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Abstract: Video frame interpolation is the task of creating an interframe between two adjacent frames along the time
axis. So, instead of simply averaging two adjacent frames to create an intermediate image, this operation
should maintain semantic continuity with the adjacent frames. Most conventional methods use optical flow,
and various tools such as occlusion handling and object smoothing are indispensable. Since the use of these
various tools leads to complex problems, we tried to tackle the video interframe generation problem without
using problematic optical flow. To enable this, we have tried to use a deep neural network with an invertible
structure, and developed an U-Net based Generative Flow which is a modified normalizing flow. In addition,
we propose a learning method with a new consistency loss in the latent space to maintain semantic temporal
consistency between frames. The resolution of the generated image is guaranteed to be identical to that of
the original images by using an invertible network. Furthermore, as it is not a random image like the ones by
generative models, our network guarantees stable outputs without flicker. Through experiments, we confirmed
the feasibility of the proposed algorithm and would like to suggest the U-Net based Generative Flow as a new
possibility for baseline in video frame interpolation. This paper is meaningful in that it is the new attempt to
use invertible networks instead of optical flows for video interpolation.

1 INTRODUCTION

In the introduction, we want to explain the neces-
sity of generating video interframes, existing methods
of using deep neural networks, general optical flow
problems, and the basics of invertible networks.

1.1 The Necessity of Generating Video
Interframes

Interframe generation, which creates an intermedi-
ate frame using the information of two consecutive
frames, is one of the techniques frequently used in
TV systems. Most input video sources have a refresh
rate of 24, 30, and 60 Hz per second, but TV can often
output frames at a refresh rate of 120 Hz per second.
To achieve this, the TV interpolates over the tempo-
ral phase to form an intermediate image, producing a
high frame-rate video of 120 Hz. Because the sim-
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ple synthesis of the front and rear frames cannot pro-
duce smooth video and the accompanying judder is
inevitable, the interframe generation algorithms gen-
erally move the front or rear frames in the motion vec-
tor direction using optical flow. Optical flow (Horn
and Schunck, 1981; Barron et al., 1994) is the in-
formation indicating in which direction each pixel is
moving in a frame by using the correlation between
the front and rear frames. Traditionally, a man-made
program was used to calculate the optical flow and
algorithms use it to create an intermediate image.

1.2 Video Interpolation Method using
DNN

In the DNN field, several attempts have been made to
generate interframes since around 2017. One attempt
was interpolating the front and rear frames by training
a network to generate a supervised optical flow like
Flow-net (Dosovitskiy et al., 2015a; Ilg et al., 2017a)
and PWC-Net (Sun et al., 2018). The other attempt
was Super SloMo (Jiang et al., 2018) which can cre-
ate intermediate frames by learning the unsupervised
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(a) Limitation of optical flow (b) Limitation of pixel shuffle

Figure 1: Limitations of previous works. (a) shows a part
of FlyingThings3D (Mayer et al., 2016) generated by warp-
ing the previous frame using the ground truth optical flow.
The object appears to be broken due to occlusion issues
despite the ground truth being applied. (b) shows the in-
terim results of learning with GLOW (Kingma and Dhari-
wal, 2018) instead of UGLOW. Pixel shuffle and 1x1 con-
volution cause side effects like the Bayer pattern.

optical flow using high-speed framed video shot with
a high-speed camera.

In the former case, since learning is possible only
with supervised information on optical flow, there is
an inconvenience of making motion information for
each video in a frame unit, which causes difficulties
in generating training data. This is a costly job and the
models have to struggle with limited training data.

In the latter case, only the front and rear frames
are used as inputs, and the optical flow is predicted by
itself without additional supervised optical flow infor-
mation. This method does not require any additional
information about the optical flow in the training data,
so the training can be performed with any video input.
In the paper of Super SloMo, (Jiang et al., 2018) the
network was trained mainly using slow-motion videos
with a frame rate above 240Hz, which has several ad-
vantages. First of all, high frame rated videos carry
much more frames than normal videos in a fixed time.
It means that videos move smoother and carry more
contextual information. Taking the advantage of high
frame-rated videos, the model can boost performance
in predicting the context between the frames. Also,
the video is relatively clearly divided into foreground
and background, and the majority of movements are
centered on horizontal and vertical moves rather than
complex motions.

1.3 Limitations of using Optical Flow

As described above, most interframe algorithms use
optical flow to move the front and rear frames to cre-
ate intermediate frames. However, the use of opti-
cal flow cannot produce perfect results even when
the ground truth is applied due to various problems.

There are also many methods to use deep learning
on video interframe generation (Niklaus et al., 2017;
Meyer et al., 2018; Peleg et al., 2019) but they cannot
be free from optical flow problems. The problems of
optical flow are as follows. The first is that it cannot
accurately handle the boundaries of each object, and
the second is that it is difficult to handle the occluded
area.

The former boundary problem arises from the fact
that when estimating the motion vector of an object,
the boundary between the object and the background
cannot be accurately known. In particular, if the
boundary is predicted to be smaller than the object,
it will be cut, causing serious problems. For this rea-
son, the motion vector of an object is generally set to
erode the background more widely. However, if the
background is eroded too much, it can cause side ef-
fects such as halo. Also, when calculating the optical
flow of the entire image, in some cases, not all pixels
are filled and there may be empty holes. The question
arises as to how to interpolate these holes. In this case,
when a simple averaging is used, a motion vector that
does not exist in the actual video is generated, and
when the surrounding value is expanded, the bound-
ary becomes more visible. Another complex case is
when there are multiple motion vectors within an ob-
ject. A common example is when an object rotates. In
this kind of circumstance, the boundary of the motion
is unclear and the object appears to be broken.

The latter occlusion is the processing problem of
overlapping areas. This is a more difficult problem
than the former one. It is because there is no cor-
relation between the foreground and the background
when the generator tracks movements. The first pro-
cess of treating occluded areas is to find out which
one is ahead. Objects coming forward are taken from
the next frame and the background should be deleted.
However, it is not easy to predict what will come fore-
head when objects overlap each other. Even if the
prediction is made, it is very difficult to create an in-
termediate image with only limited (temporal) direc-
tional data. The occlusion handling that covers the
optical flow problem is very difficult but important,
and MaskFlownet (Zhao et al., 2020) which covers
the problems of Flownet (Dosovitskiy et al., 2015b;
Ilg et al., 2017b) drew many attentions last year.

Apart from several difficulties mentioned above,
there are even more issues such as not being able to
find motion in repetitive patterns or missing small ob-
jects. These drawbacks make it impossible for optical
flow to generate a clear answer. Looking at the image
generated by applying the ground truth of the optical
flow to the previous frame in Fig. 1(a), it is easy to
understand why we do not want to use it.
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In this paper, we propose the U-Net based Genera-
tive Flow that generates clean optical results. Without
using optical flow, U-Net based Generative Flow is
expressive enough to resemble the operations of opti-
cal flow if necessary and even outperforms the previ-
ous approaches.

1.4 Invertible Network

To create an intermediate image without using an op-
tical flow, we considered the use of an invertible net-
work. In general DNN, due to the non-linear function
and pooling process, it is impossible to perform re-
verse processing from the latent space to the original
input again. In this case, there is no way to recover
the original input from latent space due to data loss.

There are algorithms such as GLOW (Kingma
and Dhariwal, 2018), MintNet (Song et al., 2019),
BayesFlow (Radev et al., 2020), and i-RevNet (Ja-
cobsen et al., 2018a; Jacobsen et al., 2018b) devel-
oped to prevent data loss in latent space in DNN. This
bypasses half of the input channel and sends it to the
next layer. This is used to generate the same convo-
lution result as the forward path in the inverse path
and restore the original value using this. The idea of
GLOW is that interpolation over a latent space can
produce an intermediate image between two images
that have semantic continuity. Our idea is that inter-
polating between two individual video frames simi-
larly produces an intermediate frame with semantic
continuity.

The invertible network has several advantages.
The first point is that the image quality is not com-
promised and the original restoration is guaranteed so
that the original quality can be maintained even for
videos with sufficiently high input resolution. The
second advantage is that unlike generative models
such as GAN(Goodfellow et al., 2014), a 1:1 func-
tional relationship between an image and a point in a
latent space is established. This ensures the one and
only intermediate image for each latent space without
random occurrence, enabling video processing with-
out flickering.

1.5 Limitations of Existing Invertible
Network

We want to interpolate between frames by applying
an invertible network to a video. For this, some of
the problems of invertible networks had to be solved.
The biggest problem among them is that invertible
networks such as FLOW and i-RevNet increase the
number of channels while reducing the image size
through pixel shuffle. This creates a fatal problem of

generating Bayer patterns during interpolation, which
can be seen in Fig. 1(b). We wanted the inter-pixel
convolution process to look smooth enough for im-
age processing, and for this, we had to remove the
pixel shuffle. However, simply removing the pixel
shuffle does not have a way to increase the number
of channels while maintaining the amount of infor-
mation contained in the input RGB channels, so the
final network output also ends up with three channels.
In this case, generated information is also limited to
three channels unless some measures like downsam-
pling are considered. Another problem is that FLOW
uses 1x1 convolution to propagate information in half
of the channels, but it is difficult to divide the three
channels of RGB in half. Also, since the 1x1 convolu-
tion does not refer to the surrounding pixels, only the
data of the channel combined with the pixel shuffle is
calculated. In image processing, local convolution is
desirable because it determines the type and shape of
an object by referring to surrounding pixels, and the
1x1 convolution is not suitable for this kind of use.
I-RevNet also uses pixel shuffle and its effect seemed
vain. To sort out this issue, we have devised an U-Net
based Generative Flow suitable for such image pro-
cessing.

2 CONTRIBUTION

We introduce a DNN model suitable for generating
video interframes using an invertible convolution net-
work. The proposed network expands the number
of channels without pixel shuffle and performs local
convolution processing. Also, using U-Net, it is pos-
sible to refer to the upper layer’s information in the
form of a pyramid and take the advantage of being
invertible. Also, we propose a new learning method
for video interpolation between frames. Since the net-
work can learn the input image and generate the nec-
essary information itself, the network can be trained
in an unsupervised manner. With the generated infor-
mation, no data other than latent space is needed to
generate the intermediate image through linear inter-
polation.

The contributions of this paper are as follows:

1. The proposed method is the world’s first attempt
to suggest a new approach for video frame inter-
polation using an invertible deep neural network.
Since no optical flow is used in our method, we
can fundamentally avoid the problems that stem
from optical flow.

2. We propose a novel U-Net based Generative Flow
(UGLOW) that is invertible while utilizing lo-
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cal convolution and U-Net structure without pixel
shuffle.

3. Using the proposed UGLOW, we also propose a
training method that transforms continuous video
frames into a linear latent space on the time axis.

3 METHOD

3.1 Concept

In this section, we propose the concept of U-Net
based Generative Flow and its two major methodolo-
gies. The idea of our concept is as follows. When
generating an intermediate frame, the easiest way
would be the linear interpolation using two adjacent
frames as inputs. However, such a method only pro-
duces overlay images that do not help with judder.
To generate a sophisticated intermediate frame, linear
interpolation should be performed on a transformed
space after projecting adjacent frames onto it. Then,
a linear relationship with transformed space is estab-
lished.

However, there are several conditions for such lin-
ear interpolation to perform as expected. First, it
should be possible to restore the original image from
the converted space. Second, the transformed space
should have a linear relationship with the time axis.
To meet those conditions, the model should guarantee
invertible non-linear conversion between the frame
and the converted space.

The first condition got its idea from GLOW
(Kingma and Dhariwal, 2018). As you can see in
Fig. 2, GLOW smooths out interpolations between the
two faces. We can think of it as an interpolation be-
tween two video frames. An invertible network like
GLOW was an ideal candidate for intermediate frame
generation because the latent space has a non-linear
relationship with the input image. On top of that, the
original image can be restored from the latent space.
The second condition can be met if a model can gen-
erate the second frame’s latent space with the interpo-
lation of latent spaces from the first and third frame.

We suggest the two novel methods to meet the
concept and conditions. The first is the U-Net based
Generative Flow (UGLOW), which is specially de-
signed to learn video information in the most advan-
tageous manner. In the latter part, we introduce the
very original sub-modules that make up the network,
how it is made to be invertible, and how the whole net-
work is structured. Details of UGLOW are described
in section 3.2. The second is the loss metric that en-
ables the UGLOW to generate plausible frames with-
out complex algorithms. Here we would like to intro-

duce the idea used to make the latent space linear on
the time axis. The detailed learning method will be
introduced in sections 3.3 and 3.4.

3.2 U-Net based Generative Flow
(UGLOW)

We needed to devise an invertible network that can
grasp the context between the frames to replace op-
tical flow. In some cases, a generator may have to
track a large number of pixels depending on the size
and movement of an object in the frame. If this is the
case, it would be expensive to cover the whole area
with convolution with a large kernel size. To address
this issue, we tried to use an efficient network and U-
Net was a feasible option. On the contracting path of
U-Net, as the network propagates forward, subsam-
pling enables the network to track a wider area with
the same sized kernel. To be exact, each layer’s sub-
sampling enables kernel to refer twice a larger area.
At the same time, skip connection is used to trans-
mit information from the contracting path to the ex-
pansive path without loss, which prevents information
loss due to the size of the bottleneck in the middle of
the U-Net. Even in optical flow algorithms, pyramid
structures with each layer halved in size are often used
to detect large objects or fast motion vectors. There-
fore, the U-Net can be said to be a suitable structure
for an intermediate frame generation task. In addi-
tion, we developed the idea of skip connection and
made the network invertible.

As mentioned in the introduction, the invertible
network uses pixel shuffle and 1x1 convolution which
can aggravate the output. U-Net based Generative
Flow uses 3x3 or 5x5 convolution to refer to local in-
formation and works without pixel shuffle. Every
U-Net consists of 4 down-blocks, 1 mid-block, and
4 up-blocks, each consisting of 2 convolution layers
and Leaky-ReLU. The last output of the U-Net uses
sigmoid as an activation so that it could adjust the im-
age input normalized to 0-1. The number of channels
is preserved by removing the pixel shuffle, so we need
to expand the output channel to increase the informa-
tion. For this reason, it was necessary to make two
types of blocks in which the channels are extended or
maintained according to the number of input and out-
put channels. We propose two sub-blocks that modi-
fied U-Net to an invertible form.

The first is a channel expend block in which the
output has a channel twice as large as the input. This
was designed to increase the number of channels as
it is not enough to generate various information with
only 3-channel input. (a-1) and (a-2) in Fig.3 corre-
spond to this. Since UGLOW is an invertible struc-
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Figure 2: The concept of frame interpolation using UGLOW The proposed UGLOW is a concept that interpolates video
frames in latent space, like invertible networks such as GLOW.

(a-1) Channel Extend Module (Forward)

(a-2) Channel Extend Module (Backward)

(b-1) Channel Maintain Module (Forward)

(b-2) Channel Maintain Module (Backward)

Figure 3: U-Net based Generative Flow Module. These
are invertible module using U-Net. Two types are depend-
ing on whether the channel is amplified or not, each show-
ing how to recover the input from the output.

ture, of course, when reversed, the channel is reduced
by half. Looking at (a-1) in Fig.3, it can be divided
into the first half and the second half. The first half
is to double the channel by attaching the original to
the output of the U-Net like a skip connection, and it
can be reversed by using the skip connected data as
it is. In the second half, the data from the other side
is added via U-Net, so all the inputs are adjusted to a
non-linear transformation. The output created in this
way can be restored by (a-2). Since the output of the
U-Net in the second half has the same value in the
forward and reverse path, the input can be restored by
simple subtraction instead of addition.

The second is a channel maintain block with the
same number of channels as outputs and inputs, as
shown in Fig.3 (b-1) and (b-2). This block was de-
signed to retain the number of channels. By using
both extend block and maintain block, layers can be
stacked deep enough while having enough channels.
Similar to the existing FLOW, this module uses half
of the channel to process the other half and performs
it in the opposite direction again, making it invertible
while maintaining the number of channels. Each U-
Net has a quad down-block, a middle-block, and a
quad up-block inside. As shown in Fig.4, we designed
a deep neural network that has more than 100 convo-
lution layers by stacking 11 invertible modules. We
name it UGLOW, meaning U-Net based Generative
Flow.

3.3 Definition of Loss for Learning

First, prepare a total of 3 consecutive frames from any
video. These frames become training data, and even
with a small number of videos, you can get a large
number of training data with frame sliding. Network
learning proceeds with the simplest ideas. The core
of the proposed learning method is to make sure that
the three consecutive frames, whose center frame is
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Figure 4: U-Net based Generative Flow architecture. This is the overall structure of the UGLOW used in this paper.

Figure 5: Concept of the loss in the latent space. It makes
latent spaces from consecutive frames have a linear relation-
ship.

Figure 6: Concept of the loss in the input space. It makes
reverse generated interframe as original like.

generated from the other two through UGLOW, have
a linear relationship. We suggest that simple linear
blending in the latent space created through this learn-
ing method can represent the intermediate frame well
in the time axis between the two frames.

Specifically, the input data of three consecutive
frames are named I0, I1, I2 and each image is trans-
formed into a latent space via a reversible network.

Figure 7: How to make interframe. This figure shows how
interframe generation works. When a linear relationship be-
tween the latent space and the time axis is established, it is
possible to create a frame at an arbitrary time position with
only alpha blending.

The latent spaces created in this way are named L0,
L1, L2. At this time, the loss is defined to mini-
mize the difference between L1 and Linter which is
created by linearly interpolating L0 and L2. The
UGLOW we used can restore I from L through an in-
verse processing, and there is non-linearity between
I and L. This enables our network to minimize
||model.reverse(Linter)−I1||2 and ||Linter−L1||2 at the
same time.

In our algorithm, the loss metric is designed to op-
timize two tasks.

1. The loss in the latent space aims to minimize the
difference between the result of interpolation on
the latent space and the latent space created from
the intermediate frame: LossL. When enough
learning is done, the latent spaces show a linear re-
lationship with each other on the time axis. (Fig.5)

2. The loss in the input space aims to minimize the
difference between the image Iinter restored from
Linter and I1: LossI . When enough learning is
done, the reversed intermediate frame will match
the actual intermediate frame. (Fig.6)

The detailed formula for the discriminator loss can
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be defined as follows.

model = UGLOW(I) (1)

L0 = model(I0)

L1 = model(I1)

L2 = model(I2)

(2)

Linter = (L0 +L2)/2 (3)

LossL = ||Linter−L1||2. (4)
The detailed formula for the reconstruction loss can

be defined as follows.

Iinter = model.reverse(Linter) (5)

LossI = ||Iinter− I1||2. (6)
The final loss can be defined as follows.

Loss = wL×LossL +wI×LossI , (7)

where wL and wI are values for weight adjustment
for each loss. When learning UGLOW by combin-
ing these two losses, UGLOW learns how to set up
a continuous frame to be a linear relationship in the
latent space. Due to the linear relationship of latent
spaces on the time axis, simple blending can produce
the result of an arbitrary mid-point without optical
flow (Fig.7). Also, by ensuring inverse restoration,
the image produced by the interpolated discriminator
guarantees the same quality as the actual intermediate
frame.

3.4 Training Method and Settings

The proposed training method has two main types.
The first is the offline training method, which trains
the network using the entire training set, and then
generates interframes with these pre-trained parame-
ters. The second method is the online training method
that fine-tunes network using nearby frames with tar-
get frames. In this case, since additional training with
the inputs must be performed to create each output,
the training cost is much higher. However, as the on-
line training method enables the network to refer to
nearby frames more thoroughly, it allows the network
to better handle difficult tasks like accelerated mo-
tions, occluded areas, and complex motions. In the
former case, it can be used when there is a limitation
on the cost. In the latter case, it is used when a better
result is needed without a cost limit.

The training was performed with the Middlebury
dataset(Baker et al., 2011), which is commonly used
to see the performance of optical flow. The Middle-
bury dataset consists of 11 videos for training and pro-
vides the same number of videos for evaluation. Each

video consists of 8 consecutive frames, and the opti-
cal flow ground truth is provided only in the training
set. However, we did not refer to this ground truth at
all which differentiates our network from other con-
ventional approaches.

Offline training was conducted only with the Mid-
dlebury training set, and the network was trained to
reduce LossL and LossI using consecutive 3 frames
made by the frame sliding method. Because the
frame-sliding method is adopted, 6 sets of inputs per
video, and 66 training data were used as the training
set in total. We trained the entire training set with
200 epochs and saw this as the result of offline learn-
ing. As a hyperparameter for training, the initial LR
was 0.1, LR decays by 0.95 times for each epoch, and
SGD was used as an optimizer. The weights we used
for wL and wI are 0.1 and 1.0. The wI is greater be-
cause restoring a frame is our primary purpose, not
the discriminator.

Online training starts with pre-trained offline pa-
rameters and additional training is performed for each
evaluation video. Specifically, since the Middlebury
evaluation set checks the inferred frame of the 10th

frame, we trained the network with 1500 iterations
using two training samples: frame 7-8-9 and 11-12-
13. For a fair evaluation of our novel method, the 10th

frame was not included in the training.

4 RESULT

In this section, we are going to evaluate the perfor-
mance of the proposed method by generating the 10th

frame of the Middlebury evaluation set. There are two
kinds of evaluation. The former is an empirical eval-
uation that visually compares actual results, the latter
is objective evaluation such as PSNR and SSIM that
measures the difference from the original.

4.1 Empirical Evaluation

Fig 8 shows some examples of our experiment. The
image on the left is ground truth, and the image in
the middle shows the middle frame transformed by
linear blending in latent space by entering frames 9
and 11 of the Middlebury evaluation set. The image
on the right is the result of performing the same lin-
ear interpolation in image space, not in latent space.
In the image on the right, we can see how fast the
object is moving between the two frames. In latent
space, the proposed method combines two distant ob-
jects and complex details. Although optical flow out-
put may seem more elaborate, our U-Net based Gen-
erative Flow has its originality in the methodology.
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Ground truth Interpolation on latent space Interpolation on input space

Figure 8: Interpolation result on latent sapce vs input space The middle row is an intermediate frame created with only
linear interpolation in the learned latency space of UGLOW without using any optical flow at all. Unlike blending in the input
space on the right, the proposed method makes a frame corresponding to the actual middle position.
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Table 1: PSNR and SSIM. This table shows the experi-
mental results of PSNR and SSIM, which reproduced frame
10 of the Middlebury evaluation set using only frames 9
and 11. The proposed algorithm shows improved evaluation
values compared to simple image blending in all videos.

Video PSNR PSNR SSIM SSIM
Name (ref) (ours) (ref) (ours)
Grove 15.90 16.77 0.249 0.322
Mequon 23.22 25.06 0.738 0.797

Yosemite 27.11 29.40 0.774 0.845
Dumptruck 24.70 25.02 0.916 0.920
Wooden 27.16 32.43 0.852 0.890
Army 33.89 34.92 0.930 0.932

Basketball 23.98 25.96 0.852 0.876
Evergreen 23.35 24.52 0.778 0.811
Backyard 22.08 23.26 0.688 0.705

Schefflera 25.55 26.81 0.654 0.696
Urban 23.00 25.13 0.600 0.641

Average 24.54 26.30 0.730 0.767

The U-Net based Generative Flow only uses linear in-
terpolation, unlike other conventional approaches that
rely on optical flow. Another great advantage is that
our outputs showed similarities with the outputs made
with simple blending on difficult tasks such as the face
of the doll, leaves from the background, and the tex-
ture of the stones. This helps guarantee stable frames
when processing video.

4.2 Objective Evaluation

For an objective comparison, we measured the dif-
ference between our result and the 10th frame from
the Middlebury evaluation set. PSNR and SSIM were
used here. The results show higher values, as shown
in the Table1.

5 CONCLUSION

In this paper, we proposed a new method of generat-
ing intermediate frames using video data itself with-
out making optical flow information using an invert-
ible deep neural network. We proposed UGLOW, a
reversible network that produces better results, and
confirmed its feasibility using the Middlebury data
set. We developed a loss that induces a temporal lin-
ear relationship between successive frames of video
in a latent space and proposed an algorithm capable of
generating mid-view results using a trained reversible
network. We have shown that this intuitive approach
made plausible results through empirical and objec-
tive measures.

The biggest contribution of our proposal is that it

is the first attempt not to use optical flow for video in-
terpolation. This aligns with the paradigm that deep
learning can learn everything without relying on a
knowledge-based system. As future works, we will
verify this proposal in various test sets and improve
the performance to be similar to the model using op-
tical flow.
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and Köthe, U. (2020). Bayesflow: Learning complex
stochastic models with invertible neural networks.
IEEE Transactions on Neural Networks and Learning
Systems.

Song, Y., Meng, C., and Ermon, S. (2019). Mintnet: Build-
ing invertible neural networks with masked convolu-
tions. arXiv preprint arXiv:1907.07945.

Sun, D., Yang, X., Liu, M.-Y., and Kautz, J. (2018). Pwc-
net: Cnns for optical flow using pyramid, warping,
and cost volume. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 8934–8943.

Zhao, S., Sheng, Y., Dong, Y., Chang, E. I.-C., and Xu, Y.
(2020). Maskflownet: Asymmetric feature matching
with learnable occlusion mask. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR).

The U-Net based GLOW for Optical-Flow-Free Video Interframe Generation

89


