
SMPG: Secure Multi Party Computation on Graph Databases

Nouf Aljuaid1,2, Alexei Lisitsa2 and Sven Schewe2

1Department of Information Technology, Taif University, Saudi Arabia
2Department of Computer Science, University of Liverpool, Liverpool, U.K.

{n.aljuaid, lisitsa, sven.schewe}@liverpool.ac.uk

Keywords: Graph Databases, Secure Multi-party Computations, Multi-party Querying, Federated Databases, Secure Data
Processing.

Abstract: In this position paper, we outline how secure multi-party querying can be brought to graph databases. Such a
system will allow multiple users to jointly query federated graph databases that consist of several private parts.
We have provided a proof of concept. Our prototype implementation for the SMPG system builds on top of
Conclave (Volgushev et al., 2019), which was originally proposed and implemented for multi-party computa-
tion and querying on relational databases. We describe the templates of queries that are currently supported by
our prototype and discuss current limitations as well as the extensions planned to tap the conceptual benefits.

1 INTRODUCTION

As the relevance of data security does not need much
discussion, it is only natural that many techniques
have been proposed and developed to increase the
security of data, see (Mostafa, 2016) for a survey.
Multi-party computation (MPC) is a particularly in-
triguing example among them; (Cramer et al., 2015)
describe it as cryptographic technique that enables a
group of people to join together to perform compu-
tation without revealing any private data. It differs
from standard cryptographic techniques in that it does
not focus on the encryption of data or databases, but
rather develops protocols that coordinate the analy-
sis of distributed data without joining the data itself.
The liberation from the need to share data provides
a major benefit that is rather unique to MPC: the
opportunity to cooperate and coordinate operations,
where collaboration was impeded by a lack of trust
(Hemenway et al., 2014). Applications where MPC
can solve such trust issues include secure elections
(Alwen et al., 2015), auctions (Aly and Van Vyve,
2016), and secret sharing (Evans et al., 2018). An-
other application of MPC is to secure the query on
different types of databases. MPC techniques are cur-
rently supported by Conclave (Volgushev et al., 2019)
and GOOSE (Ciucanu and Lafourcade, 2020).

Thus far, MPC mainly has been used in to se-
cure relational databases. For example, Conclave uses
MPC for securing the queries on a federated database

that consists of private individual databases held by
multiple parties, where it executes a single query.
This raises the question of whether MPC queries are
restricted to relational databases, or can transcend the
database type. We look in particular at the scope
to apply MPC in graph databases, a type of NoSQL
database. Graph databases have been created to ad-
dress the limitations of relational databases (Salehnia,
2017), and found multiple application that particu-
larly benefit from the graph paradigm, such as In-
stagram, Twitter, and Facebook (Ciucanu and Lafour-
cade, 2020). These applications benefit from explic-
itly defined connections that are the thumbmark of
graph databases, as opposed to relational databases,
where the data is linked implicitly. This guaran-
tees scalability for graph databases where relational
databases face scalability and complexity barriers,
which makes it cheaper to maintain servers for graph
databases (Salehnia, 2017).

While MPC is a useful technique for executing se-
cure queries, its use in graph databases is still in its
infancies. In (Ciucanu and Lafourcade, 2020), the
use of MPC as the backend for supporting queries
on a graph database has been studied. The authors
of (Ciucanu and Lafourcade, 2020) suggest distribut-
ing a single database over several components that are
then handled with the help of MPC, but they did not
address multi-party queries at the user level. In this
paper, we propose the design of a system that com-
bines the advantages of the MPC technique with those

Aljuaid, N., Lisitsa, A. and Schewe, S.
SMPG: Secure Multi Party Computation on Graph Databases.
DOI: 10.5220/0010876200003120
In Proceedings of the 8th International Conference on Information Systems Security and Privacy (ICISSP 2022), pages 463-471
ISBN: 978-989-758-553-1; ISSN: 2184-4356
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

463



offered by graph databases for securing multi-party
querying over a graph database.

The remainder of this paper is organised as fol-
lows. The following section presents the proposed
system for secure multi party computation on graph
databases (SMPG). Before presenting the implemen-
tation of the prototype in Section 4, we discuss the
functionality of the existing Conclave system (Volgu-
shev et al., 2019) we use in our prototype implemen-
tation in Section 3. A literature review of existing
implementations of MPC and the related work on se-
curing the query on a different type of data model is
provided in Section 5. We then close with drawing
conclusions and discussing future work in the final
section.

2 SMPG ARCHITECTURE

This section provides an overview of the proposed
SMPG scheme, introducing its entities and outlining
how it works.

2.1 SMPG Entities

The architecture of our SMPG system is illustrated in
Figure 1. The system contains three entities, and these
entities have different trust levels in the use cases we
are interested in.
• Data Owners make their graph database available

for SMPG to perform a joint multi-party once the
query is agreed and may allow a single user to
perform a query using their data. Full trust by
the other data owners is required as they need to
jointly conduct the query.

• A user may submit a query using the data from
Data Owners to get results for a query without
sharing any data with the system. She does not
gain access to data beyond the answer to the query
and can be considered un-trusted.

• A Proxy Server is responsible for authenticating
the user to access the system. Proxy Servers are
(only) trusted to this end (semi-trusted).

2.2 Two Use Cases for SMPG Systems

The entities are described for the use case of a sin-
gle user and multiple data owners. In this situation,
a single user who does not contribute a database that
partakes in the query wants to compute something that
uses the databases from the data owners. In this case,
the user needs to be authenticated to access the system
and submit her query. After she gets the permission,

Figure 1: SMPG workflow.

she can submit her query to the SMPG, who then ex-
ecutes a joint query.

In the joint query, the data owners, named
p1, p2, . . . , pn, who own different graph databases, ex-
ecute a single query jointly. In more detail, after all
parties agree on a joint query, they submit it to the
system. Inside the system, the first step is to re-write
the query to make it amenable to the execution on the
MPC backend. In this stage, the system takes all un-
necessary operations to run outside the MPC backend.
In our proof-of-concept, we use Conclave (Volgushev
et al., 2019) as our backend, which in turn uses Jiff
(Albab et al., 2019) for MPC queries. Conceptually,
they can be exchanged by other solutions (which then,
naturally, need adjusted translations). After receiving
the result of the query, the system will send it to the
single user who initiated the query. In an alternative
scenario, the multiple data owners initiate the joint
query themselves. The translation of the query is then
similar, but there is no need to return the result to an
external user.

2.3 DB Query Language

While the SMPG scheme can be implemented for any
type of graph-based DBs, we have selected the Neo4j
environment as our starting point. Neo4j is a popular
graph database (López and De La Cruz, 2015), whose
graph data model can be represented by a set of nodes,
which represent data, and arrows that represent the
relationship between them (Miller, 2013).

In order to deal with the data in such a graph,
Neo4j uses a query language called Cypher. In
our SMPG system, we intend to use a fragment of
the Cypher query language, extended with feder-
ated query facilities/functionality (Neo4j Fabric) with
MPC protocols. The operational principle of Neo4j
fabric offers a way to issue Cypher queries that target
more than one Neo4j graph database at once.

2.4 Workflow Overview

We first assume that we have a single user, who does
not contribute an own database that partakes in the

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

464



query and wants to query the federated database from
the data owner. Our system will process such a query
in eight stages. Figure 2 shows The workflow of the
SMPG system when used by an outside user (not a
data owner).

1. Submit Cypher Query: after the user is authen-
ticated by the system, she can submit her query to
the coordinator of the SMPG system through the
SMPG Coordinator.

2. Query Translation: the Coordinator translates
the query into individual queries to the partak-
ing data owners (participating parties) and sub-
mits these queries to them.

3. Process Query: each participating party pro-
cesses the query it receives. This includes creating
a configuration JSON file.

4. Query Execution: each participating party then
invokes the MPC Conclave system1 to execute the
workflow specified in the configuration JSON file
on its Neo4j DB.

5. Computation using MPC: in this stage, the in-
formation will be passed to a Jiff server, who pro-
vides answers to the individual queries using an
MPC protocol.

6. Send the Result to Parties: in this stage, the JIFF
server will send back the result for the parties in-
volved in the query.

7. Send the Result to Coordinator: the overall re-
sult of the original query will then be sent to the
coordinator, in our implementation as a CSV file.

8. Final Result: the SMPG coordinator finally as-
sembles the result and returns it to the user.

Figure 2: The workflow of the SMPG system when used by
an outside user (not a data owner).

In the alternative scenario, where the query is ini-
tiated by the data owners, the last two steps can be
omitted, as the partaking data owners are already in

1or any alternative backend to process MPC queries

possession of the result. This leads to a situation
where, while the query is assembled by an SMPG Co-
ordinator, this coordinator never receives an answer to
the query (cf. Figure 3).

Figure 3: The workflow of the SMPG system with a joint
query by the involved data owners.

3 CONCLAVE FUNCTIONALITY

In this section, we describe the functionality of the
Conclave system (Volgushev et al., 2019), which uses
MPC with a relational database; we use it as a ba-
sis to demonstrate that the concept extends to support
Neo4j, including a fragment of the Cypher query lan-
guage.

The Conclave system supports table schema defi-
nitions, relational operators (join, aggregate, project,
and filter) as well as enumeration, arithmetic on
columns and scalars. Inside the system, after the
originally submitted query has been re-written, each
query is represented as a node within a directed
acyclic graph (DAG). As such, each operation on a
data set should be stored in a variable as follows:

<node> = cc.<query>(<arg1>,<arg2>,..., <argn>)

For the aggregate operators, Conclave supports
count operation, sum, and mean. Inside the system,
the query is written using Language Integrated Query
(LINQ) (Bai, 2010). This is a data querying API
that provides general-purpose query capabilities to
the .NET programming languages with a syntax sim-
ilar to SQL. The syntax of the aggregate query using
LINQ will be:

aggregate(input_node, output_name,
group_column_names,aggregated_column_name,
aggregator, output_column_name)

The project operator is used to select a list of
columns from a data set. A query using the project
operator could be:

project(input_node, output_name,
selected_column_names)

SMPG: Secure Multi Party Computation on Graph Databases

465



The Join operator is a function that joins two data
sets over a list of columns. A query using join could
look like this:

join(left_node, right_node, output_name,
left_column_names, right_column_names)

A filter is a function to filter data in a column with
a specified value. A query using filter will be like:

filter_by(input_node, output_name,
filter_col_name, by_op)

4 PROTOTYPE
IMPLEMENTATION

In this section, we describe the implementation of a
prototype of a fragment of the above SMPG design,
using a Python API. The main objective of this pro-
totype is to prove the effectiveness of a query over
a graph database using MPC. Our prototype can use
multiple graph databases from multiple data owners
and applies MPC to provide a joint query.

Initially, different Neo4j databases are built. Then,
for each party, the user has to edit the config file man-
ually to connect to Neo4j. In future implementations,
editing the config file will be automatic, relieving the
user from the need to edit it manually. Currently, the
prototype supports a small fragment of the Cypher
query language. In this fragment, we use the UNWIND,
CALL, and USE clauses of Cypher to handle querying
multiple graph databases. UNWIND supports iteration
of queries over a list of databases. CALL is used to
execute a Cypher subquery by each party involved in
the joint query. To handle a particular graph database,
we utilise the ”USE” clause. Only queries that are
instances of the query templates Q1-Q4 discussed be-
low are fully supported, while Q5 is conceptually sup-
ported, but needs an adjustment of the backend used
(or a workaround, like the mapping of character se-
quences into the integers, which is possible in princi-
ple).

4.1 Query Templates

In the SMPG system, the user submits the query us-
ing Cypher query language and this query is used to
derive sub-queries depending on the number of par-
ties that want to find the result of this query.The sub-
queries are then run separately for each party. As a
first prototype of our system, we built it on top of the
Conclave system. The cypher query from the input is
translated into the LINQ language. In the following
example queries, we explain the path of executing the
query with the implemented prototype.

• Q1: Aggregation Count

In this query, the count for node 1 may depend on
node 2. The corresponding Cypher query template is:

UNWIND example.graphIds() AS graphId
CALL {
USE example.graph(graphId)
MATCH (node1: label1)-[:Relationship]
->(node2:label2)
WITH node2, count(node1) as cnt
RETURN node2, cnt
}
RETURN node2, cnt

Running the query will first collect the graph IDs
for all remote graphs, then using UNWIND to get one
record per graph ID. The CALL sub-query will be ex-
ecuted separately for each party. As example to use
this query, suppose that we have three parties, each
equipped with a Neo4j database with the same prop-
erties. We want to execute the following query:

UNWIND example.graphIds() AS graphId
CALL {
USE example.graph(graphId)
MATCH (c:CAR) -[rel:IN]-> (L:LOCATION)
WITH L, count(c) AS cnt
RETURN L.id AS location_id, cnt
}
RETURN location_id, cnt

The return from this query will provide the number
(or: count) of cars for each location for all parties in-
volved in the query. The sub-query inside the CALL
will be executed separately for each party in the list
example iterated over by UNWIND function. The re-
sult of this sub-query will be the number of cars for
the party. The results from the individual parties are
then combined and mapped to the aggregation count
function, which sums up the individual results with-
out exposing the private data of the individual parties.
This sub-query is translated to LINQ as:

agged = aggregate_count(combined,"heatmap",
["location"],"by_location")

In this example query, this will return the overall num-
ber of cars grouped by location.

• Q2: Aggregation Sum

This query will return the sum for any node in the
query. The cypher query is like be:

UNWIND example.graphIds() AS graphId
CALL {
USE example.graph(graphId)
MATCH (node1: label1)-[:Relationship]
->(node2:label2)
RETURN sum(node2) as Sum
}
RETURN Sum

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

466



As an example for this query, suppose that we
have two parties that both hold information about
scores of students from different courses. We want
to find the sum of these scores for a given student on
both courses. To do that, we can execute this query:
UNWIND example.graphIds() AS graphId
CALL {
USE example.graph(graphId)
MATCH (s:student) -[rel:get]-> (C:course)
RETURN sum(C.score) AS Score
}
RETURN Score

In SMPG, this query will first gather the graph IDs
for all parties involved in the query, and execute the
sub-query separately for each party. Then, the indi-
vidual results of these sub-queries are combined, and
their aggregation, as a sum for all individual results,
is calculated without exposing the private data of the
partaking parties. This aggregation is translated to
LINQ as:
agged = aggregate(combined,"agged",
["student_id"],"score","sum","score")

• Q3: Project Data
This query will match and return particular data from
node1 or node2. A cypher query would look like this:
UNWIND example.graphIds() AS graphId
CALL{
USE example.graph(graphId)
MATCH (node1: label1)-[:Relationship]
->(node2:label2)
RETURN node2
}

RETURN node 2

As an example, suppose that we have two parties,
and each one of them has a Neo4j database with the
same properties. We want to find the scores for all
students in both databases in some particular course,
without exposing any information about the individ-
ual students. To this end, we can execute this query:
UNWIND example.graphIds() AS graphId
CALL{
USE example.graph(graphId)
MATCH (s:student) -[rel:get]-> (C:course)
With s.id
RETURN c.score AS score
}

RETURN score

This query will return the score for all students for
each database separately. After that, the results from
each user are combined, and the projection returns the
complete row of scores from the combined data, with-
out return anything else. To execute this query, it is
translated to the LINQ language as:
agged = project(combined,"heatmap",
["scores"],"by_scores")

• Q4: Union Two Databases
We consider as an example that we want to find the list
of names of professors, whose students have a grade
≥ 9.0 in either database. Such a query could look like
this:
CALL{
USE Graph 1
MATCH (P:Professor)-[:guide]->(S:Student)
WHERE S.grade >= 9.0
RETURN P.name as prof_name, S.name as student
}
CALL{
USE Graph 2
MATCH (P:Professor)-[:guide]->(S:Student)
WHERE S.grade >= 9.0
RETURN P.name as prof_name, S.name as student
}
RETURN prof_name, student

To execute this query using our system, a query
will be translated to a LINQ query as follows:
agged = join(in_one,in_two,"heatmap",
"P.name","s_name","P.name","s_name")

This query will generate a CSV file, which in-
cludes the information that results from the cypher
query.

• Q5: Match Intersection
This query will calculate the intersection between two
(or more) nodes, here node 1 and node 2. The cypher
query could look like this:
UNWIND example.graphIds() AS graphId
CALL {
USE example.graph(graphId)
MATCH (node1: label1)-[:Relationship]
->(node2:label2)
RETURN node2

}
RETURN node 2

Assume that we have two different Neo4j
databases that each contain a list of people and the
names of their friends. We want to determine whether
or not there are common friends between them. To do
this, we can run the following query:
UNWIND example.graphIds() AS graphId
CALL {

MATCH (n:Person) -[:Friend]-> (m:Person)
RETURN m.name As Name
}

RETURN Name

After running this query for each party involved,
combining the results to determine whether or not
there is a common friend between them will be ob-
tained through an MPC protocol. Due to the limi-
tation of the Conclave system to numerical data—not

SMPG: Secure Multi Party Computation on Graph Databases

467



supporting strings—we will try to extend their system
to overcome this shortfall in future.

• Q6: Correlated Subquery
Assume that we have two different Neo4j databases
(Graph A and Graph B) and we want to query infor-
mation from Graph B depending on particular data
from Graph A, using the following query:
CALL {
USE graphA
MATCH (node1:label1)
RETURN max(label1.property) AS MaxValue

}
CALL {
USE graphB
WITH MaxValue
MATCH (node1:label1)
WHERE label1.property = MaxValue
RETURN node 1

}
RETURN node1

As an example for this type of query, assume that
Graph A contains American movies and Graph B con-
tains European movies. We want to find all European
movies released in the same year as the latest released
American movie. To find this, we can execute the fol-
lowing query:
CALL {
USE graphA
MATCH (movie:Movie)
RETURN max(movie.released) AS usLatest

}
CALL {
USE graphB
WITH usLatest
MATCH (movie:Movie)
WHERE movie.released = usLatest
RETURN movie

}
RETURN movie

This query would first be translated into two sub-
queries, the first one using Graph A.
USE graphA
MATCH (movie:Movie)
RETURN max(movie.released) AS usLatest

This query will find all movies that were released
in the same year as the latest movie release in the US.
A query would look like this:
USE graphB
WITH usLatest
MATCH (movie:Movie)
WHERE movie.released = usLatest
RETURN movie

This type of query cannot be supported by Con-
clave due to its limitations. In future, we plan to ex-
tend our work to support such queries and, more gen-
erally, federated privacy-preserving queries using a

combination of Neo4j Fabric with a tailor-made MPC
backend.

4.2 Experimental Results

We have run the queries from this section using our
implemented prototype SMPG, using three different
Neo4j databases from three parties. The total amount
of nodes for all the databases is 26 nodes with 13 rela-
tionships between nodes. In more detail, database one
from the first party involved in the query has 12 nodes
with 6 relationships, whereas the second database has
8 nodes with 4 relationships. The third database con-
tains 6 nodes with 3 relationships. We have measured
the execution time where all the parties get the results
of the query using the time function. This function is
supported by Python, which returns the query in 66 to
76 seconds for Q1 through Q4.

While this seems much, it is based on translations
to relational databases and to Conclave, which does
not tap the advantages of graph databases that the
concept will—once underpinned with an independent
MPC implementation—provide.

It is, however, quite easy to cut the time needed
even in the current setting. For example, cutting the
sorting that is included by default in Conclave im-
proves the running time by an order of magnitude,
keeping all running times below 8 seconds.

5 RELATED WORK

5.1 Implementations of MPC

While MPC was mostly the object of theoretical re-
search unitl recently, there has lately been a consid-
erable effor to bring MPC to real-life applications
(Evans et al., 2018). MPC implementations are, for
example, used in Jiff (Albab et al., 2019), ObliVM
(Liu et al., 2015), and GraphSC (Nayak et al., 2015).

Jiff (Albab et al., 2019) is a JavaScript library
that implements MPC. It can perform secure compu-
tation on data distributed between several parties. Jiff
utilises a server to store and route encrypted messages
that are sent between the different participating par-
ties. It assumes the honest-but-curious security model
and uses threshold Shamir’s Secret Sharing (Shamir,
1979). It is compatible with various browsers and can
run as a Node.js application. When Jiff is run as a
server, then each parity runs as a client, and after com-
pletion of the computation, the result will show for
all of the parties without exposing their data that has
flown into the computation of the result.

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

468



Table 1: MPC for data processing.

Framework Parties
supported MPC Framework

backend
Trust
Party

No.Data
owners Data Model Query

language/API
Available

implementation
Development

language
Conclave (Volgushev et al., 2019) >= 2 Secret Sharing Jiff Yes >= 2 Relational DB SQL/LINQ Yes Python

Congregation >= 2 Secret Sharing Jiff No >= 2 Relational DB SQL Yes Python
SMCQL (Bater et al., 2016) 2 Garbled Circuits/ ORAM ObliVM No 2 Relational DB SQL Yes Java
Senate (Poddar et al., 2020) 2 Garbled Circuits N/A No 2 Relational DB SQL No -
SAQE (Bater et al., 2020) 2 Garbled Circuits ObliVM No 2 Relational DB SQL No -

Shrinkwarp (Bater et al., 2018) 2 Garbled Circuits/ ORAM ObliVM No 2 Relational DB SQL No -
Secrecy (Liagouris et al., 2021) 3 Repl.Secret Sharing - No 3 Relational DB SQL No C

SDB (Wong et al., 2014) 2 N/A Secret Sharing N/A No 1 Relational DB SQL No -
GOOSE (Ciucanu and Lafourcade, 2020) 3 N/A Secret Sharing N/A No 1 GraphDB SPARQL Yes Python

SMPG >= 2 Secret Sharing Jiff No >= 2 GraphDB Cypher Python

*Both 2 and 3 are using MPC as backend over a database; they do not support multi-party user queries

ObliVM (Liu et al., 2015) is a programming
framework for secure computation. It compiles a
Java-like language called ObliVM-lang and executes
a two-party garbled circuit (Evans et al., 2018). The
authors of (Liu et al., 2015) show that it is possible to
easily and accurately perform complicated arithmetic
operations.

The authors of (Nayak et al., 2015) suggest a se-
cure computation framework that supports parallel se-
cure computation. For MPC, they used the ObliVM
(Liu et al., 2015) protocol. To evaluate their design’s
performance, the authors of (Nayak et al., 2015) use
four classic data analysis algorithms: a histogram,
page-rank, and two versions of matrix factorisation.

5.2 MPC for Data Processing

There are attempts to use MPC with databases for data
protection. For example, (Volgushev et al., 2019) pro-
poses Conclave, a query compiler applied to a rela-
tional database. It works by transforming the queries
into a combination of data-parallel, local cleartext
processing, in conjunction with small MPC steps. In
this system, the queries are rewritten to minimise ex-
pensive processing under MPC in order to improve
scalability. They suggested to pass the rewritten query
to Jiff (Albab et al., 2019), which is used as a back-
end MPC system. Furthermore, (Poddar et al., 2020)
present the Senate system that allows multiple par-
ties to run analytical SQL queries together, without
exposing their private data to each other. The ad-
ditional advantage of their system over prior work
is that it provides security against malicious parties,
while older systems adopted a semi-honest model.
Moreover, (Liagouris et al., 2021) present a relational
MPC framework based on replicated secret sharing
called Secrecy. The central idea of this system is to
split data into three shares, s1, s2, and s3, where each
party will take two of the shares and perform a part of
the code to execute the query.

The authors of (Bater et al., 2016) suggest a sys-
tem called SMCQL that translates SQL queries into

secure multi-party computation. The user submits her
query to an honest broker, who is considered a trusted
third party. An honest broker is responsible for trans-
lating the query to a secure cluster and returning the
result to the user. A further study of the SMCQL sys-
tem (Bater et al., 2020) adopts SMCQL and builds a
system called SAQE to protect the SQL query on top
of it. The query in this system is processed in two
parts: a query planning and a query execution part.
The client side performs the query plan and optimi-
sation, while the execution of the query happens on
the server-side amongst the data owners, using MPC.
They jointly execute queries over their databases and
return the result to the client. Likewise, Bater et al.
build on top of SMCQL (Bater et al., 2018). They
use two-party secure computations, which means that
they run their experiments with two data owners.
While they report an improved performance of SM-
CQL, this comes at the cost of leaking some informa-
tion during the process.

On the systems suggested in (He et al., 2015) and
(Ciucanu and Lafourcade, 2020), the authors examine
using MPC for the implementation of querying by a
single party. The SDB system in (He et al., 2015) is a
cloud database system on relational tables. It contains
two parties: Data owner (DO) and Server provider
(SP). Each sensitive data item is split into two shares,
one kept at the DO, referred to as the item key, and an-
other at the SP, which is regarded as ciphertext. This
system uses MPC and secret sharing between the DO
and the SP. After accepting an SQL query from the
user, the SDB proxy in the DO part rewrites the query
that involves sensitive columns to their corresponding
UDFs at SP. It then submits rewritten queries to the SP
and sends the encrypted result back to the SDB proxy
to decrypt before sending it to the user. Likewise,
the GOOSE framework in (Ciucanu and Lafourcade,
2020) is a system to secure the outsourcing of data
in the RDF graph database using MPC secret sharing.
Here, the graph data is submitted by the data owner to
the cloud in a specific form: it is chopped into three
different parts, and uploaded in an encrypted form to

SMPG: Secure Multi Party Computation on Graph Databases

469



various places in the cloud. All these parts are consid-
ered multi-party, and each one cannot know the whole
graph, or a query, or its result. Moreover, all messages
between them are encrypted using the AES algorithm.
GOOSE has proven to scale via a large-scale experi-
mental study using a standard query evaluation.

While this previous work has addressed the use
of MPC in relational databases and graph databases,
multi-party queries over graph databases are novel.
Table 1 shows a comparison between all the previous
systems and our suggested system, SMPG.

6 CONCLUSIONS

In this position paper, we have proposed SMPG, a
system to secure multi-party computation on graph
databases. The concept of SMPG is to use MPC pro-
tocols to execute queries over graph databases. We
have implemented a prototype over the Conclave sys-
tem to demonstrate the effectiveness of a query over a
graph database using MPC. In future work, we will
extend this concept to allow for a broader applica-
tion. These extensions will include 1) an enhance-
ment of the backend system to support operations
over string data (where the Conclave system we have
used in the proof-of-concept is restricted to numerical
data); 2) an extension of the supported fragment of
Cypher query language; and 3) the development of a
more general system for privacy-preserving federated
queries that combine federated query facilities with
specialised MPC backends.

REFERENCES

Albab, K. D., Issa, R., Lapets, A., Flockhart, P., Qin, L.,
and Globus-Harris, I. (2019). Tutorial: Deploying se-
cure multi-party computation on the web using JIFF.
In 2019 IEEE Cybersecurity Development (SecDev),
pages 3–3. IEEE.

Alwen, J., Ostrovsky, R., Zhou, H., and Zikas, V. (2015).
Incoercible multi-party computation and universally
composable receipt-free voting. In Advances in
Cryptology–CRYPTO 2015: 35th Annual Cryptology
Conference,, volume 9216, pages 763–780. Springer
Berlin Heidelberg.

Aly, A. and Van Vyve, M. (2016). Practically efficient
secure single-commodity multi-market auctions. In
International Conference on Financial Cryptography
and Data Security, pages 110–129. Springer.

Bai, Y. (2010). Introduction to Language-Integrated Query
(LINQ), pages 147–233. Wiley-IEEE Press.

Bater, J., Elliott, G., Eggen, C., Goel, S., Kho, A., and
Rogers, J. (2016). SMCQL: secure querying for fed-
erated databases. arXiv preprint arXiv:1606.06808.

Bater, J., He, X., Ehrich, W., Machanavajjhala, A., and
Rogers, J. (2018). Shrinkwrap: efficient sql query pro-
cessing in differentially private data federations. Pro-
ceedings of the VLDB Endowment, 12(3):307–320.

Bater, J., Park, Y., He, X., Wang, X., and Rogers, J.
(2020). SAQE: practical privacy-preserving approx-
imate query processing for data federations. Proceed-
ings of the VLDB Endowment, 13(12):2691–2705.

Ciucanu, R. and Lafourcade, P. (2020). GOOSE: A se-
cure framework for graph outsourcing and sparql eval-
uation. In 34th Annual IFIP WG 11.3 Conference
on Data and Applications Security and Privacy (DB-
Sec’20). Accepté, à paraı̂tre.

Cramer, R., Damgård, I. B., and Nielsen, J. B. (2015). Se-
cure multiparty computation. Cambridge University
Press.

Evans, D., Kolesnikov, V., and Rosulek, M. (2018). A prag-
matic introduction to secure multi-party computation.
Found. Trends Priv. Secur., 2:70–246.

He, Z., Wong, W. K., Kao, B., Cheung, D., Li, R., Yiu, S.,
and Lo, E. (2015). SDB: A secure query processing
system with data interoperability. Proc. VLDB En-
dow., 8:1876–1879.

Hemenway, B., Welser IV, W., and Baiocchi, D. (2014).
Achieving higher-fidelity conjunction analyses using
cryptography to improve information sharing. Tech-
nical report, Rand project, Air Force. Santa Monica,
CA.

Liagouris, J., Kalavri, V., Faisal, M., and Varia, M. (2021).
Secrecy: Secure collaborative analytics on secret-
shared data. arXiv preprint arXiv:2102.01048.

Liu, C., Wang, X. S., Nayak, K., Huang, Y., and Shi, E.
(2015). ObliVM: A programming framework for se-
cure computation. In 2015 IEEE Symposium on Secu-
rity and Privacy, pages 359–376.

López, F. M. S. and De La Cruz, E. G. S. (2015). Liter-
ature review about Neo4j graph database as a feasi-
ble alternative for replacing rdbms. Industrial Data,
18(2):135–139.

Miller, J. J. (2013). Graph database applications and con-
cepts with Neo4j. In Proceedings of the Southern
Association for Information Systems Conference, At-
lanta, GA, USA, volume 2324.

Mostafa, A. (2016). Security of database management
systems. pages 1–6. https://www.researchgate.net/
publication/301613094.

Nayak, K., Wang, X. S., Ioannidis, S., Weinsberg, U., Taft,
N., and Shi, E. (2015). Graphsc: Parallel secure com-
putation made easy. In 2015 IEEE Symposium on Se-
curity and Privacy, pages 377–394. IEEE.

Poddar, R., Kalra, S., Yanai, A., Deng, R., Popa, R. A.,
and Hellerstein, J. M. (2020). Senate: A maliciously-
secure mpc platform for collaborative analytics. arXiv
e-prints, pages arXiv–2010.

Salehnia, A. (2017). Comparisons of relational databases
with big data : a teaching approach. pages 1–8. South
Dakota State University, Brookings.

Shamir, A. (1979). How to share a secret. Communications
of the ACM, 22(11):612–613.

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

470



Volgushev, N., Schwarzkopf, M., Getchell, B., Varia, M.,
Lapets, A., and Bestavros, A. (2019). Conclave: se-
cure multi-party computation on big data. In Pro-
ceedings of the Fourteenth EuroSys Conference 2019,
pages 1–18.

Wong, W. K., Kao, B., Cheung, D. W. L., Li, R., and
Yiu, S. M. (2014). Secure query processing with
data interoperability in a cloud database environment.
In Proceedings of the 2014 ACM SIGMOD inter-
national conference on Management of data, pages
1395–1406.

SMPG: Secure Multi Party Computation on Graph Databases

471


