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Abstract: This paper introduces a new search planning methodology, nicknamed Pathfinder, that can optimize 
heterogeneous teams of mobile and stationary searchers. Unlike previously developed search methods, the 
new methodology applies an Agent-Based Model (ABM) to simulate target movement and behavior then uses 
nonlinear optimization methods to find optimal search plans for complex teams of searchers. We describe 
initial target location with a probability distribution influenced by evidence and environmental data. The ABM 
models target movement based on environmental and behavioral factors. Then, Pathfinder suggests a search 
plan that maximizes the probability of target detection and satisfies searcher requirements. 

1 INTRODUCTION 

Search Theory was initially developed during World 
War 2 by B.O. Koopman to assist with creating 
optimal search strategies to find German U-boats 
(Koopman, 1946 (declassified in 1958)) Search 
Theory has advanced significantly in the past 75 years 
to include most elementary searcher types and target 
types (see, (Stone, Royset, & Washburn, Optimal 
Search for Moving Targets, 2016)) for a 
comprehensive review. Historically, the Office of 
Naval Research (ONR) has been a driving force in 
Search Theory research in the United States. The 
USCG was one of the first organizations to deploy a 
computerized methodology for search and rescue 
(SAR) operations called Computer-Assisted Search 
Planning System (CASP) (Richardson & Discenza, 
1980). This used a Monte Carlo particle method to 
model targets. In 2003 the USCG started 
development of the Search and Rescue Optimal 
Planning System (SAROPS) (Kratzke, Stone, & 
Frost, 2010) to replace CASP. SAROPS was a 
significant improvement over the USCG’s CASP 
system by incorporating a custom numerical search 
technique to find search plans and improving the 

 
a  https://orcid.org/0000-0002-9807-2410 
b  https://orcid.org/0000-0002-2291-233X 

Monte Carlo particle method used to model targets. 
This methodology has been operational since January 
2007. 

In more recent times, more methodologies in 
Search Theory were developed that accommodate 
more search scenarios. One of them is the genetic 
simulated annealing algorithm (GSAA). (Ai, Li, Gao, 
Xu, & Shang, 2019) Another one is based on branch-
and-bound algorithms. (Sato & Royset, 2010) There 
is also a new interactive heuristic-based optimization 
model (Abi-Seid, Morin, & Nilo, 2019) created to 
assist SAR operations in Canada. Nonlinear 
optimization has been applied to search theory 
research, in particular, finding hidden objects (El-
Hadidy & Alfreedi, 2020). At the same time nonlinear 
optimization techniques have not yet been fully 
utilized to optimize heterogeneous teams of mobile 
and stationary searchers. 

An important component in any search theory 
methodology, that optimizes search plans to find a 
mobile target, is how it models target movement. 
Traditionally diffusion processes have been popular 
see (Lin & Goodrich, 2010) and (Eagle, 1984). 
Currently a particle method is used by SAROPS. 
(Kratzke, Stone, & Frost, 2010). Some research has 
been done to apply an Agent-Based Model (ABM) to 
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model wilderness searches (Mohibullah & Julie, 
2013). In addition, some case studies have been done 
to apply agent-based simulations to maritime search 
operations as a way to improve verification and 
validation methods. (Onggo & Karatas, 2016) 

Most relevant research in adopting ABM in 
maritime environments is focused on military and 
security applications. This includes port security 
(Harris, Dixon, Dunn D.L., & Romich, 2013) and 
using UAVs for surface surveillance (Steele, 2004). 
In addition, several papers have been published in 
regards to force protection simulations including 
(Walton, Paulo, McCarthy, & Vaidyanathn, 2005) 
and (Sullivan, 2016). Finally, there has been several 
papers published on the use of ABM and counter-
piracy operations (Dabrowski & Villiers, 2015) and 
(Marchione, Johnson, & Wilson, 2014). A common 
issue encountered by this line of research is in 
verification and validation of these models. For 
example, in analysing strategies to protect merchant 
ships from pirate attack (Deraeve, Anderson, & Low, 
2010).  

In the past 20 years, Search Theory has been used 
multiple times to find missing aircraft. The search for 
Air France, which was lost in June 2009, was found 
using Search Theory. (Stone, In Search of Air France 
Flight 447, 2011) The flight recorders were recovered 
in May 2011. Currently Search Theory is used every 
day by the USCG to find missing persons along the 
US coastlines using SAROPS.  

We propose a new search planning methodology 
based on an Agent-Based Model (ABM) and 
nonlinear optimization techniques. Pathfinder 
introduced in this paper strives to advance search 
planning by focusing on 4 core areas: 

1. optimizing heterogeneous teams of mobile and 
stationary searchers 

2. modeling target behavior 

3. inherent searcher safety 

4. enhance future research, training, and 
appropriations 

Pathfinder incorporates an ABM that can model 
target movement based on behavioral factors, besides 
environmental factors. This is important because the 
behavior of missing targets could fall into different 
scenarios such as, for example dropping an anchor or 
clinging onto a buoy (Adlerstein, 2019). Therefore, 
by incorporating various scenarios in the ABM, 
Pathfinder can model a more realistic target 
movement. The second important feature of 
Pathfinder is that it employs nonlinear optimization 
methods to find optimal search plans based on 

modeled target movement. Furthermore, employment 
of nonlinear optimization methods allows us to 
optimize teams of heterogeneous searchers, including 
stationary and mobile searchers together, among 
other benefits, including not constraining Pathfinder 
to using ladder pattern search plans and rectangular 
search areas. The ladder pattern searches may include 
regions of least concern (Kratzke, Stone, & Frost, 
2010) and thus can be less efficient. Pathfinder finds 
search paths that maximize the probability of 
detection (POD) with the flexibility of adding 
constraints and penalties, that help find search paths 
that are realistic and easy to implement. This 
flexibility of the methodology allows searchers to 
focus on regions of high POD. In addition, Pathfinder 
can strengthen the optimization model to address 
concerns and demands of naval pilots and SAR 
personnel. Another important feature of Pathfinder is 
that it can accommodate searcher safety. For 
example, additional modifications can guarantee that 
searchers do not come within a dangerous distance 
from each other. Finally, since Pathfinder can 
efficiently simulate thousands of different scenarios, 
it can be used for SAR research, training, 
appropriations, and evaluation of new equipment and 
techniques. 

We organized the paper as follows. The next 
section reviews a search scenario that will help 
explain Pathfinder, Section 3 reviews Pathfinder, 
Section 4 discusses results, Section 5 provides 
concluding remarks, and Section 6 discusses how 
Pathfinder could be further improved and 
transformed into a new life saving application. 

2 SEARCH SCENARIO 

Imagine being a search manager that creates, 
implements, and manages SAR operations. It is a 
normal summer day at a popular beach location, 
warm with clear skies. There is a strong wind due 
north at 10knots. This day the currents are strong, 
with a west to east flow. Then a distress signal was 
received and a search operation needs to be launched. 

The call is from a recreational boat with people on 
board that have possibly experienced a health issue. 
This boat is not far from the coastline and the caller 
indicates they are heading to a pier along the 
coastline. The call was interrupted and further 
communication attempts were unsuccessful. We 
estimate the boat is no longer being actively sailed 
and may have lost power. The last known location 
was estimated by triangulating the emergency radio 
call. Suppose the search assets available, and modeled 
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in Pathfinder, are short range assets like the MH-60 
“Jayhawk” (Pike, n.d.) and search boats like the 47-
foot Motor Lifeboat. (MLB). (Motor Lifeboat (MLB), 
n.d.). We also include a theoretical “smart buoy” 
which represents a stationary searcher. We will 
demonstrate the feasibility and benefits of this new 
methodology by finding optimal search plans for this 
search scenario.  

3 DETAILED DESCRIPTION OF 
PATHFINDER AND ITS 
COMPONENTS 

There are two principal components of Pathfinder. 
The optimization model and the ABM. The ABM 
simulates a large number of possible scenarios of a 
target trajectory, and then sends the information to the 
optimization model, which then creates optimal 
search plans for the search operation. Figure 1 shows 
the relationship of these components to search 
operations and data.  

 

Figure 1: The two principal components of Pathfinder, 
ABM and optimization model, and their relationship with 
available data and search operations. 

3.1 Domain 

We need to discuss a few fundamental definitions. 
Pathfinder uses a two-dimensional domain to model 
the search area. 

𝛺 ∈ 𝑅ଶ 

Searchable subdomains are constructed to limit 
searchers from areas they are not allowed, such as 
foreign or restricted territories. We define this area, 
𝛺𝑠, such that 

𝛺𝑠 ⊆ 𝛺. 

In our case the searchable sub domain is the same 
as the domain. In addition, the domain is a coastline 
that is mostly maritime environment that is 1,000 
𝑘𝑚2. 

We define our searcher paths 𝑧𝑡
𝑘, 𝑡 ൌ 1, . . , 𝑇 for 

searcher 𝑘 ൌ 1, … , 𝐾   and target paths 𝑢𝑡
𝑔, 𝑡 ൌ

1, … , 𝑇 for target g of G targets to satisfy the 
following.  

𝑢𝑔 ∈ 𝛺 

𝑧𝑘 ∈ 𝛺𝑠 

3.2 Prior Distribution 

To describe the position of the target before the search 
starts we use a initial probability distribution 𝜃ሺ𝑥ሻ, 
which could be based, in particular, on a targets last 
known location. To add more accuracy and 
flexibility, we use regions defined as 𝑅𝑖 ⊆ 𝛺 with 
probabilities 𝑎𝑖. This is useful when there are several 
sources of information, evidence, and the chance of 
error. These regions satisfy the probability that the 
target is in the domain 𝑀. 

෍ 𝑎௜

௠

௜ୀ଴

න 𝜃ሺ𝑥ሻ𝑑𝑥
ோ೔

ൌ 𝑀 𝑎𝑛𝑑 ෍ 𝑎௜

௠

௜ୀ଴

ൌ 1  (1)

For example, in our scenario, we have two 
circular regions representing the last known location 
at the center of the domain. A large 40% region with 
a radius of 4.15 km, where there is a 40% chance the 
target was in that region at 𝑡 ൌ 0. Then a smaller 50% 
region within it with a radius of 1.65 km where there’s 
is a 50% chance the target was there at 𝑡 ൌ 0. The rest 
of the domain falls within a 10% region where there 
is a 10% chance that a target is there. The 40% and 
50% regions will reside in the center of the search 
domain. 

3.3 Agent-based Model 

This prior distribution is used in an ABM to model 
target movement. This model uses numerous 
independent agents that are affected by 
environmental factors, behavioral factors, and 
hazards.  

First, environmental factors are wind and currents 
that are in our search area. The wind the currents in 
our example will push these agents north then east. 
The ABM uses equations from the USCG (USCG, 
2013) to calculate leeway speed and can incorporate 
the Rayleigh Method (Kratzke, Stone, & Frost, 2010) 
in the future. The ABM also incorporates hazards 
such as rocks and etc. that agents must navigate 
around. In our example, there are no hazards to 
navigate around. 

There are also behavioral factors. These 
behavioral factors depend on survival modes to model 
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target movement. When most people are lost they rely 
on a survival strategy to survive or find their way 
home. These include overdue, travel aid, route 
finding, wandering, and staying put. In our example, 
overdue, travel aide, wandering, and stay put are seen. 
When a target is overdue, it is not lost at all and are 
simply late getting home or their next waypoint. The 
travel aide mode is when a target has some travel aids 
and has the ability to eventually self-rescue. This 
mode relies on the theory of “bounded rationality” 
(Simon, 1982) According to this theory, rationality is 
bounded due to data and mental capabilities. Thus, a 
missing person’s idea of a path home is more accurate 
as they approach future waypoints. Wandering is 
when a target does not have travel aids and wonders 
the domain. Finally, the stay put mode is when a 
target decides to stay where they are. In the case of a 
boat this could be implemented by using an anchor or 
beaching the boat. The ABM provides us with our 
estimate target paths 𝑢௧

௚ 𝑡 ൌ 1, … , 𝑇 that will be used 
to optimize search plans. 

This is unlike current methodologies that 
implement particle methods. Particle methods use 
particles that move based on environmental factors 
and hazards. Therefore, particle methods cannot 
model intelligent agents that can make decisions. 
With an ABM, the agents are intelligent and can think 
and make decisions. Thus, we can model behavioral 
factors. The ABM can also model targets that decide 
to change survival modes and target type changes. 
Therefore, an ABM can model far more target types 
accurately than a particle method.  

In our example the ABM is using 501 agents to 
model target movement. Such a number provides 
sufficient map coverage and also shows a variety of 
target behaviors while being within the technical 
capability of the test system. 

3.4 Detection Function 

Next, we model the probability that a searcher at 𝑧௧
௞ 

will detect a target at 𝑢௧
௚  at time 𝑡 . This is 

implemented using a detection function, which 
depends on several factors including time, distance, 
visibility, and properties of the target. Some previous 
methodologies use the idea of sweep widths, lateral 
ranges, etc. See (Frost & Stone, 2001). In Pathfinder, 
we use a modification of the inverse Nth power law 
(Iida, 1993) below, because it gives us a lot of 
flexibility. 

𝛤൫𝑢௧
௚, 𝑧௧

௞, ∆𝑡൯ ൌ 1 െ exp ቆെ∆𝑡
ఈ൫௭೟

ೖ,ఛ൫௭೟
ೖ൯,௨೟

೒,௩൯

ห௨೟
೒ି௭೟

ೖห

௡൫௭೟
ೖ,ఛ൫௭೟

ೖ൯,௨೟
೒,௩൯

ቇ   (2) 

𝑛ሺ∗ሻ ൐ 0, 𝛼ሺ∗ሻ ൐ 0, ∆𝑡 ൐ 0, 𝑧௧
௞ ∈ 𝛺௦, 𝑢௧

௚ ∈ 𝛺 

This function depends on time step ∆𝑡, target type 
𝑢௧

௚, searcher type 𝑧௧
௞, visibility 𝑣, terrain type 𝜏ሺ𝑧௧

௞ሻ, 
and the parameters  𝛼ሺ∗ሻ  and  𝑛ሺ∗ሻ . For notational 
simplicity we also define the probability of not 
detecting a target as below: 

𝛤ത൫𝑢௧
௚, 𝑧௧

௞, ∆𝑡൯ ൌ 1 െ  𝛤൫𝑢௧
௚, 𝑧௧

௞, ∆𝑡൯         (3) 

Since our example is a marine search operation, 
we used data for a missing boat (N. C. Edwards, 
1981) and found some of these values.  

For example, for a USCG Point Class cutter 
searching for a 16-foot boat or orange life raft in a 
maritime terrain, n and 𝛼 were found as 𝛼 ൌ 0.413 
and 𝑛 ൌ 5.955 . Likewise, for a USCG HH-52 
helicopter searching for a 16-foot boat or orange life 
raft in a maritime terrain, n and 𝛼 were found as 𝛼 ൌ
0.471 and 𝑛 ൌ 3.656. 

Both of these search assets are retired by the 
USCG so future data collection and analysis is 
needed. 

3.5 Optimization Model 

The objective of the Pathfinder methodology is to 
find optimal searcher paths,  𝑧𝑡

𝑘, 𝑡 ൌ 1, … , 𝑇 , that 
maximize the POD. These paths depend on target 
paths from the ABM, 𝑢𝑡

𝑔, 𝑡 ൌ 1, … , 𝑇 , and the 
detection function. We call a collection of searcher 
paths a search plan. This POD function is as follows: 

𝐹ሺ𝑧௧
௞ሻ ൌ 1/|𝐺| ෍ ෍ ෍ 𝛤൫𝑢௧

௚, 𝑧௧
௞, ∆𝑡൯

|ீ|

௚ୀଵ

ෑ 𝜞ഥ൫𝑢௝
௚, 𝑧௝

௞, ∆𝑡൯

௧ିଵ

௝ୀଵ

|௄|

௞ୀଵ

்
∆௧

௧ୀଵ

(4)

This objective function is a modification of the 
objective function found in (Ding & Castanon, 2018) 
and follows the theory in (Przemieniecki, 2000) page 
277.  

To make the objective function produce realistic 
search trajectories, we incorporate three penalty terms 
for fuel, momentum, and center-of-mass. The fuel 
penalty below is used to make more cost-effective 
search trajectories and cut down on suboptimal 
waypoints.   

𝑃ிሺ𝑧௧
௞ሻ ൌ ෍ ෍ 𝑃௞

ி‖𝑧௧
௞ െ 𝑧௧ିଵ

௞ ‖ଶ

்
௱௧

௧ୀଵ

|௄|

௞ୀଵ

 (5)

𝑤ℎ𝑒𝑟𝑒 𝑃௞
ி ൑ 0  𝑓𝑜𝑟 𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 𝑘 
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The following is the momentum penalty. This 
penalty reduces zig-zagging and generally smooths 
paths and make them easier to follow. 

𝑃ெ൫𝑧௧
௞൯ ൌ ෍ ෍

𝑀௞ 𝑃௞
ெฮ𝑧௧ାଵ

௞ െ 2𝑧௧
௞ െ 𝑧௧ିଵ

௞ ฮ
ଶ

𝛥𝑡

்
௱௧

௧ୀଵ

|௄|

௞ୀଵ

 (6)

𝑤ℎ𝑒𝑟𝑒  𝑀௞ ൐ 0 𝑓𝑜𝑟 𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 𝑘 

𝑎𝑛𝑑  𝑃௞
ெ ൑ 0 𝑓𝑜𝑟 𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 𝑘 

Finally, the center-of-mass penalty eliminates 
erratic search trajectory and helps the nonlinear 
optimization model converge to a solution.  

𝑃𝐶𝑀ሺ𝑧𝑡
𝑘ሻ  ൌ ෍ ෍ 𝑃𝑘

𝐶𝑀‖𝑧𝑡
𝑘 െ 𝑎𝑣𝑔ሺ𝑢𝑡

𝑔ሻ‖
2

𝑇/𝛥𝑡

𝑡ൌ1

|𝐾|

𝑘ൌ1

 (7)

𝑤ℎ𝑒𝑟𝑒 𝑃௞
஼ெ ൑ 0 𝑓𝑜𝑟 𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 𝑘 

𝑤ℎ𝑒𝑟𝑒 𝑎𝑣𝑔ሺ𝑢௧ሻ ൌ
1
𝐺

෍ 𝑢௧
௚

ீ

௚ୀଵ

 

With these 3 penalty terms we have the following 
Pathfinder’s optimization model with the positive 
weights 𝑤𝐹, 𝑤𝑀, and 𝑤𝐶𝑀.  

Maximize: 

𝐹ሺ𝑧௧
௞ሻ ൅ 𝑤ி𝑃ிሺ𝑧௧

௞ሻ൅𝑤ெ𝑃ெሺ𝑧௧
௞ሻ ൅ 𝑤஼ெ𝑃஼ெሺ𝑧௧

௞ሻ (8)

Subject to: 

 Movement constraints on the searchers 
with  𝜀 ቀ𝑠௞, 𝜏ሺ𝑧௧ିଵ

௞ ሻቁ ൌ 0  implying a 
stationary searcher 

‖𝑧𝑡
𝑘 െ 𝑧𝑡െ1

𝑘 ‖2  ൑  𝜀൫𝑠𝑘, 𝜏ሺ𝑧𝑡െ1
𝑘 ሻ൯ ൒ 0, 𝑓𝑜𝑟 𝑘 𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 

 Initial locations constraints on the searchers 

𝑧0
𝑘 ൌ 𝑍0

𝑘   𝑓𝑜𝑟 𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 𝑘 

 Final locations constraints on the searchers 

𝑧𝑇
𝑘 ൌ 𝑍𝑇

𝑘  𝑓𝑜𝑟 𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 𝑘 

4 DISCUSSION OF RESULTS 

To examine search trajectories calculated by 
Pathfinder, we built a prototype to run experiments, 
described in figure 1. We used NetLogo (Wilensky, 
1999) for the ABM module and a nonlinear solver 
MINOS (Murtagh & Saunders, 1978) and AMPL 
(AMPL Optimization inc, 2021) for the Optimization 
module. The computer being used is a Dell Alienware 
M17 with 8GB of ram and an Intel i7-9750H 

processor. We experiment with several search teams 
to find optimal solutions to the search scenario 
described in this paper. We were able to find optimal 
solutions for several scenarios. Here we demonstrate 
one of them. 

The ABM performed as expected. The 
environmental factors move agents that have lost 
power and have not deployed an anchor, some agents 
are moving to their destination when they have 
power, and some of them employ an anchor if they 
are in shallow water. Of the two target types in this 
scenario, boat with power and a boat without power, 
the model shows 3 distinct behaviors a missing boat 
could employ. We can see these behaviors below. 

 

Figure 2: visualization of target behavior including A) 
agents being swept away by the current and wind B) Agents 
heading to their final destination under their own power C) 
agents that decided to deploy an anchor and stay put. D) 
agents being blown away primarily by the wind. E) the 
center-of-mass of target agents with direction. 

Figure 2 also shows another important advantage 
of using an ABM to model target behavior. When 
searching for a missing boat, that boat may or may not 
have power, it may have deployed its anchor, it may 
have capsized, it may have sunk, there could be life 
rafts in the water, or the passengers may be in the 
water. Therefore, there are multiple target types that 
the SAR operations could be looking for, with several 
distinct behaviors each target could inhibit. Using the 
ABM is beneficial to search operations because it can 
model simultaneously all potential target types, target 
behaviors, and the transition of one target type to 
another. This ABM has the potential to be tuned and 
optimized by employing historical data. 

Using nonlinear optimization techniques, 
Pathfinder can optimize a search operation with 
searchers with radically different capabilities. Figure 
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3 is a search operation optimized with Pathfinder and 
has 3 assets: a helicopter, a boat, and a “smart” buoy 
that can detect targets. Also note that there is an 
operations outpost from which the helicopter is 
operating from. This is also an asset that can detect a 
target while stationary, thus not optimized by 
pathfinder but its detection abilities considered in the 
model. This search plan's POD is 8.08% and shows 
that this new methodology can optimize teams of 
mobile and stationary searchers. 

 

Figure 3: A helicopter (orange), boat (yellow), operations 
outpost (blue), and one buoy (green) searching the domain. 
Note the difference in travel distance in each searcher type. 
Pathfinder utilized each searcher's performance to find an 
optimal search plan. Also note how the search plans were 
affected by the target center-of-mass moving to the 
Northeast. 

Figure 3 also demonstrates how the target 
movement affects the search plans. The target center-
of-mass is moving to the Northeast and as agents 
encounter the currents in the North of the map, they 
immediately move East. Thus, the search plan skews 
North East. 

One of the important features of Pathfinder is 
attaining searchers’ safety since the optimization 
model can separate searchers by imposing constraints 
on the search trajectories. For example, the search 
plan visualized in figure 4, we use two helicopters 
based near each other for a search. Pathfinder found 
an optimal search plan below for which the 
helicopters never crossed paths. 

 

 

Figure 4: Two helicopters (yellow/orange) searching the 
domain. Note that the helicopters never crossed paths. 

Another benefit of employing a computational 
methodology is that it can perform simulations on 
new SAR assets and methods. For example, 
Pathfinder can determine what would be better: a 
helicopter that is 10% faster or a helicopter that has 
10% better sensors? We ran a few experiments with 
the prototype using the same initial search plans as 
figure 3 without the boat and buoy. Pathfinder could 
show, for example, that a 10% increase in speed gives 
us a search plan with a POD of 5.6% and a helicopter 
that is 10% better at detecting targets gives us a search 
plan with a POD of 6.2%. Thus, in this search 
scenario, a helicopter with 10% better sensors is more 
beneficial than those that are 10% faster. Thus, 
Pathfinder can find what assets are the most effective 
and consider the costs of using them. These are 
important questions to address (Biesecker, 2021) This 
methodology could eliminate a lot of the guesswork 
from appropriations and training. 

5 CONCLUDING REMARKS 

The obtained results have demonstrated that a 
methodology based on an ABM and optimization 
model is promising. This methodology can optimize 
teams of mobile and stationary searchers. The natural 
application of Pathfinder would be in assisting 
maritime searches. Pathfinder has the potential to 
improve the capabilities and functionality of current 
methodologies and could also be used for land 
searches. Using Pathfinder could advance both SAR 
and Anti-Submarine Warfare (ASW) operations. 
Even though the described results are related to the 
maritime SAR operations, we believe only a few 
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modifications are sufficient for Pathfinder to be 
applied to ASW operations and land SAR operations.  

For ASW planning, it may be necessary to add 
constraints so that the searcher could approach targets 
only from a certain direction, for example, from a 
blind spot behind submarines where their propellers 
are. Such constraints could be implemented. 

Combining an ABM and optimization model to 
find optimal search plans in a maritime domain has 
achieved several goals. The ABM can model target 
behavior and its effects on target movement. This is 
an improvement over current methods that only 
model target movement based on environmental 
factors. Then heterogeneous teams of searchers can 
be seamlessly optimized. The optimization model 
also gives us the flexibility to change penalties and 
searcher constraints based on naval aviator and SAR 
personal input. Finally, using the proposed 
methodology allows us to consider past search plans 
(successful and failed) and compare them to optimal 
search plans to refine Pathfinder’s models. Thus, we 
believe Pathfinder has potential to enhance current 
search methodologies.  

6 FUTURE RESEARCH 

There are several research directions that can refine 
and improve the Pathfinder methodology.  

To create quality search plans Pathfinder relies on 
accurate estimation of the parameters 
𝛼ሺ𝑠௞, 𝜏ሺ𝑧௝

௞ሻ, 𝑠௚, 𝑣ሻ and 𝑛ሺ𝑠௞, 𝜏ሺ𝑧௝
௞ሻ, 𝑠௚, 𝑣ሻ 

since they can influence accuracy of the search. 
Currently, there is not enough published data to 
derive these values for all target types, searcher types, 
terrain types, and visual ranges. In the future, we 
would like to gather these data points and then derive 
the values of 𝛼 and 𝑛. One way of making the data 
collection less expensive is to use Virtual Reality 
(VR) to gather the data points. The cost of using VR 
to simulate a helicopter searching for a boat is 
significantly cheaper than renting a helicopter and 
boat to do experiments.          

Likewise, more research is needed to collect data 
and perform analysis for the ABM. In the current 
state, the ABM needed several estimations for 
parameters. More research is needed to analyse these 
parameters to turn the ABM. In addition, we need 
more behavioural data, such as how often people in 
boats without power deploy their anchor or how often 
a missing kayaker will beach their kayak to conserve 
energy. This data needs to be collected and analyzed 
to fine tune the ABM. Machine learning techniques 

could be used to analyse this data and discover how 
targets make decisions.  

Another important research question is, how 
many agents are sufficient for an accurate target 
trajectory description? The answer may depend on 
computing resources. In the future, employing 
parallel computing methods may change the 
dynamics of answering this question. With them, tens 
of thousands of agents over a multi-hour search 
operation could be modeled in seconds. But even in 
that case, Pathfinder’s users or search managers may 
need some guidance. This line of research will 
continue as Pathfinder develops.  

There is room for further improvement and fine-
tuning of the optimization model. This includes 
refining the penalty weights and possibly the addition 
of more constraints and penalties. Collaboration with 
practitioners such as naval aviators and SAR 
personnel can help. We hope that such collaboration 
has a significant potential to produce search paths that 
are easy to implement and navigate. 

Finally, we plan to add to Pathfinder's new 
searcher and target types that current methodologies 
cannot handle. That includes searchers that can 
transport and deploy other searchers such as, for 
example, USCG cutters that can transport helicopters. 
Another possibility is to model active targets that may 
change behavior depending on the searcher’s 
movement, such as, for example, a submarine being 
searched by another submarine. 
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