
An Activation Function with Probabilistic Beltrami Coefficient for
Deep Learning

Hirokazu Shimauchi a
Hachinohe Institute of Technology, Hachinohe, Aomori, Japan

Keywords: Activation Function, Neural Network, Beltrami Coefficient, Quasiconformal Mapping, Stochastic
Perturbation.

Abstract: We propose an activation function that has a probabilistic Beltrami coefficient for deep neural networks.
Activation functions play a crucial role in the performance and training dynamics of deep learning models. In
recent years, it has been suggested that the performance of real-valued neural networks can be improved by
adding a stochastic perturbation term to the activation function. Meanwhile, numerous studies have been
conducted on activation functions of complex-valued neural networks. The proposed approach
probabilistically deforms the Beltrami coefficient of complex-valued activation functions. The Beltrami
coefficient represents the distortion by mapping at each point. In previous research, when dealing with
complex numbers, adding a perturbation term meant applying probabilistic parallel translation from a
geometric viewpoint. By contrast, our approach introduces a stochastic perturbation for rotation and scaling.
Our experimental results show that the proposed activation function improves the performance of image
classification tasks, implying that the suggested activation function produces effective representations during
training.

1 INTRODUCTION

We propose an activation function for deep complex-
valued neural networks that have probabilistic
Beltrami coefficients. In this section, we summarise
the background, related works, and contributions of
this study.

1.1 Background and Related Works

Activation functions introduce nonlinearity to neural
networks, which helps in obtaining a complex
representation of data; the choice of these functions
significantly affects the performance of deep learning
models (Karlik and Olgac, 2011). Therefore,
activation functions have been widely researched.

1.1.1 Deterministic Real-valued Activation
Functions

In the early days, sigmoid and tanh (hyperbolic
tangent) activation functions were widely used
(Schmidhuber, 2015). However, these became

a https://orcid.org/0000-0002-9160-5667

ineffective in deep neural networks because of the
vanishing gradient problem. The rectified linear unit
(ReLU) (Nair and Hinton, 2010), a piecewise linear
activation function, showed better generalisation
performance in deep learning compared with
sigmoid and tanh. However, there are some well-
known weaknesses of ReLU. One of them is called
the dying ReLU, which is related to a gradient
information loss caused by the collapse of the
negative inputs to zero. Therefore, numerous
activation functions have been developed to
improve performance and address the shortcomings
of ReLU, such as leaky ReLU (Xu et al. 2015),
parametric ReLU (PreLU) (He et al., 2015),
exponential linear unit (ELU) (Clevert, 2015),
scaled exponential linear unit (SELU) (Klambauer
et al., 2017), sigmoid-weighted linear unit (Swish)
(Ramachandran et al., 2017), and Mish (Misra,
2019). These are deterministic functions with fixed
input–output relationships.

Shimauchi, H.
An Activation Function with Probabilistic Beltrami Coefficient for Deep Learning.
DOI: 10.5220/0010870500003116
In Proceedings of the 14th International Conference on Agents and Artificial Intelligence (ICAART 2022) - Volume 3, pages 613-620
ISBN: 978-989-758-547-0; ISSN: 2184-433X
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

613

1.1.2 Probabilistic Real-valued Activation
Functions

Recently, Shridhar et al. (2019) proposed ProbAct, a
probabilistic activation function, which is inspired by
the stochastic behaviour of biological neurones.
Uncertain biomechanical effects may cause noise in
neuronal spikes (Lewicki, 1998). Shridhar et al.
(2019) aimed to emulate a similar behaviour in the
information flow to the neurones by adding stochastic
perturbation terms with trainable or nontrainable
weights. It was shown that ProbAct improves the
performance of various visual and textual
classification tasks. In particular, they confirmed that
the augmentation-like operation in ProbAct was
effective even when there are a few data points.

1.1.3 Deterministic Complex-valued
Activation Functions

In parallel with the studies on real-valued cases,
research on complex-valued activation functions for
deep complex-valued neural networks has been
conducted. Liouville’s theorem states that the only
complex-analytic and bounded function is a constant
function. The construction of the analytic activation
function is a challenging task in the complex case.
However, Hirose and Yoshida (2012) showed that
limiting the regularity of the activation functions to
only analytic functions is unnecessarily restrictive.
Recently, numerous complex activations inspired by
ReLU have been proposed, for example, zReLU
(Guberman, 2016), modReLU (Arjovsky et al.,
2016), and CReLU (Xu et al., 2015). CReLU is a
complex function that applies separate ReLUs on
both the real and imaginary parts of a neuron; it
outperforms both modReLU and zReLU in the
experiments in CIFAR 10 and CIFAR 100
(Krizhevsky et al., 2009).

1.2 Contributions of This Study

We propose a complex-valued activation function,
BelAct, which has probabilistic Beltrami coefficients.
Our experiments show that the proposed activation
function shows better accuracy on benchmark
datasets compared with baseline models. In
particular, the combination of ProbAct and BelAct
increases performance when there are a few data
points, and hence, BelAct may produce essentially
different useful representations of features compared
with ProbAct. The remainder of this paper is
organised as follows.

In the next section, we propose BelAct and
consider the geometric meaning of this operation
from the viewpoint of complex functions. The
evaluation of the proposed activation function for
image classification tasks is presented in Section 3. In
the last section, we conclude the paper and propose
directions for future work.

2 ACTIVATION FUNCTION
WITH PROBABILISTIC
BELTRAMI COEFFICIENT

In this section, we define BelAct and ProbBelAct
using probabilistic quasiconformal linear mappings.

2.1 Quasiconformal Mapping and
Beltrami Coefficient

Let 𝐷 and 𝐷′ be the domains in the complex plane. A
sense-preserving homeomorphism 𝑓: 𝐷 → 𝐷′is called
a quasiconformal mapping if 𝑓 satisfies the following
two properties:
 For any closed rectangle 𝑅 in 𝐷, f is absolutely

continuous on almost every horizontal and
vertical line in 𝑅.

 There exists a real number 𝐾 > 1 , and the
dilatation condition |𝑓௭̅(𝑧)| ≤ 𝐾 − 1𝐾 + 1 𝑓௭(𝑧) (1)

holds almost everywhere in D.
Quasiconformal mappings play important roles in

various fields, such as complex dynamical systems
and the Teichmüller theory in the fields of
mathematics (see Ahlfors, 2006 for details) and
image processing in the medical field.

The complex function 𝜇(𝑧): = 𝑓௭̅(𝑧)𝑓௭(𝑧) (2)

where 𝑓௭: = (𝑓௫ − 𝑖𝑓௬)/2 (3)

and 𝑓௭̅: = (𝑓௫ + 𝑖𝑓௬)/2, (4)

is defined on almost everywhere for a quasiconformal
mapping 𝑓, and is called the Beltrami coefficient. The
Beltrami coefficient represents the distortion of
mapping at each point (see function ℎଶ in Section 2.4
and Figure 1 for an example).

ICAART 2022 - 14th International Conference on Agents and Artificial Intelligence

614

2.2 Definition of BelAct

We define an activation function called BelAct as 𝑓(𝑧) ≔ 𝑔(𝑧 + 𝑠ଵ𝜇𝑧̅), (5)

where 𝑧 is the real or complex number input and 𝑔 is
a fixed activation function (for example, 𝑔(𝑧) =max(0, 𝑥) + 𝑖 max(0, 𝑦), where 𝑧 = 𝑥 + 𝑖𝑦 is
CReLU). The perturbation parameter 𝑠ଵ is a fixed or
trainable value, which specifies the range of
stochastic perturbation, and 𝜇 is a random value
sampled from the real and imaginary parts from a
normal distribution 𝑁(0; 1) . We call 𝑔 the base
function of BelAct.

2.3 Definition of ProbBelAct

The ProbAct (Shridhar et al., 2019) is defined as 𝑓(𝑧) ≔ 𝑔(𝑧) + 𝑠ଶ𝑒, (6)

where 𝑠ଶ is a fixed or trainable value that specifies the
range of stochastic perturbation, and 𝑒 is a random
value. Considering the complex case, adding a
perturbation term like ProbAct geometrically means
probabilistic parallel translation. By contrast, BelAct
adds probabilistic rotation and scaling to the input via
probabilistic quasiconformal linear mappings. The
combination of ProbAct and BelAct (we call it
ProbBelAct) can be considered as 𝑓(𝑧) ≔ 𝑔(𝑧 + 𝑠ଵ𝜇𝑧̅) + 𝑠ଶ𝑒. (7)

2.4 Geometric Meaning of ProbAct and
BelAct

We consider the mapping ℎଵ(𝑧) ≔ 𝑧 + 𝑐 (8)

and ℎଶ(𝑧) ≔ 𝑧 + 𝜇𝑧̅ (9)

where 𝑐 and 𝜇 are complex constants. When 𝑐 = 𝑢 +𝑖𝑣 with 𝑢 and 𝑣 as real numbers and 𝑖 is an imaginary
number, ℎଵ moves the input 𝑢 in the 𝑥-axis direction
and 𝑣 in the 𝑦-axis direction. Thus, ProbAct can be
considered as adding a parallel translation to the
output of 𝑔. ℎଶ rotates and scales the input depending on 𝜇, as
shown in Figure 1, on the whole complex plane.
Therefore, BelAct adds rotation and scaling to the
input. In general, the Beltrami coefficients of a
quasiconformal mapping 𝑓 are defined as equation
(2) in Section 2.1. 𝜇(𝑧) describes how 𝑓 deforms the
neighbourhoods of each point, compared with

conformal mapping; recall that conformal mapping is
an injective and analytic function that preserves the
local geometry. ℎଵ can be considered as a conformal
linear mapping, and its Beltrami coefficient is zero
everywhere. ℎଶ is a quasiconformal linear mapping
with a constant Beltrami coefficient 𝜇. An overview
of the ProbAct (right), BelAct (left), and ProbBelAct
is presented in Figure 2.

Figure 1: Distortion by a quasiconformal linear mapping ℎଶ
that has Beltrami coefficient 𝜇.

Figure 2: Overview of ProbAct, BelAct, and ProbBelAct on
the complex plane.

2.5 Setting the Base Function and the
Parameter for Stochastic
Perturbations

We chose CReLU as the base function for BelAct and
ProbBelAct in our experiments. Regarding the
parameter for stochastic perturbation 𝑠ଵ of the
Beltrami coefficient 𝜇 for BelAct, we consider two
cases like setting 𝑠ଶ of ProbAct (Shridhar et al. 2019):
fixed and trainable. 𝜇 of BelAct represents how far

An Activation Function with Probabilistic Beltrami Coefficient for Deep Learning

615

from the conformal mapping the image is: if |𝜇| is
large, the image is deformed strongly by ℎଶ . In
particular, if |𝜇| = 1, the image is degenerated to a
line when ℎଶ is applied. Hence, it is natural that we
restrict |𝑠ଵ𝜇| < 1 . This setting means that ℎଶ
preserves the orientation and is an injective mapping.

2.5.1 Fixed Case

For the fixed case, 𝑠ଵ is a constant hyperparameter.
This can be viewed as a repeated perturbation of the
scaled Gaussian noise to the Beltrami coefficients.
Herein, we set 𝑠ଵ = 𝑠ଶ = 0.05 by considering that
the data are normalised by the standardisation in our
experiments.

2.5.2 Trainable Case

For the trainable case, we treat 𝑠ଵ as a trainable
parameter, which reduces the requirement to
determine 𝑠ଵ as a hyperparameter. Here, we consider
two settings for trainable cases. One of the settings is
a shared trainable 𝑠ଵ across the network. In this case,
a single extra parameter used for all the BelAct layers
was introduced. In the other case, a trainable
parameter is introduced for each input element. In all
cases, the complex network is optimised using a
gradient-based algorithm such as an adaptive moment
estimation (Adam).

3 EXPERIMENTS

In this section, we present the empirical evaluations
of the BelAct and ProbAct in image classification
tasks.

3.1 Dataset

We use the CIFAR 10 and CIFAR 100 datasets. All
inputs were normalised using standardisation.
Furthermore, we also verify the performance of these
activation functions when the number of training data
is reduced because the ProbAct as reported by
Shridhar et al. (2019) is effective even when the
number of data points is less.

3.2 Experimental Settings

To evaluate the performance of the proposed
activation function, we compared it to the following
activation functions: ReLU, Sigmoid, Tanh, SELU,
and Swish for the real-valued neural network, and
CReLU, ProbAct with CReLU for the complex-

valued neural network. The selected deterministic
activation functions are widely used. These are
suitable as baselines.

Table 1: List of hyperparameters.

Hyperparameter Value
Kernel size for

convolution
3

Padding Same
Kernel size for max-

pooling
2

Max-pooling stride 2
Optimizer Adam
Batch size 128

Learning rate 0.0001
(0.00001 after 50 epochs)

Number of epochs 100
Fixed s1, s2 0.05

Single trainable
initialiser

0

Element-wise trainable
initialiser

Xavier initialisation

3.2.1 Architecture of the Neural Network

We chose a simple architecture, specific hyper-
parameters, and training settings to compare the
performance of the activation functions. We utilised
a VGG16 neural network architecture for image
classification tasks (Simonyan and Zisserman, 2014).
The architecture used in the experiments is defined as
64, 64, M, 128, 128, M, 256, 256, 256, M, 512, 512,
512, M, 512, 512, 512, M, FC, and FC, where
numbers represent the filters of a two-dimensional
real or complex convolution layer, which are
followed by an activation function. M represents the
max-pooling layer, and FC represents the fully
connected layer with 4,096 units. After the last layer
of the real-valued case, the softmax activation is used
with 10 and 100 units for CIFAR 10 and CIFAR 100,
respectively. The softmax real with the average
function in (Barrachina, 2019) was used for the
complex-valued case. The detailed settings are
presented in Table 1. Regularisation tricks, pre-
training, dropout, and batch normalisation are
avoided in this experiment for the comparison of
activation functions.

3.2.2 Implementation

For the implementation, we used Python 3.7.9, with
Tensorflow 2.5.0. Further, the Complex-Valued
Neural Networks (CVNN) (Barrachina 2019) library
is also used for the complex-valued neural networks.
BelAct and ProbBelAct can simply be implemented

ICAART 2022 - 14th International Conference on Agents and Artificial Intelligence

616

as a function (fixed case) or a custom layer (trainable
cases) of Keras in Tensorflow.

3.3 Results on CIFAR 10

The CIFAR-10 dataset consists of 60,000 images
with 32 × 32 pixels for each image. It has 10 classes
with 6,000 images per class and is split into 50,000
training images and 10,000 test images. The training
data are augmented by the image generator of Keras
during training. We used the accuracy on the test
dataset for the comparison. All experiments were
performed three times, and the reported values are the
average of the three. The results for the CIFAR 10 are
presented in Table 2. The average score in three
independent trials was used as the final evaluation
metric.

Table 2: Results on CIFAR 10 (average of three trials).

Activation Function Accuracy
ReLU 0.845

sigmoid 0.100
Tanh 0.833
SeLU 0.857
Swish 0.859

CReLU 0.864
ProbAct (fixed) 0.866

ProbAct (single trainable) 0.866
ProbAct (element wise trainable) 0.867

BelAct (fixed) 0.870
BelAct (single trainable) 0.870

BelAct (element wise trainable) 0.868
ProbBelAct (fixed) 0.866

ProbBelAct (single trainable) 0.869
ProbBelAct (element-wise

trainable)
0.868

BelAct with the fixed scalar and single trainable
cases achieved the best score. In this experiment, the
score improved by 2.5% compared to the case of
ReLU. In addition, the other cases of BelAct and
ProbBelAct improve the score by 2.1%–2.4%.
However, the difference between the best score and
the CReLU was 0.6%.

3.4 Results on CIFAR 100

There are 100 classes with 600 images with 32 × 32
pixels for each image per class in the CIFAR-100
dataset. Therefore, the number of training data per
class was only 10% for CIFAR10. As in the case of
CIFAR 10, we split the dataset into 50,000 training
images and 10,000 test images and used accuracy on
the test dataset for this experiment.

Table 3 shows the results for the CIFAR 100. In
this case, the best score was achieved by the
ProbBelAct with a fixed scaling parameter. When
using the ProbBelAct with a fixed parameter, we
achieved performance improvements of 3.6% and
1.6% compared to ReLU and CReLU, respectively.

Table 3: Results on CIFAR 100 (average of three trials).

Activation Function Accuracy
ReLU 0.513

sigmoid 0.010
Tanh 0.508
SeLU 0.517
Swish 0.520

CReLU 0.534
ProbAct (fixed) 0.531

ProbAct (single trainable) 0.534
ProbAct (element wise trainable) 0.535

BelAct (fixed) 0.541
BelAct (single trainable) 0.539

BelAct (element-wise trainable) 0.536
ProbBelAct (fixed) 0.549

ProbBelAct (single trainable) 0.535
ProbBelAct (element-wise trainable) 0.538

3.5 Results on Reduced CIFAR 10

In Sections 3.2.2 and 3.2.3, the performance of
BelAct and ProbBelAct showed high performance on
CIFAR 10 and CIFAR 100. Motivated by the
augmentation property of ProbAct, we further
verified the performance when the training dataset
was reduced. Here, the ratio of training data and test
data is swapped. We split the dataset into 10,000
training images and 60,000 test images. The results of
the reduced CIFAR 10 are shown in Table 4.

Table 4: Results on reduced CIFAR 10 (average of three
trials).

Activation Function Accuracy
ReLU 0.683

CReLU 0.708
ProbAct (fixed) 0.706

ProbAct (single trainable) 0.711
ProbAct (element-wise trainable) 0.713

BelAct (fixed) 0.711
BelAct (single trainable) 0.704

BelAct (element-wise trainable) 0.714
ProbBelAct (fixed) 0.708

ProbBelAct (single trainable) 0.706
ProbBelAct (element-wise trainable) 0.709

The best score was achieved by the BelAct with
element-wise trainable scaling parameters. There

An Activation Function with Probabilistic Beltrami Coefficient for Deep Learning

617

were 3.1% and 0.6% improvements over the case of
ReLU and CReLU, respectively.

Table 5: Results on reduced CIFAR 100 (average of three
trials).

Activation Function Accuracy
ReLU 0.277

CReLU 0.285
ProbAct (fixed) 0.290
ProbAct (single

trainable)
0.289

ProbAct (element-wise
trainable)

0.289

BelAct (fixed) 0.285
BelAct (single trainable) 0.284

BelAct (element wise
trainable)

0.281

ProbBelAct (fixed) 0.287
ProbBelAct (single

trainable)
0.292

ProbBelAct (element-
wise trainable)

0.278

3.6 Results on Reduced CIFAR 100

A similar experiment as described in Section 3.5 was
also performed for CIFAR 100. The CIFAR 100
dataset was split into 10,000 training images and
60,000 test images. Table 5 shows the results for the
reduced CIFAR 100. When using the ProbBelAct
with a single trainable parameter, we achieved the
best performance in this case. The scores increased by
1.5% and 0.7% compared to ReLU and CReLU,
respectively.

4 DISCUSSION

In Section 3.3 and 3.4, it is observed that the
improved score on CIFAR 100 is larger than that of
CIFAR 10. It has been proposed that ProbAct can be
considered an augmentation operation (Shridhar et
al., 2019). BelAct is also viewed as an augmentation
technique; however, the operation is essentially
different from that of ProbAct (see Section 2).
ProbBelAct achieved the best score in the cases of
CIFAR 100 (original case and reduced case), and it
should be noted that the size of training data per class
of CIFAR 100 is ten per cent of the case of CIFAR
10. It could be suggested that ProbBelAct further
extends the diversity of representation space
compared to the ProbAct.

There are other methods for training neural
networks which use random distributions. One well-
known method is the dropout layer, which generalises

by vanishing the units at random during training and
can be interpreted as a model ensemble method.
Moreover, several studies on the effects of adding
noise to weights, inputs, and gradients have been
conducted. Conversely, the BelAct and ProbBelAct
follow the concept proposed by Bengio et al. (2013),
like ProbAct: stochastic neurones with sparse
representations allow internal regularisation.

5 CONCLUSIONS

We proposed a novel activation function that has a
probabilistic Beltrami coefficient, called BelAct.
Adding the operation of ProbAct, ProbBelAct was
also presented. The proposed activation function
shows better performance compared with the baseline
models on both CIFAR 10 and CIFAR 100 datasets.

In particular, ProbBelAct achieved the best score
on the CIFAR 100 dataset. It could be suggested that
ProbBelAct brings a richer representation of features
compared with ProbAct and BelAct on small datasets.
In future, we intend to apply our method to smaller
image classification tasks. Furthermore, we will
verify the effectiveness of BelAct and ProbBelAct in
natural language processing tasks.

ACKNOWLEDGEMENTS

We would like to thank the reviewers for their time
spent reviewing our manuscript. This work was
supported by JSPS KAKENHI (Grant Number
20K23330).

REFERENCES

Ahlfors, L.V. (2006). Lectures on quasiconformal
mappings: second edition, University Lecture Series,
Vol. 38, American Mathematical Society, Providence.

Arjovsky, M., Shah, A., Bengio, Y. (2016). Unitary
evolution recurrent neural networks. arXiv preprint
arXiv:1511.06464.

Barrachina, J. A. (2019). Complex-valued neural networks
(CVNN), Available: https://github.com/NEGU93/cvnn.

Bengio, Y., Léonard, N., Courville, A. (2013). Estimating
or propagating gradients stochastic neurons for
conditional computation. arXiv preprint
arXiv:1308.3432.

Clevert, D.-A., Unterthiner, T., Hochreiter, S. (2015). Fast
and accurate deep network learning by exponential
linear units (elus). arXiv preprint arXiv:1511.07289.

Guberman, N. (2016). On complex valued convolutional
neural networks. arXiv preprint arXiv:1602.09046.

ICAART 2022 - 14th International Conference on Agents and Artificial Intelligence

618

He, K., et al. (2015). Delving deep into rectifiers:
Surpassing human-level performance on imagenet
classification. In Proceedings of the 2015 IEEE
International Conference on Computer Vision.

Hirose, A., Yoshida, S. (2012). Generalization
characteristics of complex-valued feedforward neural
networks in relation to signal coherence. IEEE
Transactions on Neural Networks and Learning
Systems 23.4, 541-551.

Karlik, B., Vehbi Olgac, A. (2011). Performance analysis
of various activation functions in generalized MLP
architectures of neural networks. International Journal
of Artificial Intelligence and Expert Systems 1.4, 111-
122.

Klambauer, G., et al. (2017). Self-normalizing neural
networks. In Proceedings of the 31st International
Conference on Neural Information Processing Systems.

Krizhevsky, A., Nair, V., Hinton, G. Cifar-10 (Canadian
Institute for Advanced Research), Available:
http://www.cs.toronto.edu/~kriz/cifar.html

Lewicki, M.S. (1998). A review of methods for spike
sorting: the detection and classification of neural action
potentials. Network: Computation in Neural Systems
9.4, R53.

Misra, D. (2019). Mish: A self regularized non-monotonic
neural activation function. arXiv preprint
arXiv:1908.08681.

Nair, V., Hinton, G.E. (2010). Rectified linear units
improve restricted Boltzmann machines. In
Proceedings of the International Conference on
Machine Learning 2010, 807–814.

Ramachandran, P., Zoph, B., Le, Q.V. (2017). Searching
for activation functions. arXiv preprint
arXiv:1710.05941.

Schmidhuber, J. (2015). Deep learning in neural networks:
An overview. Neural networks 61, 85-117.

Shridhar, K., et al. (2019). ProbAct: A probabilistic
activation function for deep neural networks. arXiv
preprint arXiv:1905.10761.

Simonyan, K., Zisserman, A. (2014). Very deep
convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556.

Trabelsi, C., et al. (2017). Deep complex networks. arXiv
preprint arXiv:1705.09792.

Xu, B., et al. (2015). Empirical evaluation of rectified
activations in convolutional network. arXiv preprint
arXiv:1505.00853.

APPENDIX

Here, we show the learning curves of ReLU and the
activation function that attained the highest score on
CIFAR 10, CIFAR 100, reduced CIFAR 10, and
reduced CIFAR 100.

Figure 3: Learning curve of ReLU on CIFAR 10.

Figure 4: Learning curve of the activation function that
attained the highest score on CIFAR 10 (BelAct with a
single trainable parameter).

Figure 5: Learning curve of ReLU on CIFAR 100.

An Activation Function with Probabilistic Beltrami Coefficient for Deep Learning

619

Figure 6: Learning curve of the activation function that
attained the highest score on CIFAR 100 (ProbBelAct with
fixed parameter).

Figure 7: Learning curve of ReLU on reduced CIFAR 10.

Figure 8: Learning curve of the activation function that
attained the highest score on reduced CIFAR 10 (BelAct
with an element-wise trainable parameter).

Figure 9: Learning curve of ReLU on reduced CIFAR 100.

Figure 10: Learning curve of the activation function that
attained the highest score on reduced CIFAR 100
(ProbBelAct with a single trainable parameter).

ICAART 2022 - 14th International Conference on Agents and Artificial Intelligence

620

