 | 11.44% | 10.57% 17.44%
TD4 | S5vsS6 | 42.59% | 30.27% 29.57%

unseen session 3 to 6, which gives S2 vs. S3, S2
vs. S4, S2 vs. S5, and S2 vs. S6.

* TD4: Testing on Different Session, with Unseen
Reference and Unseen Probe.
In this protocol, we use the 100 subjects which
are from the testing partition where reference is
from the testing partition of session 3 to 6, and
the probe is from unseen session 3 to 6, where we
choose S3 vs. S3, S4 vs. S4, S5 vs. S5, S5 vs. S6,
and S6 vs. S6.

3.4 Training Methodology

We now describe the finger photo segmentation per-
formed using Mask RCNN post the bounding box-
based crop. Mask RCNN network is fine-tuned us-
ing 40000 manually segmented images using the Mat-
lab Image Segmenter Tool. The fine-tuning is per-
formed for 100 epochs on a standard laptop. The
proposed Siamese-based network is trained for 100
epochs on NVidia Tesla P40 GPU using SGD opti-
mizer and learning rate of 0.001, the momentum of
0.9, and weight decay 0.1 with Nesterov solver. The
loss curve obtained during the training is shown in
Figure 3. The accuracy shows overfitting in the cur-
rent network design, but the fact validation accuracy
is close to 96% is helpful in an uncontrolled scenario.

3.5 Results

The error metrics are used in accordance
with (ISO/IEC TR 2382-37:2012, 2012) where
False Match Rate (FMR) is the number of non-mated
comparisons which result in a false match, and False
Non-Match Rate (FNMR) is the number of mated
comparisons which result in false non-match. The
plot of FMR v/s FNMR is the DET (Detection Error
Tradeoff) Curve and EER (Equal Error Rate), which
is the threshold where FMR equals FNMR. The DET
Curves are shown in Figure 4. DET Curve is the
False Match Rate (FMR) v/s False Non-Match Rate
(FNMR) plot. Table 3 shows EER for a few different
cases from different protocols.

The EER is shown in tabular form in Ta-
ble 3, and as DET Curves in Figure 4. We per-

form data augmentation (DA) over the baseline pro-
posed method. The augmentation techniques in-
clude increasing/decreasing brightness, sharpness, or
Gaussian noise to samples randomly during train-
ing/testing, which improves performance as shown
in Table 3. In terms of data normalization, we use
Frangi Filter output images instead of ROI images in
the baseline model, which further improves many pro-
tocols’ performance.

3.6 Analysis of Results

The performance difference of the proposed method
with & without data augmentation/normalization is
analyzed as follows:

e The proposed approach provides an end-to-end
system for score computation and is currently not
robust to illumination, brightness, and contrast
changes as the baseline EER is high. However,
this is alleviated to a certain extent by the use
of data augmentation techniques which make it
slightly robust to these changes.

* The proposed approach, when used in combina-
tion with data normalization based on the gen-
eration of fingerprint-like patterns which are ob-
tained using Frangi filter (Frangi et al., 1998) re-
sults in lower error rates.

* The performance of the proposed approach & DA
achieves a low EER of 8.95% when both the train
& test session are the same (TD1). This is mainly
due to the fact as transformations of illumination,
brightness, and contrast are low.

¢ The performance for an unseen session during the
testing is lowest for baseline + DN, where we
achieve an EER of 20.53% for TD2. This can be
attributed to DA., and DN doesn’t generalize to
the unseen testing session scenario.

e The current feature extraction technique has is-
sues in generalization to unseen training data, at-
tributed to different capture conditions including
illumination, contrast, and brightness.
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(a) TD1: S2 vs S2 (same session, with
unseen reference and probe subjects)
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(b) TD2: S2 vs S5 (different ses-
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Figure 4: DET Curves for different evaluation protocols of the proposed method.

4 CONCLUSIONS &
FUTURE-WORK

In this paper, we presented an end-to-end system for
finger photo verification. The method presented in
this paper has several advantages over previous tech-
niques. The first is the use of MaskRCNN for finger
photo segmentation, which allows the user to have a
loose bounding box, unlike previous approaches. The
second advantage is that system behaves as an end-
to-end system without the use of COTS for verifica-
tion. We performed an extensive evaluation for both
seen and unseen session scenarios. We would make
the network robust to noise, illumination, and qual-
ity changes in the input images, especially to achieve
good performance in an unseen testing session. This
could be achieved in multiple ways, such as using
different color spaces that are more robust to these
changes, such as CMYK or CIE Lab. The robustness
to an unseen testing session can be improved by using
more data augmentation & data normalization tech-
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niques. We want to compare our proposed approach
with more methods in SOTA (Malhotra et al., 2020)
& datasets, and especially for a cross-dataset scenario
in future work.
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