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Abstract: Effective and efficient malware detection is key in today’s world to prevent systems from being compromised,
to protect personal user data, and to tackle other security issues. In this paper, we worked on Android malware
detection by using static analysis features and deep learning methods to separate benign applications from
malicious ones. Custom feature vectors are extracted from the Drebin and the AndroZoo dataset and different
data science methods of feature importance are used to improve the results of Deep Neural Network classifica-
tion. Experimental results on the Drebin dataset were significant with 99.31% accuracy in malware detection.
We extended our work on more recent applications with a complete pipeline for the AndroZoo dataset, with
about 40,000 APKs used from 2014 to 2021 pre-tagged as reported malicious or not. The pipeline includes
static features extracted from the manifest file and bytecode such as suspicious behaviors, restricted and sus-
picious API calls, etc. The accuracy result for AndroZoo is 97.7%, confirming the power of deep learning on
Android malware detection.

1 INTRODUCTION

Since the start of the 2010 decade, the smartphone
has become essential for everyone. As its place in
our daily life is growing, we trust it enough to entrust
it with important and sensitive data such as our bank
details or even medical data. Recently, Android is the
number one Operating System (OS) in the world (all
platforms), with about 40.39% of the global operating
system market share in 2021 (StatCounter, 2021).

At the same time, the prevalence of the Android
operating system, combined with its open nature, has
caused the number of Android malware to skyrocket.
To solve this problem, the research communities and
security vendors have designed many techniques to
identify and prevent Android malicious samples, and
two main classes of software approaches to Android
malware program analysis exists and have been stud-
ied: static and dynamic. Static approaches leverage
static code analysis to check whether an application
contains abnormal information flows or calling struc-
tures, matches malicious code patterns, requests for
excessive permissions, and/or invokes APIs that are
frequently used by malware. Static analysis of an
Android application can rely on features extracted

from the manifest file or the Java bytecode, while dy-
namic analysis of Android applications can deal with
features involving dynamic code loading and system
calls that are collected while the application is run-
ning. However the main limitation to the use of dy-
namic analysis is that it requires the study of program
behavior, the execution of each instruction, and the
ability to modify instructions or registers during this
phase.

For the detection and classification purposes, in
addition to the use of traditional and manual tech-
niques such as static and dynamic analysis, works us-
ing artificial intelligence and more particularly deep
learning, have shown encouraging results. Our ap-
proach combines static analysis on bytecode and data
retrieval from Android Package (APK) files for mul-
tiple feature extraction, with the use of 5-layers neu-
ral networks that are trained on a large amount of
data. For the experimental results, we obtained two
application databases: one from Drebin’s team (Arp
et al., 2014) but whose applications are a bit dated and
the other coming from AndroZoo (Allix et al., 2016),
which is an application database made available by
the University of Luxembourg to the scientific com-
munity.
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On the Drebin data, we used already extracted fea-
tures such as permissions, activities, API calls, etc.
and we obtained an accuracy rate in detecting ma-
licious applications of 99.31%. With the AndroZoo
data, we selected only the applications after 2014,
and we extracted the features coming from the An-
droidManifest.xml file but also those coming from
the bytecode, such as suspicious behaviors, network
addresses, suspicious API calls, and restricted API
calls. We labelled an application as malicious if it was
flagged by at least 4 antivirus on VirusTotal (Sood,
2017). Then we followed a process of cleaning and
formatting the data, selecting the best features, and
performing a dataset slicing. Finally, 5-layers deep
learning models are trained and optimized by adjust-
ing different parameters and we came up with results
offering very high accuracy.

Our main contributions in combining deep learn-
ing and static analysis for Android malware detection
are as follows. We proposed a detailed feature engi-
neering process by: i) including more feature types
on feature extraction, ii) grouping similar features,
iii) selecting important features from a large num-
ber of feature sets, and iv) embedding Uniform Re-
source Locator (URL) using Natural Language Pro-
cessing (NLP). For feature extraction, we obtained a
new set of features targeting suspicious actions from
Smali bytecode for AndroZoo dataset, which was not
used by Drebin.

The paper is organized as follows. Section 2 ref-
erences existing work related to malware detection by
using artificial intelligence techniques. Then, Sec-
tions 3 represents our methodology with 5 steps. The
feature extraction step is described in Subsection 3.1.
Subsections 3.2 and 3.3 focus, respectively, on the
grouping and selection of the most important features
required for the classification of applications. In Sub-
section 3.4, an overview is provided on URL embed-
ding to improve the recognition of certain URLs used
more frequently in malware. Subsection 3.5 describes
the feeding of features into a deep neural network for
binary classification, once these features have been
extracted and pre-processed. In Section 4, results ob-
tained with two datasets are presented and compared,
in the first instance, the Drebin dataset, using their
pre-extracted features from the APK files, and then
on the AndroZoo dataset in which feature extraction
was performed by ourselves. Finally, conclusions and
perspectives are described in Section 5.

2 RELATED WORK

Over the past few years, many solutions have been
proposed to detect Android malware using machine
learning algorithms. Recent reviews such as (Naway
and Li, 2018), (Wang et al., 2019), and (Liu et al.,
2020) provided clear and comprehensive surveys of
the state of the art in the domain. (Naway and Li,
2018) gave an overview of the different papers using
deep learning algorithms for malware detection with
their different performances as well as datasets used.
(Wang et al., 2019) presented a comparative analysis
of 236 published papers on feature extraction tech-
niques for Android applications. (Liu et al., 2020)
complemented the previous reviews by surveying a
wider range of aspects concerning machine learning
development pipeline. For the rest of this section, we
will present several approaches which are most rele-
vant and closer to our work.

The authors in (Wu et al., 2012) first extracted the
information from each application’s manifest file, and
then, applied the K-Means algorithm that enhances
the malware modeling capability. The number of
clusters is decided by Singular Value Decomposition
(SVD) method on the low rank approximation. They
used the K-Nearest Neighbors (KNN) algorithm to
classify the application as benign or malicious. The
comparison with Androguard tool showed a better
performance of this method. In addition, Droid Mat
is efficient since it takes only half of time than Andro-
guard to predict 1,738 apps as benign apps or Android
malware.

(Arp et al., 2014) proposed DREBIN, a
lightweight method for the detection of Android
malware that enables identifying malicious appli-
cations directly on the smartphone. As the limited
resources impede monitoring applications at run-
time, DREBIN performed a broad static analysis,
gathering as many features of an application as
possible. These features were embedded in a joint
vector space, such that typical patterns indicative for
malware can be automatically identified and used
for explaining the decisions of their method. In an
evaluation with 123,453 applications and 5,560 mal-
ware samples, DREBIN outperformed several related
approaches and detected 94% of the malware with
few false alarms, where the explanations provided
for each detection reveal relevant properties of the
detected malware. On five popular smartphones, the
method required 10 seconds for an analysis on aver-
age, rendering it suitable for checking downloaded
applications directly on the device.

Recently, particular research has been focused on
tuning the network parameters. In (Hou et al., 2016),
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different network architectures are tested while tun-
ing the parameters to reach a higher level in terms of
detection accuracy. In (Backes and Nauman, 2017),
the hyperparameters of Convolution Neural Network
(CNN) are tuned while using a dropout of 0.2 at each
convolution layer to reduce overfitting, which leads to
the conclusion that the largest network gives the high-
est statistical metric values.

In the work of (Nix and Zhang, 2017), a CNN is
built and evaluated for API call-based Android app
classification. Long Short-Term Memory (LSTM)
technique is integrated to extract knowledge from
system API-call sequences. CNN results are com-
pared with respect to n-gram Support Vector Machine
(SVM) and the Naive Bayes algorithm and the perfor-
mance of CNN is much better compared to others.

In another study (Kapratwar et al., 2017), the au-
thors proposed a malware detection method inspired
by deep learning about the exhaustive combination of
static and dynamic analysis, which traces all possible
execution paths of a given file, then compares the flow
graphs in real time for malware identification. Their
premise is that deep learning with a deep architecture
can evolve high-level representations by associating
features from static analysis with those from dynamic
analysis, which can then better characterize Android
malware.

In another register of Android permission based
malware detection technique, (Dong, 2017) gathered
a huge set of both malware and benign applications
through web crawler and developed a tool to decom-
pile applications to source code and manifest files au-
tomatically. Then permissions with other informa-
tion are extracted for each app, to finally take advan-
tage of machine learning algorithms, including Lo-
gistic Regression Model, Tree Model with ensemble
techniques, Neural Network and an ensemble model
to find patterns and more valuable information. This
method generated a good accuracy, F-score and over-
all performance of malicious application prediction.
The default model with one hidden layer and total
perceptron’s returns an accuracy of 93% and F-score
90%.

(Ganesh et al., 2017) proposed a deep learning-
based malware detection to identify and categorize
malicious applications. The study partially used
Drebin dataset. The method investigated permission
patterns based on a CNN and they identified malware
with 93% accuracy on a dataset of 2,500 Android ap-
plications, of which 2,000 were malicious and 500
were benign.

Also using the Drebin dataset, (Li et al., 2018)
proposed an Android malware characterization and
identification approach that uses deep learning algo-

rithms to address the urgent need for malware detec-
tion. Extensive experimental results showed that their
approach achieved over 90% accuracy with only 237
features.

(Kim et al., 2019) presented a different approach
that uses various kinds of features to reflect the prop-
erties of Android applications from several aspects.
The features are refined using existence-based or
similarity-based feature extraction method for effec-
tive feature representation on malware detection. Be-
sides, a multimodal deep learning method is proposed
to be used, for the first time, as a malware detection
model and recorded an accuracy of 85%.

(Pektaş et al., 2020) used the API call graph as
a graph representation of all possible execution paths
that a malware can track during its runtime. The em-
bedding of API call graphs transformed into a low
dimension numeric vector feature set is introduced
to the DNN. Then, similarity detection for each bi-
nary function is trained and tested effectively. This
study also focused on maximizing the performance
of the network by evaluating different embedding al-
gorithms and tuning various network configuration
parameters to ensure the combination of the hyper-
parameters and to reach the highest statistical metric
value.

It is within this framework that our work fits, with
the objective of optimizing the detection precision by
using DNN as well as the feature importance and the
extraction of additional features.

3 OUR METHODOLOGY

Our objective is to determine if an application is a
malware from its APK, with a high precision. To this
end, we train a deep learning model from a database
of APKs. Our methodology is divided in five steps.
First, we extract various features from the APKs,
such as permissions, app components, suspicious API
calls, network address, etc. Then, we preprocess all
these features in order to optimize the vectors that will
be fed as the inputs of our deep learning models by us-
ing feature grouping and feature filtering techniques.
In parallel, a URL embedding framework is carried
out. And after training our models with different ar-
chitectures, we analyze the results to understand the
predictions and the improvements to carry on. The
flowchart in Figure 1 goes over this whole process.
The numbers from the Drebin dataset (detailed later
in Section 4) are used to illustrate the vector size re-
duction.
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Figure 1: Methodology Flowchart (Drebin Dataset).

3.1 Feature Extraction

In order to perform malware detection from static
analysis, the first step is to extract the needed fea-
tures from the applications that are in APK format.
There exists different types of features suggested by
Drebin and proven to be effective, that are divided
into 8 groups, ranging from S1 to S8 as shown in Ta-
ble 1.

The S1 to S4 sets are extracted from AndroidMan-
ifest.xml which provides data supporting the instal-
lation and later execution of the application. It in-
cludes the requested hardware components such as
camera, GPS, etc., the permissions that the applica-
tion needs in order to access protected parts of the sys-
tem or other applications, the components of the ap-
plication which include all activities, services, broad-
cast receivers and content providers, and also filtered
intents.

The features S5 to S8 are from the Dalvik byte-
code. The restricted API calls (S5) are retrieved by
static analysis of the bytecode by taking all the API
calls of the application and looking at what permis-
sions are needed to use these APIs. So if one of these
permissions is not mentioned in the AndroidMani-
fest.xml file, then the API combined with the needed
permission is picked up and set as a feature, as this
can sometimes imply an exploit used by malware to
perform an action without permission. S6 (Used Per-
missions) contains permissions that are asked by the
application at some point during its execution. The
selection of suspicious APIs (S7) is done based on
the list of most used APIs by malware. Finally, S8

contains the list of IP addresses and URLs present in
the bytecode.

Table 1: Drebin and AndroZoo Static Feature Sets Sug-
gested by (Arp et al., 2014) and Additional Set S9.

S1 Hardware Components S5 Restricted API Calls
S2 Requested Permissions S6 Used Permissions
S3 App Components S7 Suspicious API Calls
S4 Filtered Intents S8 Network Addresses
S9 Suspicious Actions (AndroZoo only)

The notable differences concerning our exploita-
tion of the datasets are that Drebin was already con-
stituted of the extracted features (from S1 to S8). But
for AndroZoo, we only had the list of APKs, the fea-
tures are extracted with our own scripts by using the
general idea of Drebin for the S1 to S8 features. In ad-
dition, a new set of features named ”Suspicious Ac-
tions” (S9) has been extracted. The interest of this
set of features is that it gathers combined actions that
represent proven malicious behaviors. For example,
when a malware tries to intercept the incoming SMS,
it has to run a daemon in back-end listening incoming
SMS and to exfilter them through the HTTP protocol.
So the features from S9 target specific malicious tech-
niques which are exfiltration of phone data and con-
figuration, geolocation data leakage, exfiltration of in-
terface connection information, abuse of telephony
service, interception of audio and telephony streams,
establishment of remote connections, Personal Infor-
mation Manager (PIM) data leakage, operations on
external memory, modification of PIM data, arbitrary
code execution, and service denial. The extraction
of these features was performed with the Python li-
brary Androwarn, by using Smali which is an assem-
bler/disassembler for the dex format used by Dalvik
bytecode.

These features are then one-hot encoded, which
creates a sparse vector where each dimension is 1 if
the feature is present, and 0 otherwise. Some of the
sets contain very little possible distinct values. The
number of possible permissions in S6 (Used Permis-
sions) is limited by Android OS whereas the num-
ber of unique network addresses can be substantially
large. For some of the sets, the one-hot encoded rep-
resentation of every possible features may be subopti-
mal. In fact, most of the dimensions of S3 (App Com-
ponents) and S8 (Network Addresses) do not bring
much information to the neural network, but rather
add noise. It inspired us to perform feature selection
and feature engineering on S1 to S8 sets, in order to
reduce memory and computing time of our feature
generation and network training. By selecting only
the best features, we expect the same or just a small
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decrease in results but with limited computing time.
However, feature engineering is expected to add in-
formation to the network, increasing the overall accu-
racy.

For S8, due to the nature of URLs, only a small
subset is used in different apps, and most of them are
unique. Consequently, one-hot encoding URLs may
not bring any information to the neural network, and
does not capture the similarity between two pages of
the same website, or similar URLs. We developed an
URL embedding framework to capture the represen-
tation of the URLs used in the app in the same-sized
numerical vector, which is supposed to capture more
information than just the re-use of a specific URL.
This framework is discussed in Section 3.4.

3.2 Feature Grouping

A lot of features extracted from the appli-
cation are texts, separated by dots. For
example, a permission feature looks like
‘com.android.launcher.permission.READ SETTINGS’,
and it’s similar for the other subsets. But not all
the parts of the text have the same information.
For the permissions, we select only the last part of
the text, after the last dot: ‘READ SETTINGS’.
Taking only this part regroups a lot of differ-
ent features finishing by the same text, like:
’com.motorola.launcher.permission.READ SETTINGS’,
or ’org.adw.launcher.permission.READ SETTINGS’.
To illustrate the new features, Figure 2 represents
the percentage of malware applications in the Drebin
dataset which have these specific features.

Figure 2: Percentage of Drebin Malware Applications with
Permission Grouped Features.

Thereby, we have a new permission feature
’READ SETTINGS’ created by this process, which
we do for all the subsets. We choose to keep the
original features for the subsets of small dimensions,
like the permissions (S2 and S6) or intents (S4). But
for large subsets like activities in S3, we keep only
the regrouped features. By this process, we reduced
the number of unique values from 234,887 (URLs ex-
cluded) to 48,914 for Drebin (Figure 1), and we added
new information.

3.3 Feature Selection

Our objective now is to reduce more the number of
unique features in order to increase the efficiency of
the model’s training. For that, we rank all the features
by their importance to the malware application pre-
diction in order to keep only the best ones. To have
a precise estimation of the importance of each fea-
ture, we combine the importance of the features from
5 different algorithms: the Pearson Correlation, the
Chi-Squared metric, and 3 machine learning models
which are Logistic Regression, Random Forest and
LightGBM. For each algorithm, we rank the features
by their importance to the prediction. But to have a
more precise ranking, we define a score for each fea-
ture, according to its ranking for each algorithm, us-
ing the rank product.

Table 2 illustrates the ranking for the permission
subset of the Drebin dataset. The column Top Algo
represents the number of algorithms that the feature is
in the top 80% of the ranking, the column Score stores
the rank product score and is used for filtering the fea-
tures. With this ranking, we can filter the n top fea-
tures of each set. The more features are selected, the
more the deep learning model will have one-encoded
input and will take time to optimize the weights of
each feature. In our study, we selected all the fea-
tures with a score less than 300, which corresponds to
2,118 features with the Drebin dataset (Figure 1).

3.4 URL Embedding

In order to use the URLs found in the APKs, they
have to be represented in a fixed-length vector. To
this end, we used the work of (Yuan et al., 2018) en-
abling a URL to be represented in a fixed-size vector
space. Their work has shown that it is beneficial to
split the URL into different parts in order to improve
the representation and subsequently the performance
of the machine learning models. For example, a URL
can be divided into 5 parts: protocol, sub-domain, do-
main, domain suffix, and URL path. In our frame-
work, we divided URLs into 3 parts: P1 (Protocol),
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Table 2: Permission Features Ranking for Drebin Dataset.

Feature Pearson Chi-
Square

Logistic
Regression

Random
Forest

LightGBM Top
Algo

Score

android.permission.SEND SMS 1 1 29 2 7 5 3.324
READ SMS 3 3 156 4 13 5 9.39
SEND SMS 2 2 30 1 722 4 9.717
ACCESS COARASE LOCATION 845 791 1127 1682 2865 2 1294.141

. . .

P2 (sub-domain + domain + domain suffix), and P3
(URL path). The usefulness of the URL parts decom-
position is that two URLs with the same protocol, and
the same domain, but with a different path, will have
2/3 of their vector representation identical.

Then, we train a character model that gives repre-
sentation of each character in a vector space via lan-
guage modeling. We model our URLs into a sequence
of characters: U = c1c2...cn. The characters ci ∈ V
are part of a vocabulary V , that contains all possible
characters in the URL corpus. Subsequently, we use
this character model to build a vector representation
of each part of a URL by averaging all the charac-
ter vectors of that part and then we concatenate these
vector representations to obtain the representation of
the whole URL. The workflow is described in Figure
3.

Almost always, an application accesses not one
but multiple URLs or IP addresses. Since the rep-
resentation of all the URLs of an application has to be
of fixed size, the last step is the aggregation of these
representations. We used two types of autoencoders
to this end. One Long Short-Term Memory (LSTM)
autoencoder that accepts variable-length URL repre-
sentation that outputs one compressed representation,
and another autoencoder that accepts padded lists of
URL representations. As shown in Figure 4, the au-
toencoder takes k URLs in its input layer, and the
middle hidden layer is a vector of features that carries
most of the important information. This URL encod-
ing allows us to reduce the number of URL unique
values from 310,447 to 300 (Figure 1). The imple-
mentation of these autoencoders is successful but as
described later in Section 4, the contribution is negli-
gible, as they could not learn a meaningful represen-
tation of all the URLs used in an application.

3.5 Deep Learning Classification

Once each feature has been extracted and pre-
processed, we can feed it into a DNN for binary clas-
sification or multi-class classification. As the number
of input dimensions is still pretty high, DNNs are the
most suitable algorithms to perform these classifica-

tions. In fact, they are able to construct high-level,
intermediate feature representations (or concepts) in
the hidden layers that can model complex relation-
ships between input features. Many different ma-
chine learning algorithms have been used to tackle the
detection of Android malware, but DNNs have been
shown to have very good results.

The number of neurons in the input layer corre-
sponds to the size of our feature vectors, while the
number of neurons in the output layer corresponds
to the number of classes we want to predict (2 for a
binary classification and 3 or more for a multi-class
classification). For our training, we used Tensorflow
2.0 with CUDA enabled to parallelize calculations on
the GPU. However, they are costly to train. We tried
different types of network architectures, all with fully
connected layers. Since the use of DNN with 2 lay-
ers composed of 256 neurons each is recommended
in several works (Li et al., 2018), we used this infor-
mation to test our different models and compared the
performance of the 2, 3 and 4 layer configurations for
the binary and multi-class classification cases. The
hidden layers contain between 256 and 512 neurons
each that are connected to a softmax layer, outputting
probabilities for the classes ’Malware’ or ’Benign’.
To optimize the DNN model, we can act on the fol-
lowing hyper parameters: number of hidden layers,
number of neurons per layer, backpropagation algo-
rithm, cost function, and activation function.

As backpropagation algorithm, we have tested the
stochastic gradient descent algorithm and the Adam
algorithm. Adam is an adaptive learning rate opti-
mization algorithm that was designed specifically for
training of DNNs. In this algorithm, the learning
rate is calculated for each variable and depends on
3 parameters with recommended values: β1 = 0.9,
β2 = 0.999, and ε = 1e−8.

To avoid overfitting, we have split randomly our
dataset into three subsets. The training set takes 70%
of the dataset and is used to train the model. The val-
idation set to compute at each epoch the metrics on
a set that has not been used for training. The test set
allows us to calculate at the end the capacity of the
network to generalize on a new data set. The con-
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Figure 4: Multiple URL Compressed Representation.

fusion matrix and the different metrics are calculated
from this set.

4 EXPERIMENTAL RESULTS

4.1 Datasets

We first worked on the Drebin dataset using their al-
ready extracted features sets. The Drebin dataset con-
tains 123,453 benign applications and 5,560 malware,
divided in 179 malware classes. This dataset has been
assembled from 2010 to 2012 from various Android
application platforms. The advantages of this dataset
are that it is large and the features have already been
extracted from the AndroidManifest.xml file and from
the bytecode.

Next, we used the AndroZoo dataset to set up an
end-to-end pipeline, from the extraction of the fea-
tures from the manifest file and the bytecode of the
APKs to neural network learning and testing. This
database is huge, totaling more than 15,500,000 ap-
plications, with various information. We extracted
39,156 APKs from AndroZoo, with a proportion of
12,882 malware that have been identified by at least
4 antivirus programs as containing malicious code
and 26,274 benign applications from Google markets.
The release dates of these APKs vary from 2014 to
2021, hence some of them are really recent. In An-
droZoo, information about the size, the origin mo-
bile markets and the number of VirusTotal antiviruses
that recognized the app as a malware, or a benign
are given. The number of antiviruses recognizing an
application as malware spans from 0 to 57, and so
we chose to classify as malicious an application with

this number superior or equal to 4 whereas the benign
apps are required to have 0 positive scans.

4.2 Results

4.2.1 Drebin

With the Drebin dataset, we tried different architec-
tures of our model with different input. An accuracy
around 99% with only feature grouping and feature
selection is achieved. By adding URL embedding,
we found that the accuracy did not increase. On the
contrary, the feature importance techniques work well
without URL embedding and we have with the best
architecture up to 99.31% of accuracy, as shown in
Table 3. This architecture is composed of 3 layers
(1024, 512 and 256 cells) and trained with 60 epochs.
The input used are the features with a score less than
300 for the feature selection.

The column F1 represents the F1-score that subtly
combines precision and recall. And in the last column
we have indicated the False Negative Rate (FNR), be-
cause we think it is important to point out the mal-
ware that passes through the analysis without being
detected as such.

Table 3: Results on Drebin Dataset.

Model Accuracy F1 FNR
Best architecture 0.99317 0.99644 0.00532

Our predictions for the best architecture are quite
interesting because we have only 22 false positives
and 66 false negatives. The false positives are not very
concerning as it is better to predict that a benign ap-
plication may be a malware than to miss identifying
a malware application. We tried to understand where
these 66 false negatives come from, and how we can
improve our results. For that, we focus on the differ-
ent malware classes, as the Drebin dataset indicates
the type of malware. Table 4 shows the top classes
the most present in the dataset, with the number of
applications in each family, the accuracy of predic-
tion and the average of the false and true positives
rates. As we can see, the Gappusin class is one of the
top classes that our model has difficulties to predict.

Figure 3: Single URL Embedding Workflow.
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We analyzed with SHAP (Lundberg and Lee, 2017)
how the predictions of this class are done. We noticed
that it’s mostly the absence of typical features, which
are usually in the malware, that confused our model
to predict it malware. This class of malware is very
similar to the benign class.

Table 4: Malware Families of Drebin Dataset.

Family Apps Accuracy FP TP
FakeInstaller 104 0.98 0.03 0.97
Plankton 74 0.99 0.04 0.96
Opfake 64 0.95 0.07 0.93
Gappusin 12 0.25 0.68 0.32

...

Then, we analyzed the feature importance of our
deep learning model, to understand what are the main
characteristics of the decision of the model. Figure
5 gives the feature importance represented by SHAP.
In this diagram the highest elements are the ones with
the most influence on the model. The horizontal lo-
cation (x-axis) of points shows whether the effect of
that location is associated with a higher or lower pre-
diction, the red dots represent a positive influence and
the blue dots a negative influence. This means the
more the red dot is on the right and features is on the
higher part, the more the model will predict that the
application is a malware. We can see that the pres-
ence of features like ’com’, or ’getSubscriberid’ im-
plies that the application is more likely to be a mal-
ware. Rather the presence of the features ’android’
or ’android.permission.ACCESS FINE LOCATION’
implies that the application is more likely to be be-
nign.

Figure 5: Feature Importance for Drebin Dataset.

Another interesting criteria is the importance of
each set in the prediction. For that, we sum up the
features of importance for each subset as shown in

Figure 6. We can conclude that the permission subset
is by far the most important subset to predict if an
application is a malware in Drebin dataset.

Figure 6: Subset Importance for Drebin Dataset.

Finally, Table 5 compares the different measures
from other related work that worked exclusively with
the Drebin dataset. And we can see that our method
and that of (Li et al., 2018), both use neural networks,
achieve the best results. This table compares differ-
ent metrics, features, the algorithm used and a brief
description of their contribution.

4.2.2 AndroZoo

We also worked with the AndroZoo dataset, and we
used 27,410 (70%) apps for the training set, 5,873
(15%) apps for the test set and 5,873 (15%) for the
validation set. The training and test set was com-
posed of 32.9% of malware. We trained a neural net-
work with an input layer, followed by two 256 cells
dense layers, and a softmax layer. Unlike Drebin’s
dataset, we extracted ourselves the features of the
APKs, which can induce a slight difference in the re-
sults. Moreover, we extracted the additional feature
”Suspicious action” which is not present in Drebin.

With AndroZoo dataset, the best accuracy reached
is 97.7%, which is indeed very promising with feature
importance. We see that feature selection is really ef-
fective on this new dataset, because with substantially
fewer features, the network manages to gain in each
test metric as shown in Table 6. Moreover, the com-
puting time of training by selecting only the most im-
portant features is significant.

With Androzoo the predictions are interesting be-
cause we have only 65 false positives (which repre-
sents 3.3% of FPR against 4.2% with Drebin dataset)
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Table 5: Comparison Table of Published Works with Drebin Dataset.

Reference Measures Features Algorithm Contribution
(Arp et al., 2014) Acc: 94% S1, S2, S3, S4, S5, S6, S7, S8 SVM Online and explainable malware

detection

(Li et al., 2018)
Prec: 97.15%
Recall: 94.18%
F1: 95.64%

S2, S6, S5, S7 DNN Automatic detection engine to
detect malware families

(Shiqi et al., 2018) Acc: 95.7% S5, S7 DBN Combination with image texture
analysis for malware detection

Our method
Acc: 99.31%
Recall: 99.46%
F1: 99.64%

S1, S2, S3 , S4, S5, S6, S7, S8 DNN Feature grouping and feature se-
lection

Table 6: Results on AndroZoo Dataset.

Model Accuracy F1 FNR
Best architecture 0.97701 0.98288 0.01776

and 70 false negatives (which corresponds to 1.77%
of FNR against 0.53% with Drebin dataset).

In Figure 7, the most important feature families
are presented, and we can see that the added feature
(Suspicious actions) has the most important weight,
seconded by the permissions, while it is the permis-
sion set which has the heaviest weight with Drebin
dataset. This probably means that we could signifi-
cantly increase the results of the first model (Drebin
dataset) if the ”Suspicious actions” features have been
added.

Figure 7: Subset Importance for AnrdoZoo Dataset.

To analyse the feature importance of the deep
learning model fed by AndroZoo dataset, we gener-
ated a SHAP diagram that shows the feature impor-
tance. We can see in Figure 8 the red dots that indi-
cate how much the feature is present, and the blue dot
means the contrary, and as for the previous SHAP di-

agram, the further the dot is on the right the more this
feature is likely to represent a malware, and on the
left benign. Thus we can see that the presence of fea-
tures ’READ PHONE STATE’ or ’com’ implies that
the application is more likely to be a malware. And
the presence of the feature ’RecyclerView’ indicates
that the application is more likely to be benign.

Figure 8: Feature Importance for AndroZoo Dataset.

During the experimentation phase, the hardware
characteristics used are the following for the training
of the models without the feature selection: Processor
Intel(R) Core(TM) i3-10100F CPU 3.60 GHz, 16 Gb
RAM, GPU NVIDIA GeForce GTX 1650 SUPER.
And for the training of the models with the features
selection, the hardware characteristics used are: Pro-
cessor Intel(R) Xeon(R) CPU E5-2678 v3 2.50 GHz,
12 Gb RAM, GPU.

5 CONCLUSIONS

To conclude this study, our work contributes to the
research field of malware detection for Android ap-
plication by improving the detection rate. We based
our work on the research paper of Drebin (Arp et al.,
2014), and we achieved 99.31% of accuracy, superior
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than the highest rate with exclusively the same dataset
from other related work. In addition, we extended
our working dataset with more recent data extracted
from AndroZoo APKs, and we improved the accu-
racy by using deep learning techniques and by the ex-
traction of multiple and additional features from byte-
code and the AndroidManifest.xml file. Our method-
ology has proven to be effective with an accuracy of
nearly 97.7% in detecting recent Android malware by
binary classification. A dataset consisting of features
extracted from nearly 80,000 recent applications with
about 30,000 malware will be made available on the
Internet, as well as the script to extract these features
from a raw AndroZoo dataset.

Different areas of improvement can be studied,
such as optimizing hyperparameters, exploiting a
greater mass of applications from the AndroZoo
dataset, and extending the extracted features from
bytecode to improve the model. Ongoing work on
multi-class classification to better categorize Android
malware families is actually carried out. It is also in-
teresting to study the cases of APK predicted as false
positives, to understand why they were tagged as mal-
ware. Manual reverse engineering techniques could
eventually reveal unknown attacks that were not de-
tected by classical antivirus.
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