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Abstract: We propose an activation function that has a probabilistic Beltrami coefficient for deep neural networks. 
Activation functions play a crucial role in the performance and training dynamics of deep learning models. In 
recent years, it has been suggested that the performance of real-valued neural networks can be improved by 
adding a stochastic perturbation term to the activation function. Meanwhile, numerous studies have been 
conducted on activation functions of complex-valued neural networks. The proposed approach 
probabilistically deforms the Beltrami coefficient of complex-valued activation functions. The Beltrami 
coefficient represents the distortion by mapping at each point. In previous research, when dealing with 
complex numbers, adding a perturbation term meant applying probabilistic parallel translation from a 
geometric viewpoint. By contrast, our approach introduces a stochastic perturbation for rotation and scaling. 
Our experimental results show that the proposed activation function improves the performance of image 
classification tasks, implying that the suggested activation function produces effective representations during 
training. 

1 INTRODUCTION 

We propose an activation function for deep complex-
valued neural networks that have probabilistic 
Beltrami coefficients. In this section, we summarise 
the background, related works, and contributions of 
this study. 

1.1 Background and Related Works 

Activation functions introduce nonlinearity to neural 
networks, which helps in obtaining a complex 
representation of data; the choice of these functions 
significantly affects the performance of deep learning 
models (Karlik and Olgac, 2011). Therefore, 
activation functions have been widely researched. 

1.1.1 Deterministic Real-valued Activation 
Functions  

In the early days, sigmoid and tanh (hyperbolic 
tangent) activation functions were widely used 
(Schmidhuber, 2015). However, these became 
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ineffective in deep neural networks because of the 
vanishing gradient problem. The rectified linear unit 
(ReLU) (Nair and Hinton, 2010), a piecewise linear 
activation function, showed better generalisation 
performance in deep learning compared with 
sigmoid and tanh. However, there are some well-
known weaknesses of ReLU. One of them is called 
the dying ReLU, which is related to a gradient 
information loss caused by the collapse of the 
negative inputs to zero. Therefore, numerous 
activation functions have been developed to 
improve performance and address the shortcomings 
of ReLU, such as leaky ReLU (Xu et al. 2015), 
parametric ReLU (PreLU) (He et al., 2015), 
exponential linear unit (ELU) (Clevert, 2015), 
scaled exponential linear unit (SELU) (Klambauer 
et al., 2017), sigmoid-weighted linear unit (Swish) 
(Ramachandran et al., 2017), and Mish (Misra, 
2019). These are deterministic functions with fixed 
input–output relationships. 
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1.1.2 Probabilistic Real-valued Activation 
Functions 

Recently, Shridhar et al. (2019) proposed ProbAct, a 
probabilistic activation function, which is inspired by 
the stochastic behaviour of biological neurones. 
Uncertain biomechanical effects may cause noise in 
neuronal spikes (Lewicki, 1998). Shridhar et al. 
(2019) aimed to emulate a similar behaviour in the 
information flow to the neurones by adding stochastic 
perturbation terms with trainable or nontrainable 
weights. It was shown that ProbAct improves the 
performance of various visual and textual 
classification tasks. In particular, they confirmed that 
the augmentation-like operation in ProbAct was 
effective even when there are a few data points. 

1.1.3 Deterministic Complex-valued 
Activation Functions  

In parallel with the studies on real-valued cases, 
research on complex-valued activation functions for 
deep complex-valued neural networks has been 
conducted. Liouville’s theorem states that the only 
complex-analytic and bounded function is a constant 
function. The construction of the analytic activation 
function is a challenging task in the complex case. 
However, Hirose and Yoshida (2012) showed that 
limiting the regularity of the activation functions to 
only analytic functions is unnecessarily restrictive. 
Recently, numerous complex activations inspired by 
ReLU have been proposed, for example, zReLU 
(Guberman, 2016), modReLU (Arjovsky et al., 
2016), and CReLU (Xu et al., 2015). CReLU is a 
complex function that applies separate ReLUs on 
both the real and imaginary parts of a neuron; it 
outperforms both modReLU and zReLU in the 
experiments in CIFAR 10 and CIFAR 100 
(Krizhevsky et al., 2009). 

1.2 Contributions of This Study 

We propose a complex-valued activation function, 
BelAct, which has probabilistic Beltrami coefficients. 
Our experiments show that the proposed activation 
function shows better accuracy on benchmark 
datasets compared with baseline models. In 
particular, the combination of ProbAct and BelAct 
increases performance when there are a few data 
points, and hence, BelAct may produce essentially 
different useful representations of features compared 
with ProbAct. The remainder of this paper is 
organised as follows.  

In the next section, we propose BelAct and 
consider the geometric meaning of this operation 
from the viewpoint of complex functions. The 
evaluation of the proposed activation function for 
image classification tasks is presented in Section 3. In 
the last section, we conclude the paper and propose 
directions for future work. 

2 ACTIVATION FUNCTION 
WITH PROBABILISTIC 
BELTRAMI COEFFICIENT 

In this section, we define BelAct and ProbBelAct 
using probabilistic quasiconformal linear mappings. 

2.1 Quasiconformal Mapping and 
Beltrami Coefficient 

Let 𝐷 and 𝐷′ be the domains in the complex plane. A 
sense-preserving homeomorphism 𝑓: 𝐷 → 𝐷′is called 
a quasiconformal mapping if 𝑓 satisfies the following 
two properties: 
 For any closed rectangle 𝑅 in 𝐷, f is absolutely 

continuous on almost every horizontal and 
vertical line in  𝑅. 

 There exists a real number 𝐾 > 1 , and the 
dilatation condition  |𝑓௭̅(𝑧)| ≤ 𝐾 − 1𝐾 + 1 𝑓௭(𝑧)  (1)

holds almost everywhere in D. 
Quasiconformal mappings play important roles in 

various fields, such as complex dynamical systems 
and the Teichmüller theory in the fields of 
mathematics (see Ahlfors, 2006 for details) and 
image processing in the medical field. 

The complex function 𝜇(𝑧): = 𝑓௭̅(𝑧)𝑓௭(𝑧)  (2)

where 𝑓௭: = (𝑓௫ − 𝑖𝑓௬)/2 (3)

and 𝑓௭̅: = (𝑓௫ + 𝑖𝑓௬)/2, (4)

is defined on almost everywhere for a quasiconformal 
mapping 𝑓, and is called the Beltrami coefficient. The 
Beltrami coefficient represents the distortion of 
mapping at each point (see function ℎଶ in Section 2.4 
and Figure 1 for an example).  
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2.2 Definition of BelAct 

We define an activation function called BelAct as 𝑓(𝑧) ≔ 𝑔(𝑧 + 𝑠ଵ𝜇𝑧̅ ), (5)

where 𝑧 is the real or complex number input and 𝑔 is 
a fixed activation function (for example, 𝑔(𝑧) =max(0, 𝑥) + 𝑖 max(0, 𝑦),  where 𝑧 = 𝑥 + 𝑖𝑦  is 
CReLU). The perturbation parameter 𝑠ଵ is a fixed or 
trainable value, which specifies the range of 
stochastic perturbation, and 𝜇  is a random value 
sampled from the real and imaginary parts from a 
normal distribution 𝑁(0; 1) . We call 𝑔  the base 
function of BelAct.  

2.3 Definition of ProbBelAct 

The ProbAct (Shridhar et al., 2019) is defined as 𝑓(𝑧) ≔ 𝑔(𝑧) + 𝑠ଶ𝑒, (6)

where 𝑠ଶ is a fixed or trainable value that specifies the 
range of stochastic perturbation, and 𝑒  is a random 
value. Considering the complex case, adding a 
perturbation term like ProbAct geometrically means 
probabilistic parallel translation. By contrast, BelAct 
adds probabilistic rotation and scaling to the input via 
probabilistic quasiconformal linear mappings. The 
combination of ProbAct and BelAct (we call it 
ProbBelAct) can be considered as 𝑓(𝑧) ≔ 𝑔(𝑧 + 𝑠ଵ𝜇𝑧̅) + 𝑠ଶ𝑒. (7)

2.4 Geometric Meaning of ProbAct and 
BelAct 

We consider the mapping ℎଵ(𝑧) ≔ 𝑧 + 𝑐  (8)

and ℎଶ(𝑧) ≔ 𝑧 + 𝜇𝑧̅  (9)

where 𝑐 and 𝜇 are complex constants. When 𝑐 = 𝑢 +𝑖𝑣 with 𝑢 and 𝑣 as real numbers and 𝑖 is an imaginary 
number, ℎଵ moves the input 𝑢 in the  𝑥-axis direction 
and 𝑣 in the 𝑦-axis direction. Thus, ProbAct can be 
considered as adding a parallel translation to the 
output of 𝑔. ℎଶ rotates and scales the input depending on 𝜇, as 
shown in Figure 1, on the whole complex plane. 
Therefore, BelAct adds rotation and scaling to the 
input. In general, the Beltrami coefficients of a 
quasiconformal mapping 𝑓  are defined as equation 
(2) in Section 2.1. 𝜇(𝑧) describes how 𝑓 deforms the 
neighbourhoods of each point, compared with 

conformal mapping; recall that conformal mapping is 
an injective and analytic function that preserves the 
local geometry. ℎଵ can be considered as a conformal 
linear mapping, and its Beltrami coefficient is zero 
everywhere. ℎଶ  is a quasiconformal linear mapping 
with a constant Beltrami coefficient 𝜇. An overview 
of the ProbAct (right), BelAct (left), and ProbBelAct 
is presented in Figure 2. 

 
Figure 1: Distortion by a quasiconformal linear mapping ℎଶ 
that has Beltrami coefficient 𝜇. 

 
Figure 2: Overview of ProbAct, BelAct, and ProbBelAct on 
the complex plane. 

2.5 Setting the Base Function and the 
Parameter for Stochastic 
Perturbations 

We chose CReLU as the base function for BelAct and 
ProbBelAct in our experiments. Regarding the 
parameter for stochastic perturbation 𝑠ଵ  of the 
Beltrami coefficient 𝜇  for BelAct, we consider two 
cases like setting 𝑠ଶ of ProbAct (Shridhar et al. 2019): 
fixed and trainable. 𝜇  of BelAct represents how far 
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from the conformal mapping the image is: if |𝜇|  is 
large, the image is deformed strongly by ℎଶ . In 
particular, if |𝜇| = 1, the image is degenerated to a 
line when ℎଶ is applied. Hence, it is natural that we 
restrict |𝑠ଵ𝜇| < 1 . This setting means that ℎଶ 
preserves the orientation and is an injective mapping. 

2.5.1 Fixed Case 

For the fixed case, 𝑠ଵ is a constant hyperparameter. 
This can be viewed as a repeated perturbation of the 
scaled Gaussian noise to the Beltrami coefficients. 
Herein, we set 𝑠ଵ = 𝑠ଶ = 0.05  by considering that 
the data are normalised by the standardisation in our 
experiments. 

2.5.2 Trainable Case 

For the trainable case, we treat 𝑠ଵ  as a trainable 
parameter, which reduces the requirement to 
determine 𝑠ଵ as a hyperparameter. Here, we consider 
two settings for trainable cases. One of the settings is 
a shared trainable 𝑠ଵ across the network. In this case, 
a single extra parameter used for all the BelAct layers 
was introduced. In the other case, a trainable 
parameter is introduced for each input element.  In all 
cases, the complex network is optimised using a 
gradient-based algorithm such as an adaptive moment 
estimation (Adam). 

3 EXPERIMENTS 

In this section, we present the empirical evaluations 
of the BelAct and ProbAct in image classification 
tasks.   

3.1 Dataset 

We use the CIFAR 10 and CIFAR 100 datasets. All 
inputs were normalised using standardisation. 
Furthermore, we also verify the performance of these 
activation functions when the number of training data 
is reduced because the ProbAct as reported by 
Shridhar et al. (2019) is effective even when the 
number of data points is less. 

3.2 Experimental Settings 

To evaluate the performance of the proposed 
activation function, we compared it to the following 
activation functions: ReLU, Sigmoid, Tanh, SELU, 
and Swish for the real-valued neural network, and 
CReLU, ProbAct with CReLU for the complex-

valued neural network. The selected deterministic 
activation functions are widely used. These are 
suitable as baselines. 

Table 1: List of hyperparameters. 

Hyperparameter Value 
Kernel size for 

convolution
3 

Padding Same 
Kernel size for max-

pooling
2 

Max-pooling stride 2 
Optimizer Adam 
Batch size 128 

Learning rate 0.0001  
(0.00001 after 50 epochs)

Number of epochs 100 
Fixed s1, s2 0.05 

Single trainable 
initialiser

0 

Element-wise trainable 
initialiser

Xavier initialisation 

3.2.1 Architecture of the Neural Network 

We chose a simple architecture, specific hyper-
parameters, and training settings to compare the 
performance of the activation functions. We utilised 
a VGG16 neural network architecture for image 
classification tasks (Simonyan and Zisserman, 2014). 
The architecture used in the experiments is defined as 
64, 64, M, 128, 128, M, 256, 256, 256, M, 512, 512, 
512, M, 512, 512, 512, M, FC, and FC, where 
numbers represent the filters of a two-dimensional 
real or complex convolution layer, which are 
followed by an activation function. M represents the 
max-pooling layer, and FC represents the fully 
connected layer with 4,096 units. After the last layer 
of the real-valued case, the softmax activation is used 
with 10 and 100 units for CIFAR 10 and CIFAR 100, 
respectively. The softmax real with the average 
function in (Barrachina, 2019) was used for the 
complex-valued case. The detailed settings are 
presented in Table 1. Regularisation tricks, pre-
training, dropout, and batch normalisation are 
avoided in this experiment for the comparison of 
activation functions. 

3.2.2 Implementation 

For the implementation, we used Python 3.7.9, with 
Tensorflow 2.5.0. Further, the Complex-Valued 
Neural Networks (CVNN) (Barrachina 2019) library 
is also used for the complex-valued neural networks. 
BelAct and ProbBelAct can simply be implemented 
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as a function (fixed case) or a custom layer (trainable 
cases) of Keras in Tensorflow. 

3.3 Results on CIFAR 10 

The CIFAR-10 dataset consists of 60,000 images 
with 32 × 32 pixels for each image. It has 10 classes 
with 6,000 images per class and is split into 50,000 
training images and 10,000 test images. The training 
data are augmented by the image generator of Keras 
during training. We used the accuracy on the test 
dataset for the comparison. All experiments were 
performed three times, and the reported values are the 
average of the three. The results for the CIFAR 10 are 
presented in Table 2. The average score in three 
independent trials was used as the final evaluation 
metric. 

Table 2: Results on CIFAR 10 (average of three trials). 

Activation Function Accuracy
ReLU 0.845

sigmoid 0.100
Tanh 0.833
SeLU 0.857
Swish 0.859

CReLU 0.864
ProbAct (fixed) 0.866

ProbAct (single trainable) 0.866
ProbAct (element wise trainable) 0.867

BelAct (fixed) 0.870
BelAct (single trainable) 0.870

BelAct (element wise trainable) 0.868
ProbBelAct (fixed) 0.866

ProbBelAct (single trainable) 0.869
ProbBelAct (element-wise 

trainable) 
0.868 

BelAct with the fixed scalar and single trainable 
cases achieved the best score. In this experiment, the 
score improved by 2.5% compared to the case of 
ReLU. In addition, the other cases of BelAct and 
ProbBelAct improve the score by 2.1%–2.4%. 
However, the difference between the best score and 
the CReLU was 0.6%.  

3.4 Results on CIFAR 100 

There are 100 classes with 600 images with 32 × 32 
pixels for each image per class in the CIFAR-100 
dataset. Therefore, the number of training data per 
class was only 10% for CIFAR10. As in the case of 
CIFAR 10, we split the dataset into 50,000 training 
images and 10,000 test images and used accuracy on 
the test dataset for this experiment. 

Table 3 shows the results for the CIFAR 100. In 
this case, the best score was achieved by the 
ProbBelAct with a fixed scaling parameter. When 
using the ProbBelAct with a fixed parameter, we 
achieved performance improvements of 3.6% and 
1.6% compared to ReLU and CReLU, respectively. 

Table 3: Results on CIFAR 100 (average of three trials). 

Activation Function Accuracy
ReLU 0.513

sigmoid 0.010
Tanh 0.508
SeLU 0.517
Swish 0.520

CReLU 0.534
ProbAct (fixed) 0.531

ProbAct (single trainable) 0.534
ProbAct (element wise trainable) 0.535

BelAct (fixed) 0.541
BelAct (single trainable) 0.539

BelAct (element-wise trainable) 0.536
ProbBelAct (fixed) 0.549

ProbBelAct (single trainable) 0.535
ProbBelAct (element-wise trainable) 0.538

3.5 Results on Reduced CIFAR 10 

In Sections 3.2.2 and 3.2.3, the performance of 
BelAct and ProbBelAct showed high performance on 
CIFAR 10 and CIFAR 100. Motivated by the 
augmentation property of ProbAct, we further 
verified the performance when the training dataset 
was reduced. Here, the ratio of training data and test 
data is swapped. We split the dataset into 10,000 
training images and 60,000 test images. The results of 
the reduced CIFAR 10 are shown in Table 4. 

Table 4: Results on reduced CIFAR 10 (average of three 
trials). 

Activation Function Accuracy
ReLU 0.683

CReLU 0.708
ProbAct (fixed) 0.706

ProbAct (single trainable) 0.711
ProbAct (element-wise trainable) 0.713

BelAct (fixed) 0.711
BelAct (single trainable) 0.704

BelAct (element-wise trainable) 0.714
ProbBelAct (fixed) 0.708

ProbBelAct (single trainable) 0.706
ProbBelAct (element-wise trainable) 0.709

The best score was achieved by the BelAct with 
element-wise trainable scaling parameters. There 
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were 3.1% and 0.6% improvements over the case of 
ReLU and CReLU, respectively. 

Table 5: Results on reduced CIFAR 100 (average of three 
trials). 

Activation Function Accuracy
ReLU 0.277 

CReLU 0.285 
ProbAct (fixed) 0.290 
ProbAct (single 

trainable) 
0.289 

ProbAct (element-wise 
trainable) 

0.289 

BelAct (fixed) 0.285 
BelAct (single trainable) 0.284 

BelAct (element wise 
trainable) 

0.281 

ProbBelAct (fixed) 0.287 
ProbBelAct (single 

trainable) 
0.292 

ProbBelAct (element-
wise trainable) 

0.278 

3.6 Results on Reduced CIFAR 100 

A similar experiment as described in Section 3.5 was 
also performed for CIFAR 100. The CIFAR 100 
dataset was split into 10,000 training images and 
60,000 test images. Table 5 shows the results for the 
reduced CIFAR 100. When using the ProbBelAct 
with a single trainable parameter, we achieved the 
best performance in this case. The scores increased by 
1.5% and 0.7% compared to ReLU and CReLU, 
respectively. 

4 DISCUSSION 

In Section 3.3 and 3.4, it is observed that the 
improved score on CIFAR 100 is larger than that of 
CIFAR 10. It has been proposed that ProbAct can be 
considered an augmentation operation (Shridhar et 
al., 2019). BelAct is also viewed as an augmentation 
technique; however, the operation is essentially 
different from that of ProbAct (see Section 2). 
ProbBelAct achieved the best score in the cases of 
CIFAR 100 (original case and reduced case), and it 
should be noted that the size of training data per class 
of CIFAR 100 is ten per cent of the case of CIFAR 
10. It could be suggested that ProbBelAct further 
extends the diversity of representation space 
compared to the ProbAct.  

There are other methods for training neural 
networks which use random distributions. One well-
known method is the dropout layer, which generalises 

by vanishing the units at random during training and 
can be interpreted as a model ensemble method. 
Moreover, several studies on the effects of adding 
noise to weights, inputs, and gradients have been 
conducted. Conversely, the BelAct and ProbBelAct 
follow the concept proposed by Bengio et al. (2013), 
like ProbAct: stochastic neurones with sparse 
representations allow internal regularisation. 

5 CONCLUSIONS 

We proposed a novel activation function that has a 
probabilistic Beltrami coefficient, called BelAct. 
Adding the operation of ProbAct, ProbBelAct was 
also presented. The proposed activation function 
shows better performance compared with the baseline 
models on both CIFAR 10 and CIFAR 100 datasets.  

In particular, ProbBelAct achieved the best score 
on the CIFAR 100 dataset. It could be suggested that 
ProbBelAct brings a richer representation of features 
compared with ProbAct and BelAct on small datasets. 
In future, we intend to apply our method to smaller 
image classification tasks. Furthermore, we will 
verify the effectiveness of BelAct and ProbBelAct in 
natural language processing tasks. 
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APPENDIX 

Here, we show the learning curves of ReLU and the 
activation function that attained the highest score on 
CIFAR 10, CIFAR 100, reduced CIFAR 10, and 
reduced CIFAR 100. 

 
Figure 3: Learning curve of ReLU on CIFAR 10. 

 
Figure 4: Learning curve of the activation function that 
attained the highest score on CIFAR 10 (BelAct with a 
single trainable parameter). 

 
Figure 5: Learning curve of ReLU on CIFAR 100. 
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Figure 6: Learning curve of the activation function that 
attained the highest score on CIFAR 100 (ProbBelAct with 
fixed parameter). 

 
Figure 7: Learning curve of ReLU on reduced CIFAR 10. 

 
Figure 8: Learning curve of the activation function that 
attained the highest score on reduced CIFAR 10 (BelAct 
with an element-wise trainable parameter). 

 
Figure 9: Learning curve of ReLU on reduced CIFAR 100. 

 
Figure 10: Learning curve of the activation function that 
attained the highest score on reduced CIFAR 100 
(ProbBelAct with a single trainable parameter). 
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