
An Asymetric-key Cryptosystem based on Artificial Neural Network

Rafael Valencia-Ramos1,2 a, Luis Zhinin-Vera1,2 b, Gissela E. Pilliza1,2 c and Oscar Chang1,2 d

1School of Mathematical and Computational Sciences, Yachay Tech University, 100650, Urcuqui, Ecuador
2MIND Research Group - Model Intelligent Networks Development, Urcuqui, Ecuador

Keywords: Autoencoder, Cryptography, Cryptosystem, Encryption and Decryption Keys, Artificial Neural Networks.

Abstract: Protect the information has always been important concerns for society, and mainly now in digital era. Cur-
rently exists different platforms to manage critical and sensitive information, ranging from bank accounts to
social media. All platforms have taken steps to guarantee that the data passing through them is protected from
hackers. An essential subject in digital world born, giving place to symmetric and asymmetric key algorithms.
Asymmetric key algorithms work by manipulating very big prime numbers, which gives a high level of secu-
rity but also takes a long time to compute. This paper offers a cryptographic system based on deep learning
techniques. The approach avoided the necessity of big prime numbers by using the synaptic weights of an au-
toencoder neural network as encryption and decryption keys. The suggested method allows for a high amount
of unpredictability in the initial and final synaptic weights without compromising the network’s overall per-
formance. The results was shown to be resilient and difficult to break in a theoretical security study with a low
computational time.

1 INTRODUCTION

Currently, technology can’t ensure 100% data secu-
rity, and it has become a big topic in academy and
industry. As the number of internet users has grown,
the data transport networks have had to strengthen
their security. The available systems are based on the
concept of cryptography. Artificial Neural networks
(ANN) helps to develop complex works in the field
of information security, such as detection of Credit
Card Fraud (Zhinin-Vera et al., 2020) and Commu-
nication Protection with adverse neural cryptography
(Coutinho et al., 2018).

Two cryptographic keys are created in this work
using an Autoencoder. The system is trained using the
complete ASCII code of 256 characters, using random
training that requires an initialization password. The
suggested system is compared to different public-key
algorithms in terms of encryption, decryption, and
key generation times to determine its effectiveness.
The security analysis is performed to estimate the dif-
ficulty of breaking the system’s security.

a https://orcid.org/0000-0002-1036-1817
b https://orcid.org/0000-0002-6505-614X
c https://orcid.org/0000-0001-6386-9254
d https://orcid.org/0000-0002-4336-7545

2 RELATED WORK

According to Charniya, ANN can correctly identify a
nonlinear system model from a complicated system’s
inputs and outputs without knowing the exact con-
nection between inputs and outputs (Charniya, 2013).
By applying these ideas to the realm of cryptography,
ANN might generate high-security encryption keys
(Kinzel and Kanter, 2002).

ANNs offer a highly strong generic framework
for expressing the non-linear mapping of various in-
put variables to various output variables, according to
Volna (Volna et al., 2012) works on ANN-based en-
cryption. Jogdand proposed that ANN can be used
to generate common secret keys (Jogdand, 2011).
Kinzel and Kanter show the application of interac-
tive ANN for the exchange of keys through a pub-
lic channel (Kanter and Kinzel, 2003). Klein et al.
demonstrates the use of mutual learning ANN with
time-dependent weights that synchronize (Klein et al.,
2005).

In another approach is shown that using an autoen-
coder neural network as a data encoder and decoder
is possible (Quinga-Socasi et al., 2020). Then, new
approach creates a symmetric encryption system in
which a ANN is utilized as a data encryption system
that can encode and decode data with only a single

540
Valencia-Ramos, R., Zhinin-Vera, L., Pilliza, G. and Chang, O.
An Asymetric-key Cryptosystem based on Artificial Neural Network.
DOI: 10.5220/0010857700003116
In Proceedings of the 14th International Conference on Agents and Artificial Intelligence (ICAART 2022) - Volume 3, pages 540-547
ISBN: 978-989-758-547-0; ISSN: 2184-433X
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



initialization key (Quinga and Chang, 2020). Another
work shows that using a basic autoencoder architec-
ture, an asymmetric data encryption system can be de-
veloped. It also demonstrates that all of the characters
of the ASCII code can be encoded without causing
any significant accuracy problems when encoding and
decoding each character (Valencia and Chang, 2020).
Taking the concepts established in (Quinga-Socasi
et al., 2020), (Quinga and Chang, 2020) and (Valen-
cia and Chang, 2020) this paper presents a novel tech-
nique for developing an asymmetric key system capa-
ble of enhancing security by decomposing the ANN
and using each component as a separate encryption
and decryption key.

3 METHODOLOGY

An experimental research was performed in this work
to create an asymmetric key cryptography system
based on ANN that may provide acceptable security
while executing quickly. This research was divided
into three sections: (1) Calibration of an autoencoder
neural network to randomize the training process and
create a distinct ASCII code codification based on an
initialization password (2) The neural weights that
will serve as a public and private key will be cali-
brated. (3) A comparison of system performance and
security analysis to assess how resistant the system is
to hacker assaults.

3.1 Autoencoder Neural Network
Architecture

An autoencoder with 8 neurons in the input layer, 10
neurons in the hidden layer, and 8 neurons in the out-
put layer was used to build this system. The amount
of predefined characters in the full ASCII code, the
size of the produced keys, and the scaling of plain
text were all taken into consideration while choosing
this design. The entire ASCII code was encoded in
28 bits, which meant that each character in the cryp-
tosystem was represented by an 8-bit character. The
neural network received each 8-bit set as input.

3.2 Randomization Algorithm

A randomization technique was used in the proposed
system to generate initial random synaptic weights
and a vector of random indices. This algorithm was
based on changing “seeds” in conjunction with the
rand() function. The changing of seeds was a crucial
step in increasing the system’s unpredictability.

3.3 Asymmetric Key Cryptography
Model

To create a public and private key, the system used an
autoencoder neural network design. These keys corre-
spond to the synaptic weights of the network (WE and
WD). The system uses a randomization technique that
is based on the user’s secret initialization password
and a random character string unique to this system.

In addition, before producing the ciphertext from
the plain text, the system preprocessed the informa-
tion. In the same way, a preprocess was used to create
plain text from ciphertext that was reversed from the
one used previously. A complete scheme of the sys-
tem is presented in Figure 1.

WE
WD

Initialization Password Internal Random String

“---------”

Randomization Algorithm

Training

Public Key Private Key

“Hello World”

Plain Text

01110111

Binary Message

01100010

XOR Message

0.471285 0.966985 
0.116430 0.243542 
0.058160 0.020261 
0.9876870.987435 
0.377028 

Cipher Text

“Hello World”

Plain Text

01110111

Binary Message

01100010

XOR Message

Preprocessing
Reverse 

Preprocessing

x1

x2

x3

x4

x5

x6

x7

x8

x1

x2

x3

x4

x5

x6

x7

x8

^

^

^

^

^

^

^

^

c1

c2

c3

c4

c7

c8

c9

c10

Figure 1: The proposed cryptographic system’s scheme,
which includes the system’s initialization, the creation of
keys, and the data encryption/decryption process.

• Encryption. Plain text must be pre-processed be-
fore data encryption can be performed. First, the
original message was converted to binary text us-
ing the ASCII code. The binary text was then
split into 8-bit sets, each of which was subjected
to a series of XOR operations. After getting the
“XOR text”, it was encrypted with the public key
to acquire the ciphertext. Each 8-bit set was trans-
formed to a set of 10 floating integers, and the ci-
phertext was scaled from “XOR text”.

• Decryption. The ciphertext was split into blocks
of 10 floating integers and decrypted using the pri-
vate key and the “XOR text”. After that, a reversal
of the preprocessing was carried out. The “XOR
text” was broken down into 8-bit blocks and then
XOR techniques were used to retrieve it. The bi-
nary text was then retrieved, followed by the plain
text.

An Asymetric-key Cryptosystem based on Artificial Neural Network

541



3.4 Performance and Security
Parameters

When evaluating performance, a variety of factors
are considered. Data from asymmetric cryptographic
techniques is compared to these parameters. Secu-
rity considerations are also taken into account. Fi-
nally, a method for determining the randomization
algorithm’s efficiency in the production of keys is
established. The Hardware Characteristics of the
system are: Windows 10 64-bit operating system,
8Gb RAM and Intel(R) Core(TM) i7-5500U CPU
2.40GHz 2.40GHz.

3.4.1 Performance Parameters

Encryption Time is determined based on the time re-
quired by an algorithm or system to translate a plain
text into a ciphertext. Besides, Decryption Time is
determined during the translation into the plain text
from the ciphertext and Key Generation Time is the
required to generate the keys, and it is equivalent to
ANN training time.

3.4.2 Security Parameters

The parameters that will be considered are:
Accuracy: It is the number of characters successfully
retrieved, over the total of characters that the complete
ASCII code has. This value is expressed in percent-
ages and can change in training process.
Network Tolerance: It is the amount of noise that
the synaptic weights of a trained network can tolerate
before data recovery fails.
Private Key Security: It is a portion of all synap-
tic weights involved in data recovery. The synaptic
weights of an ANN are continuous values, generally
with a large number of significant digits (SD). Equa-
tion 1 is used to determine the number of attempt nec-
essary to hack the private key.

V Rm
n = nm (1)

Where n is the set of all possible elements that can
be used to generate the public key. In this case, n de-
pends on the number of SDand the rank correspond-
ing to the synaptic weights of a network with a high
accuracy. Besides m is a subset of n, that depends
on the number of elements in the private key (size of
WD).
Significant Digits Determination: A random float
value in the range [0.001, 0.1] is added and subtracted
from the public key to determine the minimum num-
ber of SD that will be used to recover the data. The
number of SD of the float value capable of having a

high accuracy is set as the lowest quantity when the
accuracy reduces by more than 75%.

Neural Network Security. Two strings are used to
generate public and private keys. The first is a user-
entered string, while the second is a random string
generated internally. The strings are randomized to
initialize the network’s synaptic weights and create a
chain of pseudo-ordered indexes that will be used in
training. Therefore, a hacker would have to guess the
user’s password through brute force to obtain a ANN
capable of generating equivalent keys. Equation 2 is
used to calculate the necessary time to hack.

T = (NM)× tnn (2)

Where N is the total number of printable ASCII
characters, M is the length of the string entered, and
tnn is the ANN training time.

Randomization Algorithm Efficiency. The initial-
ization password is crucial to the randomization algo-
rithm. If the password is changed, the keys that are
generated must be completely different. To evaluate
the algorithm’s performance in data randomization, it
is suggested that the keys created by two initialization
passwords with high similarity be compared.

4 RESULTS

The results of the proposed system’s performance
evaluation and security analysis, including random-
ization, are presented. The time needed to encrypt
and decrypt the data was compared with the results
obtained in (Maqsood et al., 2017), (Matta and Ku-
mar, 2016) and (Farah et al., 2012). To evaluate the
performance of the cryptographic system, the encryp-
tion/decryption time and the key generation time were
used.

4.1 Performance Evaluation

• Encryption and Decryption Time of
Cryptosystem.
The suggested system was run with the following
input file sizes to establish overall performance
in terms of encryption and decryption time: 200,
300, 400, 500, and 600 KB. The cryptosystem was
run ten times for each file size to provide a repre-
sentative average time. The results are shown in
Figure 2.
The results reveal that when file sizes grow larger,
the time it takes the cryptosystem to encrypt and

ICAART 2022 - 14th International Conference on Agents and Artificial Intelligence

542



decrypt data grows as well. This is because the
cryptosystem resizes the data, which means the
decrypted file is larger than the encrypted file.

Figure 2: Execution time corresponding to the encryption
and decryption processes of the cryptographic system.

• Key Generation Time of the Cryptosystem.
The following initialization password lengths
(numbers of characters) were used to establish the
average time required for the cryptosystem to gen-
erate the public and private key: 4, 5, 10, 12, 14,
15. The system was run ten times for each ini-
tialization password, and the average value was
taken. In Figure 3, the average times of each
password length are shown graphically, and the
key creation time does not depend on the pass-
word length. Furthermore, it was discovered that
the size of the keys is constant and independent
of the initialization password size. Because the
time it takes to generate the keys is unrelated to
the length of the initialization password, a general
average of 27.47 seconds was calculated. Further-
more, because the password length is always the
same, it was not taken into consideration in future
calculations.

Figure 3: Time required by the cryptographic system to gen-
erate a set of keys with respect to the length of the initial-
ization password. The Public and Private Key have 1KB in
size and the average is 27.47 (s).

• Comparison between RSA, ElGamal and the
Proposed Cryptosystem.
In terms of encryption/decryption time and key
generation time, (Maqsood et al., 2017) compared

the performance of the RSA and Elgamal asym-
metric cryptographic methods. The experiments
were carried out on a 2.34 GHz Intel Pentium
CPU with 1 GB of RAM, and the algorithms
were developed in Java (Eclipse platform version:
3.3.1.1). The methods were tested with text files
ranging in size from 32 KB to 126 KB, 200 KB to
246 KB to 280 KB, and the results were measured
in seconds.

Encryption Time. Table 1 shows a comparison
of encryption timings for RSA, ElGamal, and the
proposed cryptosystem. The cryptosystem’s en-
cryption times are substantially faster than those
of RSA and ElGamal. In addition, when the file
size grows greater, the cryptosystem takes longer
to encrypt it.

Decryption Time. Table 2 compares the de-
cryption times of the RSA and ElGamal algo-
rithms, as well as the proposed cryptosystem. The
behavior was comparable to the encryption proce-
dure, where decryption times are much lower than
SRA and ElGamal’s, and the decryption time in-
creases as the file size grows. Furthermore, the de-
cryption timings of cryptosystems are very com-
parable to the encryption periods. This is because
RSA and ElGamal’s decryption relies on mathe-
matical operations between very big prime inte-
gers.

Key Size and Generation Time. Table 3 shows
the size of the keys and the time it takes to gen-
erate them. The time it takes the cryptosystem to
create a set of keys is significantly longer than the
time it takes RSA and ElGamal to do so. The en-
cryption key’s size was added to the decryption
key’s size to calculate the overall size of the set of
keys. The proposed cryptosystem generates keys
that are much larger than those generated by RSA
and ElGamal.

• Comparison between RSA-16bits, ECC-16bits
and the Proposed Cryptosystem.
Matta et. al (Matta and Kumar, 2016) used a
steganographic technique to analyze the perfor-
mance of the RSA-16bits and ECC-16bits encryp-
tion algorithms. Despite the fact that Matta’s
study used steganography rather than encryption,
in which plain text is converted to ciphertext, it
gives important information for assessing the pro-
posed system. The key generation time and en-
cryption/decryption times for the RSA-16bits and

An Asymetric-key Cryptosystem based on Artificial Neural Network

543



Table 1: Encryption Time comparative with Maqsood et al.

File size (KB) RSA Time (ms) ElGamal Time (ms) Cryptosystem Time (ms)
32 130 450 10
126 520 1030 31
200 740 1410 47
246 1110 1750 47
280 1390 1830 62

Table 2: Decryption Time comparative with Maqsood et al.

File size (KB) RSA Time (ms) ElGamal Time(ms) Cryptosystem Time (ms)
32 150 430 16

126 430 850 32
200 660 130 47
246 930 1300 62
280 230 1640 63

ECC-16bits algorithms were assessed individu-
ally. Matta, use the following file sizes to evaluate
RSA-16bits and ECC-16bits: 22 KB, 87 KB, and
174 KB.

Encryption Time. Data files of the same size
as those used in Matta’s comparison were uti-
lized to test the proposed cryptosystem with the
RSA-16bits and ECC-161bits algorithms (Matta
and Kumar, 2016). Table 4 shows a comparison of
the encryption times for RSA-16bits, ECC-16bits,
and the proposed cryptosystem. The cryptosys-
tem’s encryption speeds are significantly faster
than those of RSA-16bits and ECC-16bits. This
is due to the fact that the suggested cryptosystem
is based on matrix operations, which work much
better to compute.

Decryption Time. Table 5 shows the compar-
ison of decryption times for RSA-16bits, ECC-
16bits, and the proposed cryptosystem. The
cryptosystem’s decryption times are significantly
faster than those of RSA-16bits and ECC-16bits.
This is due to the fact that one employs ma-
trix operations while the other employs operations
and functions using extremely big prime integers.
When comparing the data given, the cryptosys-
tem’s decryption procedure takes longer than the
encryption process. This is related to the fact that
plaintext is re-dimensioned when it is encrypted.

Key Generation Time. Table 6 shows the critical
generation periods. The creation time of the public
key was added to the creation time of the private key
to get the generation time of the set of keys. In the
case of the cryptosystem, the two keys have just one

creation time. The suggested cryptosystem’s key gen-
eration time is significantly longer than the disclosed
time for RSA-16bits, although it is significantly less
than that of ECC-16bits.

4.2 Security Evaluation

Private Key Security Results. The number of SD
required for a cryptosystem to have high accuracy is
in the hundreds, according to the data in Table 7. This
means that the cryptosystem’s numbers must include
at least three digits. The private key has a rank of
(-2,2) and a size of WD is 80 bytes. We have the set [-
1.99, ..., 1.99], which has 399 items based on the rank
and SD. Equation 1 is used to compute the number
of attempts (a) a hacker will need to reproduce the
correct sequence of numbers that make up the private
key.

V R80
399 = 39980 −→V R80

399 = 1.19628×10288×a

To figure out how long it will take to complete all
of these attempts, we’ll use a hypothetical machine
that can make 1×107 attempts per second (s).

x =
1.19628×10288(atotal)×1(s)×1(years)

1×107(amachine)×3.15×10193(s)
(3)

We can deduce from Equation 3 that it will take
3,79×10193 years to hack the private key.

Neural Network Security. The hacker needs
to know the system initialization password in order to
obtain the correct password capable of generating the
correct public and private key. We know that the net-
work’s average training time is 27.47 seconds (Figure
3). The ASCII code has a total of 223 printable char-
acters. Equation 2 then yields the following results.

ICAART 2022 - 14th International Conference on Agents and Artificial Intelligence

544



Table 3: Key Generation Time comparative with Maqsood et al.

Key Size (bits) Generation Time (s)
RSA 1024 0.287

ElGamal 160 0.86
Cryptosystem 16000 27.74

Table 4: Encryption Time comparative with Matta et al.

File size (KB) RSA-16. Time (ms) ECC-16. Time (ms) Cryptosystem Time (ms)
22 3782 51391 16
87 4297 93741 16

174 4265 113947 32

Table 8 shows the length of the initialization pass-
word used in proportion to the time it would take to
hack the cryptosystem in years. When the length of
the initialization password is increased, the calcula-
tion time required to hack the system using a brute
force technique grows exponentially. Table 8 shows
that all of the times are excessively long, making the
hacking procedure computationally unfeasible.
Randomization Algorithm Performance. The ini-
tialization passwords “helloworld” and “helloworle”
are used to produce keys to test the randomization al-
gorithm’s performance. The difference between the
passwords is minimal for determining the algorithm’s
efficacy.
Pseudo-ordered Index Vector. The distribution of
pseudo-ordered vectors of indices produced with the
passwords “helloworld” and “helloworle” is shown in
Figure 4. The distribution of the two vectors follows
the same pattern, but they are distinguished by a trans-
lation on the x axis. The x-axis shift is due to the fact
that the initialization passwords were just one bit dif-
ferent from one another. Each point that moves away
from the “line” of linear growth represents the ran-
domness that is introduced in the process of creating
the vectors of pseudo-ordered indexes (Valencia and
Chang, 2020).

Figure 4: Pseudo-order index vector distribution with pass-
words “helloworld” and “helloworle”.

Distribution of Public and Private Key: The dif-
ference between the public and private key produced
using the password “helloworld” is shown in Figure 5.
The values that make up the public key and the private

key do not coincide at any point. In terms of conceiv-
able values that each key may make up, the private
key is “bigger” than the public key. Figure 5 shows
that the private key is made up of numbers in the
[−2.2,1.5] range, whereas the public key is made up
of values in the approximate range of [−0.65,0.65].

Figure 5: Public and Private key distribution with password
“helloworld”.

The difference between the keys generated using
the password “helloworle” is shown in Figure 6. The
public and private keys have a high degree of random-
ness in their distribution, and they do not coincide at
any time. The private key is “bigger” than the pub-
lic key, as seen in Figure 6. The private key is in the
[−2.5,1.75] range, whereas the public key is approx-
imately in the [−0.60,0.60] range.

Figure 6: Public and Private key distribution with password
“helloworle”.

Because the cryptosystem seeks to ensure a high
level of security, the public and private keys differ.
The potential values that make up the public key are
useless for security because it is publicly known. The

An Asymetric-key Cryptosystem based on Artificial Neural Network

545



Table 5: Decryption Time comparative with Matta et al.

File size (KB) RSA-16. Time (ms) ECC-16. Time (ms) Cryptosystem Time (ms)
22 4328 24187 16
87 4188 75402 31
174 4390 115137 47

Table 6: Key Generation Time comparative with Matta et al.

Public Key Private Key Total Time (s)
RSA-16bits 0.031 0.015 0.046
ECC-16bits 123.203 122.922 246.125

Cryptosystem - - 27.47

private key, on the other hand, requires a method that
makes it impossible to duplicate because it is a secret.
Public Key Comparison: The difference between
the public key created with the password “helloworld”
and the public key created with “helloworle” is seen
in Figure 7. Even if the initialization password is only
one bit different, the distributions of the public keys
are considerably different. The key corresponding
to “helloworld” is in the range [−0.61,0.52], while
the key corresponding to “helloworle” is in the range
[−0.45,0.45], as seen in Figure 7.

Figure 7: Comparison between public keys generated by
passwords “helloworld” and “helloworle”.

Private Key Comparison: The difference between
the private key generated by “helloworld” and the pri-
vate key generated by “helloworle” is seen in Figure
8. The distributions of private keys are significantly
diverse from one another. The key corresponding
to “helloworld” is in the range [−2.2,1.32], whereas
the one corresponding to “helloworle” is in the range
[−2.5,1.8], as seen in figure 8.

Figure 8: Comparison between private keys generated by
passwords “helloworld” and “helloworle”.

The level of randomness contained in the public
and private keys when compared to one another shows
that the cryptosystem’s randomization mechanism is
working properly. Furthermore, the system has a high
level of security because to the variance between the
ranges of values that make up the keys.

5 CONCLUSIONS

The proposed cryptosystem has much faster compu-
tation times than existing asymmetric algorithms, ac-
cording to the results of the experiments. The file
sizes utilized for the purchase ranged from 32 KB
to 280 KB, depending on the method. Additionally,
the system was tested with files ranging in size from
200 KB to 600 KB, and it was found that the en-
cryption and decryption of the data was not a major
problem. In terms of key generation time, the system
takes longer to execute than traditional methods since
it takes the same amount of time to train the ANN.

The proposed autoencoder neural network design
has a large capacity for encoding all ASCII code in
a reasonable amount of time. Because this procedure
is only run once per set of keys, the average training
time was 27.47 seconds, which is acceptable. With
a single bit change in the initialization password, the
system was able to produce completely new sets of
keys. As a consequence, the high-level randomness
randomization method created for the ANN training
process yielded positive results.

The cryptographic system’s security evaluation re-
vealed that a brute force attack, whether attempting
to “reconstruct” the private key or compromising the
whole system, would take a huge amount of comput-
ing time, making hacking impossible.

Since the suggested cryptographic system is based
on ANNs, we will build it using a parallelization tech-
nique in the future, reducing training times (genera-
tion of keys). The level of randomness might be in-
creased without affecting the neural network’s perfor-
mance using this method.

ICAART 2022 - 14th International Conference on Agents and Artificial Intelligence

546



Table 7: Network Tolerance.

Thousandths (4 digits) Hundredths (3 digits) Tenths (2 digits)
Noise Accuracy Noise Accuracy Noise Accuracy
0,001 99,61 0,01 100,00 0,1 66,67
0,002 99,61 0,02 100,00 0,2 17,65
0,003 99,61 0,03 99,22 0,3 3,92
0,004 99,61 0,04 98,43 0,4 0,78
0,005 100,00 0,05 98,04 0,5 0,00
0,006 100,00 0,06 92,55 0,6 0,00
0,007 100,00 0,07 86,67 0,7 0,00
0,008 99,61 0,08 78,43 0,8 0,00
0,009 99,61 0,09 74,12 0,9 0,00

Table 8: Neural Network Security Results.

Initialization Password
Length Equation Time (s) Time (years)

4 T = (2234)×27.47(s) 67932580424 2,15E+03
5 T = (2235)×27.47(s) 15148965434612 4,80E+05

10 T = (22310)×27.47(s) 8,35425E+24 2,65E+17
12 T = (22312)×27.47(s) 4,15448E+29 1,32E+22
14 T = (22314)×27.47(s) 2,06598E+34 6,55E+26
15 T = (22315)×27.47(s) 4,60714E+36 1,46E+29

REFERENCES

Charniya, N. N. (2013). Design of near-optimal classifier
using multi-layer perceptron neural networks for in-
telligent sensors. International Journal of Modeling
and Optimization.

Coutinho, M., de Oliveira Albuquerque, R., Borges, F., Gar-
cia Villalba, L. J., and Kim, T.-H. (2018). Learning
perfectly secure cryptography to protect communica-
tions with adversarial neural cryptography. Sensors,
18(5):1306.

Farah, S., Javed, M. Y., Shamim, A., and Nawaz, T. (2012).
An experimental study on performance evaluation of
asymmetric encryption algorithms.

Jogdand, R. M. (2011). Design of an efficient neural key
generation. International Journal of Artificial Intelli-
gence & Applications (IJAIA).

Kanter, I. and Kinzel, W. (2003). The theory of neural net-
works and cryptography. In The Physics of Communi-
cation, pages 631–642. World Scientific.

Kinzel, W. and Kanter, I. (2002). Interacting neural net-
works and cryptography. In Advances in solid state
physics, pages 383–391. Springer.

Klein, E., Mislovaty, R., Kanter, I., Ruttor, A., and Kinzel,
W. (2005). Synchronization of neural networks by
mutual learning and its application to cryptography.
Advances in Neural Information Processing Systems.

Maqsood, F., Ahmed, M., Ali, M. M., and Shah, M. A.
(2017). Cryptography: A comparative analysis for
modern techniques. International Journal of Ad-
vanced Computer Science and Applications, 8(6).

Matta, R. and Kumar, A. (2016). Performance comparison
for rsa and ecc in video steganography. International
Journal of Engineering Science and Computing.

Quinga, F. and Chang, O. (2020). A Deep Learning Ap-
proach for a Symmetric Key Cryptography System.

Quinga-Socasi, F., Velastegui, R., Zhinin-Vera, L.,
Valencia-Ramos, R., Ortega-Zamorano, F., and
Chang, O. (2020). Digital cryptography implemen-
tation using neurocomputational model with autoen-
coder architecture.

Valencia, R. and Chang, O. (2020). Cryptography system
implementation using neurocomputational model and
deep learning.

Volna, E., Kotyrba, M., Kocian, V., and Janosek, M. (2012).
Cryptography based on neural network. In ECMS,
pages 386–391.

Zhinin-Vera, L., Chang, O., Valencia-Ramos, R., Ve-
lastegui, R., Pilliza, G. E., and Quinga-Socasi, F.
(2020). Q-credit card fraud detector for imbalanced
classification using reinforcement learning. pages
279–286.

An Asymetric-key Cryptosystem based on Artificial Neural Network

547


