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Abstract: We increasingly rely on automated decision-making systems to search for information and make everyday
choices. While concerns regarding bias and fairness in machine learning algorithms have high resonance, less
addressed is the equally important question of to what extent we are handing our own role of agents over to
artificial information-retrieval systems. This paper aims at drawing attention to this issue by considering what
agency in decision-making processes amounts to. The main argument that will be proposed is that a system
needs to be capable of reasoning in counterfactual terms in order for it to be attributed agency. To reach this
step, automated system necessarily need to develop a stable and modular model of their environment.

1 INTRODUCTION

Research on agency and causal efficacy has a long his-
tory in the philosophical literature, and recently there
has been a resurgence of interest in this topic (List and
Pettit, 2011; Müller, 2008; Nyholm, 2018; Ried et al.,
2019; Sarkia, 2021). Like with many other ‘suitcase
words’, there is no general agreement on the defini-
tion of the notion of agency. While the generally ac-
cepted definition of agent in artificial intelligence (AI)
research is “anything that can be viewed as perceiving
its environment through sensors and acting upon that
environment through actuators” (Russell and Norvig,
2011), others are unhappy with the broadness of this
definition and look for a narrower interpretation of the
term, for example as an entity that can learn and be
trained (Müller and Briegel, 2018).

In order to be able to act upon the environment and
interact with it, it seems that an agent needs to be able
to reason in causal terms, namely to understand which
of the variables present in its surroundings is respon-
sible for the change occurred (Tomasello, 2014). Still,
it may be argued that causal reasoning is not enough
if the agent wants to reach a level of abstraction that
allows it to generalise to unknown scenarios. To reach
this aim, what the agent needs to develop is the capac-
ity of reasoning in counterfactual terms, to project it-
self into unknown situations it has never experienced
before. Through counterfactual reasoning, the agent
can strengthen its predictive abilities and understand
not only what happens but also ‘why’ something hap-
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pens. The different levels of competence possessed
by a system, from correlation between data to coun-
terfactual thinking, are described by Judea Pearl and
Dana Mackenzie through the metaphor of the Ladder
of Causation (Pearl and Mackenzie, 2018). They ar-
gue that data without an understanding of the causal
links occurring between them are not enough: to
be able of generalisation and abstraction to out-of-
distribution scenarios, agents need to frame a model
of the world they live in. In what follows, an agent
will be understood as positioning itself on the top rung
of the Ladder of Causation, that of counterfactuality.

In this paper, the relevance of organising informa-
tion through frames in order to reach the third rung on
this Ladder will be examined, describing the process
of building robustness into a human decision-making
system and considering how recent machine learning
(ML) models try to implement this capacity in auto-
mated systems (Bertsimas and Thiele, 2006; Hansen
and Sargent, 2011). In conclusion, it will be claimed
that models that organise information through sparse
and modular frames show promising results in devel-
oping better generalisation abilities.

2 AGENCY IN
DECISION-MAKING

Automated decision-making systems increasingly
support humans in looking for information. AI in-
formation access systems, such as recommendation
systems, guide us in searching for the information
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that we absorb everyday, whether it be looking for
a product on an e-commerce platform, watching our
favourite series, or reading the news. They filter the
information that we access and are responsible for
sorting and shaping it, acting as gateways and con-
ditioning public choices and opinions (Nielsen, 2016;
Shoemaker et al., 2009).

Most of the times, we are unaware of these invisi-
ble partners that assist us in our quest for information
and we have the impression of being totally in charge
of the choices we make online. Other times, espe-
cially in systems with human-like interfaces, such
as voice assistants, we interact with them as social
agents, attributing responsibilities to them and, some-
times, placing trust on their decisions (Doyle et al.,
2019; Langer et al., 2021; Pitardi and Marriott, 2021).

Given the pervasiveness of the power asserted by
these information-framing systems, it is urgent to
consider users’ practices of attribution of agency to
them and the impact that their assertion of agency
over our access to information has on the trust that
we place in the systems themselves (Shin, 2020). The
first step we need to take in order to progress in this
direction is to understand which are the essential fea-
tures that a system needs to possess in order to be
deemed an agent.

With this aim, in the next sections human
decision-making processes are examined in the light
of Pearl and Mackenzie’s Ladder of Causation, in or-
der to extract the key ingredients that allow humans to
reach counterfactual reasoning abilities and, thus, be
deemed proper agents.

2.1 Ladder of Causation

To understand how a system can reach the counter-
factual rung, it is first necessary to describe what
the metaphor of the Ladder of Causation amounts to
(Pearl and Mackenzie, 2018).

Rung 1 of the Ladder is ‘Correlation’. A sys-
tem operating on the first rung is a mere observer of
what happens in the world. The question linked to
this stage is: “What is the probability that y happens,
given x?” or, in symbols, P(y|x).

Rung 2 is ‘Intervention’. In order to climb to this
level, the system needs to deliberately interact with
the environment and alter it. The question is: “What is
the probability that y happens if I do x?”, P(y|do(x)).

Rung 3 is ‘Counterfactuality’. Agents that reach
this step are able to imagine counterfactual scenar-
ios and to adapt their actions accordingly. The ques-
tion the agent asks is: “What is the probability that
y’ would occur had x’ occurred, given that I actually
observed x and y?”, P(y′x’|x,y).

While humans are good at forming causal frames
of the available information, according to Pearl and
Mackenzie current state of the art ML models do not
progress beyond the first rung of the Ladder: that of
observing the environment and finding statistical cor-
relation between available data. Progress in AI can
come only through the development of systems that
are able to reason counterfactually and abstract to un-
known data. State-of-the-art automated systems can
produce counterfactuals, but without the capacity of
selecting the relevant ones among them (de Véricourt
et al., 2021). Indeed, while ML systems surpass hu-
man capacities in processing large amount of data, it
is still a challenge for these systems to frame and filter
relevant information and to extrapolate to unknown
scenarios, a necessary ability to climb to the highest
rung on the Ladder.

Analysing the decision-making process that hu-
man agents go through to climb the Ladder is helpful
to understand which are the features that automated
systems need to develop in order to reach agentive
capacities. In addition, this description can help ad-
dressing further questions, such as: Can the counter-
factuality rung be reached through the acquisition of
causal reasoning skills, developed in Rung 2 of the
Ladder of Causation, or are other, qualitatively differ-
ent features, needed for an agent to perform counter-
factual thinking? Supposing that an artificial system
has computational power orders of magnitude larger
than what any system can at present have and, as a
consequence, it can test every possible scenario, could
it reach Rung 3 of the Ladder of Causation, or are
some priors necessary?

For the sake of the present analysis, mechanisms
that allow to proceed from rung 1 to rung 2 on the
Ladder will not be considered, while priority will be
given to addressing the question of to what extent the
framing of information helps agents to make the fi-
nal step toward rung 3, thus reaching counterfactual
reasoning skills.

3 CLIMBING THE LADDER

Suppose that an agent, Bob, wants to lose weight. In
order to decide what choices he needs to make in or-
der to achieve this aim, Bob goes through a decision-
making process. The steps that he will (presumably)
take follow the three rungs of the Ladder of Causation
(see Figure 1).

A system operating on the first rung of the Lad-
der, ‘Association’, observes what happens in the avail-
able data, or ‘Knowledge’. At the beginning of the
decision-making process the agent just has data and
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the way it starts to frame it is essential to the final
output of the process. To achieve the aim of losing
weight, Bob may start by observing with which prob-
ability the variable ‘Playing basketball’ is associated
to the variable ‘Losing weight’. The initial, approxi-
mate, frame that he creates helps Bob understand and
organise the data (Fa).

Figure 1: Decision-making process.

In order to climb to the ‘Intervention’ rung, the
agent needs to deliberately interact with the environ-
ment and alter it. In our example, Bob may join a bas-
ketball team to confirm the connection between the
variables ‘Playing basketball’ and ‘Losing weight’,
observed in the previous step. His question is: “What
is the probability that by playing basketball I will lose
weight?” If the intervention supports the observed
data, the agent can draw causal links between the vari-
ables ‘Playing basketball’ and ‘Losing weight’. To
make his frame more robust, Bob chooses among the
alterations to the environment the ones that produce
the desired outcome. He will use his frame to filter
out variables that are not related to the outcome ‘Los-
ing weight’, for example (stroking a) ‘Cat’. Once Bob
trusts the effectiveness of his frame, he starts inter-
preting data according to it. In turn, the frame influ-
ences Bob in drawing causal links between elements
in future experiences (Filtering*).

The process of optimising the frame by filter-
ing out irrelevant information is crucial to make the

frames more robust and more easily adaptable to other
scenarios. Another element that contributes to the
robustness of the frame is the interplay between the
agent and an Adversarial Player (Hansen and Sargent,
2011), which can be understood as a max-min de-
cision rule. The decision maker maximises and as-
sumes that the Adversarial Player chooses a probabil-
ity to minimise her expected utility (Goodfellow et al.,
2014). Suppose Bob cannot play because the bas-
ketball court is not available. The Adversarial Player
may make Bob try different things to achieve the aim
of losing weight, for example drinking lactose-free
milk, taking vitamin pills, practicing yoga, and so on.
Through the interplay with the Adversarial Player and
the feedback received, Bob may find out that adopting
a vegetarian diet works and add it to his frame (F1).
Or he may discover that exercising indoors also works
for losing weight and add it to a further frame (F2).

Frames are cognitive shortcuts used by agents to
move through the uncertainty of their surroundings
by identifying the variables that are responsible for
change (Kahneman, 2011). Using frames to interact
with the environment helps the agent react to chang-
ing conditions. By capturing the most important as-
pects of the world and filtering out the others, frames
help agents to learn from single experiences and come
up with general rules that can be applied to other sit-
uations, thus progressing toward the counterfactual
rung of the Ladder of Causation.

3.1 Reaching Counterfactuality

Counterfactual thinking amounts to searching for an
explanation to what happened by asking what should
have happened in the past that would have changed
the output (Pearl and Mackenzie, 2018). Reasoning
in counterfactual terms is considered a requisite for
a system to be attributed responsibility and it is a re-
quirement that agents need to satisfy in order to pro-
vide satisfactory, interpretable explanations (Lipton,
1990; Miller, 2019; Molnar, 2020; Wachter et al.,
2017).

Counterfactual reasoning occupies the third and
highest rung on the Ladder of Causation. Human
agents are able to imagine counterfactual scenarios
(‘Imagination’) and to plan how their frames can be
projected onto those (‘Abstraction’, see Figure 1).
The challenge in adapting the frames the agent built in
lower rungs of the Ladder to a counterfactual scenario
comes from the fact that the agent cannot adjust its ac-
tions on the basis of feedback. In our example, Bob
cannot go back in time and undo the action of playing
basketball to know whether he would have lost weight
if he did not play. He can only imagine it, drawing
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inferences on how strong the links between the vari-
ables ‘Playing basketball’ and ‘Losing weight’ are by
considering his previous Knowledge.

In order to be able to adapt the frame to a coun-
terfactual scenario, Bob needs to identify fundamen-
tal causal links in available frames and understand the
relation that they have with variables that he has not
experienced, yet. For example, Bob may ask “What
is the probability that I would lose weight if I cycle?”.
He could, then, draw a link between playing basket-
ball and cycling, identify that the two activities have
something in common and, through abstraction, draw
a causal link between ‘Cycling’ and ‘Losing weight’.
Through counterfactual thinking Bob can also reflect
on the original cause of his weight gain, for exam-
ple by asking “What is the probability that I would
not have gained weight, had I not eaten so much dur-
ing my holiday in Italy?”. If the probability is low,
then he can identify ‘Italian food’ as the cause of his
weight gain.

In order to identify the variables responsible for
change, the agent can start by building a causal di-
agram. Figure 2 represents the cause-effect relation
between the variables in our example through a dia-
gram. This kind of causal diagram has been theorised
by Pearl as a way of mapping the data available to the
(alleged) agent, in order to identify cause-effect links
and make better predictions (Pearl and Mackenzie,
2018). The nodes in the diagram stand for the vari-
ables and the arrows for presumed causal relations.1

An arrow connects the variable ‘Playing basketball’
to the variable ‘Losing weight’, as the agent has con-
cluded that playing basketball caused the weight loss.
Building a causal diagram where the agent can iden-
tify the variables that are responsible for change is
compelling to answer counterfactual questions of the
kind “What would have happened, had I acted dif-
ferently?”, thus allowing the agent to be discounted
from the burdensome need to experience all the pos-
sible scenarios.

Thinking about the past and about what would
have changed if it acted differently allows the agent
to understand which modules of the frame are respon-
sible for change. In so doing, the agent can form an
hyper-model (M) within which all the frames, real and
counterfactual, can be included. Through a higher
level of abstraction, Bob could identify what con-
nects all the activities responsible for losing weight

1Causation is defined by Pearl as follows:“a variable X
is a cause of Y if Y ‘listens’ to X and determines its value
in response to what it hears.” (Pearl and Mackenzie, 2018)
The connection between the variables ‘Gaining weight’ and
‘Playing basketball’, ‘Cycling’, and ‘Exercising indoors’ is
represented here through a dotted line as it is not a proper
causal relation.

Figure 2: Causal diagram.

and make his model even more robust and capable of
adapting to different contexts. The relations that link
together variables within this hyper-model remain in-
variant and, thanks to its robustness, M can be used to
understand and deal with new data and produce new
estimates.

3.2 Sparse and Compositional Models

The description of how humans build robustness into
their decision-making systems made above supports
the idea that, in order to achieve abstraction, agents
need to build frames which select and organise rele-
vant information and to include these frames into an
hyper-model which they can use to adapt their actions
to both known and unknown scenarios. The explo-
ration of this abstraction mechanism of human cogni-
tion (arguably valid also for some animals) can help
practitioners understand how to program artificial sys-
tems that reach the same level of generalisation and
agency.

Indeed, recent ML systems try to approximate
the aim of dealing with out-of-distribution data and
adapting to unknown scenarios by developing two
features which are essential to the construction of
a comprehensive hyper-model: compositionality and
sparseness. In order to effectively deal with new situ-
ations in the world, agents conveniently build models
made of smaller parts that can be recombined. This
compositional ability is useful to explain new data ob-
served in scenarios previously unknown (Kahneman,
2011), as it allows agents to identify causal connec-
tions that are valid throughout different frames. The
adaptability of the model is enhanced by the ability
of the agent to identify the variables that are responsi-
ble for change, providing explanations of what it ob-
serves and adapting to changes without the need of
experiencing all possible scenarios.

A good model must be stable and robust to
changes. The creation of a sparse and modular model
has been explored as an option for building robustness
in automated systems, for example through the repre-
sentation of variables in sparse factor graphs (Ben-
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gio, 2017; Ke et al., 2019). Another example are
Recurrent Independent Mechanisms, a meta-learning
approach which decomposes knowledge in the train-
ing set in modules that can be re-used across tasks
(Goyal et al., 2019; Madan et al., 2021). The selec-
tion of which modules to use for different tasks is
performed by an attention mechanism, while Rein-
forcement Learning mechanisms are responsible for
the process of adaptation to new parameters.

A modular capacity is better achieved in systems
that combine the data-processing capabilities of ML
models with the capacity of abstraction and logical
reasoning of symbolic AI methods. According to sup-
porters of this new paradigm, referred to as the Third
Wave or hybrid AI, statistical models are not enough
to achieve generalisation, we need to teach systems
to handle also logical and symbolic reasoning. This
hybrid approach of symbolic and sub-symbolic meth-
ods allows to hold the advantages of both strategies,
get rid of their respective weaknesses and, at the same
time, program models that fare much better in gener-
alisation and abstraction (Anthony et al., 2017; Ben-
gio et al., 2019; Bonnefon and Rahwan, 2020; Booch
et al., 2020; Garcez and Lamb, 2020; Hill et al., 2020;
Ke et al., 2019; Mao et al., 2019; Moruzzi, 2020). The
benefit of these hybrid models consists in their capac-
ity of combining the computational power of Deep
Learning with symbolic and logical reasoning to not
only be able to process large amounts of data but also
identify which elements within those data stay stable.

4 CONCLUSIONS

The ongoing research presented in this paper con-
tributes to an exhaustive and accurate analysis of
the notion of agency, a useful tool for the investiga-
tion of how to build reliable and flexible decision-
making systems. The study of how the progression
toward generalisation to unknown scenarios happens
and why it is necessary to develop agency helps cre-
ating a deeper theoretical understanding of the char-
acteristics of a robust decision-making process, con-
tributing to address a fundamental issue within AI:
whether and how systems achieve causal agency.

The analysis of the parallel between decision-
making in humans and machines that has been here
presented not only contributes to debates on human
and artificial agency but can also provide relevant in-
sights to research in neuromorphic engineering (Indi-
veri and Sandamirskaya, 2019). Indeed, one of the
challenges in the development of embodied devices
that interact with the environment is the design of so-
lutions through which to generate context-dependent

behaviour, adaptable to changing and unknown con-
ditions.

This paper has identified the ability of sorting and
organising information through frames as a crucial
requisite for agents to build a robust model of their en-
vironment, a model which allows them to adapt and
modify their choices according to the context. The
analysis of the development of agency in decision-
making systems is a preliminary, essential step to
study whether the emulation of biological processes
is a viable path for achieving power-efficient solu-
tions with the aim to build robust and flexible artificial
agents.
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