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Abstract: Diabetic retinopathy (DR) is one of the main causes of vision loss around the world. A computer-aided 
diagnosis can help in the early detection of this disease which can be beneficial for a better patient outcome. 
In this paper, we conduct an empirical evaluation of the performances of twenty-eight deep hybrid 
architectures for an automatic binary classification of referable DR, and compared them to seven end-to-end 
deep learning (DL) architectures. The architectures were compared using the Scott Knott test and the Borda 
count voting method. All the empirical evaluations were over the APTOS dataset, using five-fold cross 
validation. The results showed the importance of combining DL techniques and classical machine learning 
techniques for the classification of DR. The hybrid architecture using the SVM classifier and MobileNet_V2 
for feature extraction was the top performing and it was classified among the best performing end-to-end deep 
learning architectures with an accuracy equal to 88.80%; note that none of the hybrid architectures 
outperformed all the end-to-end architectures. 

1 INTRODUCTION 

Diabetes is a life-long disease that affects the body’s 
ability to produce or use insulin in order to maintain 
proper levels of glucose in the blood  (Samreen, 2009). 
The prevalence of diabetes has reached epidemic 
levels especially in low and middle-income countries. 
The African continent has the greatest proportion of 
undiagnosed diabetes with 60% of adults currently 
living with diabetes unaware of their condition, and 
global projections show that it will experience the 
greatest future increase in the burden of diabetes by 
2045(Kibirige et al., 2019). Diabetic retinopathy 
(DR) is the most severe ocular complication of 
diabetes; it can cause vision loss and blindness. It has 
been estimated that more than 1 in 3 people with 
diabetes have some form of DR(Yau et al., 2012). 
Medical image analysis using machine learning (ML) 
and deep learning (DL) is one of the most promising 
research areas since it provides facilities for the 
diagnosis of several diseases such as diabetic 
retinopathy, cardiology and breast cancer (García et 
al., 2017; Wong, Fortino and Abbott, 2020; 
Zerouaoui and Idri, 2021). 

Multiple automated systems have been developed 
to help human experts in the detection of DR, 
knowing that human experts usually focus on some 

typical lesions associated with DR such as hard 
exudates, red lesions, micro-aneurysms, hemorrhage 
and abnormal blood vessels from the fundus images. 
Many works paid attention to automatically detect 
and segment these lesions by using hand-engineered 
feature extraction and traditional machine-learning 
techniques (Shahin et al., 2012; Casanova et al., 
2014; Asiri et al., 2018). In general, DL techniques 
showed better performance in diabetic retinopathy 
detection compared to the classical machine learning 
and the hand-engineered feature extraction 
techniques (Asiri et al., 2018; Islam et al., 2020). In 
the other hand, classical machine learning techniques 
are less time consuming and require fewer parameter 
tuning compared to the DL ones. For instance, a 
plenty of works paid attention to the hybrid 
architectures where they combined the strengths of 
DL techniques for feature extraction and the classical 
machine learning for classification (Abràmoff et al., 
2016; Gargeya and Leng, 2017). For example, the 
study by (Abràmoff et al., 2016) used the CNNs for 
the feature extraction and random forest for the 
classification of DR over the Messidor-2 dataset. The 
results showed the importance of using the hybrid 
architectures since the sensitivity of the model was 
equal to 96.8% when the specificity was 87%. The 
study by (Gargeya and Leng, 2017) aimed to develop 
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an hybrid model for DR detection in red, green, and 
blue fundus photographs, the authors used the 
principle of deep residual learning to develop a 
custom CNN for feature extraction and the decision 
tree for the classification. The model was trained over 
the EYEPCAS dataset and it was tested over the 
Messidor-2 and E-Ophta datasets; note that the 
sensitivity and specificity of the model were equal to 
94% and 98% respectively. 

This paper develops and evaluates twenty-eight 
hybrid architectures using four classifiers (SVM, 
MLP, KNN and DT) and seven of the most popular 
DL techniques as feature extractors (MobileNet_V2, 
DenseNet201, VGG16, VGG19, Inception_V3, 
ResNet50 and Inception_ResNet_V2) for a binary 
classification of the referable DR. The four classifiers 
and the seven extractors were chosen since they 
provide high accuracy classification values (Asiri et 
al., 2018; Islam et al., 2020; Lahmar and Idri, 2021); 
We compared the twenty-eight hybrid architectures to 
seven end-to-end DL architectures, the same 
architectures used as feature extractors. For the 
empirical evaluations, we used four performance 
criteria: accuracy, precision, sensitivity and F1-score, 
and a five-fold cross-validation over the APTOS 
dataset. Moreover, the Scott Knott (SK) statistical test 
and Borda count voting method were used to cluster 
and rank the architectures. Note that the SK test has 
been widely used to compare and cluster multiple 
machine learning models in different fields such as 
software engineering (Ottoni et al., 2020) and breast 
cancer (Idri et al., 2020). Hence, we used the SK test 
because of: (1) its high performance compared to 
other statistical tests such as Calinski and Corsten 
(Calinski and Corsten, 1985), (2) its ability to cluster 
the best non-overlapping groups of machine learning 
techniques. Furthermore, we used the Borda count 
voting method (García-Lapresta and Martínez-
Panero, 2002) to rank the best SK selected 
techniques. The present study discusses four research 
questions (RQs): 
(RQ1): What is the overall performance of the hybrid 

architectures in DR classification?   
(RQ2): Is there any deep learning techniques for 

feature extraction which distinctly 
outperformed the others when used in hybrid 
architecture? 

(RQ3): Is there any hybrid architectures which 
distinctly outperformed the others regardless 
the feature extractor and the classifier used?  

(RQ4): Is there any hybrid architectures which 
distinctly outperformed the end-to-end 
architectures?  

The main significant contributions of this empirical 
study are: 

(1) Building twenty-eight hybrid architectures 
using four classifiers: SVM, MLP, DT and 
KNN, and seven DL techniques for feature 
extraction (FE): DenseNet201, VGG16, 
VGG19, Inception_ResNet_V2, 
Inception_V3, ResNet50 and MobileNet_V2 
for DR classification. 

(2) Assessing the twenty-eight hybrid 
architectures over the APTOS dataset. 

(3) Evaluating and comparing the performances 
of the twenty-eight hybrid architectures to 
each other using the SK test and Borda Count 
voting method.  

(4) Comparing the performances of the best 
selected hybrid architectures with the seven 
end-to-end DL architectures using the SK test 
and Borda Count method.  

The rest of this paper is structured as follows: 
Section 2 presents an overview of the seven DL 
techniques and the four classical classifiers used to 
develop the hybrid architectures. In Section 3, we 
describe the data preparation which includes the 
image pre-processing and data augmentation. Section 
4 outlines the empirical methodology followed in this 
research. Section 5 reports and discusses the 
empirical results. Section 6 presents the threats of 
validity of the study. Section 7 summarizes the 
conclusion and draws the future works. 

2 BACKGROUND 

The present study developed twenty-eight hybrid 
architectures based on seven DL architectures for 
feature extraction and four classical machine learning 
techniques as classifiers. This section presents an 
overview of each technique used: feature extractor or 
classifier. 

2.1 Feature Extraction Techniques 

This section presents the seven deep learning 
architectures used for FE: 

VGG16 and VGG19: VGG16 is a convolution 
neural network (CNN) architecture which was used to 
win ILSVR (ImageNet) competition in 2014 
(Simonyan and Zisserman, 2015). VGG16 expects as 
an input 224 x 224 RGB image, the architecture of the 
model is composed of convolution layers blocks of 
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3x3 filters with a stride 1 and always used the same 
padding and maxpooling layer of 2x2 filters of stride 
2. It has 3 fully connected layers (FC) and a softmax 
for the output. All hidden layers are equipped with the 
rectified linear unit (ReLU) non-linearity. The main 
difference between the VGG16 and VGG19 is the 
number of layers the16 and 19 refer to the number of 
layers in the VGG16 and VGG19 respectively. 

Inception_V3: Is a convolutional neural network 
architecture from the Inception family, the inception 
models differ from the ordinary CNN in the structure 
where the inception models are inception blocks, that 
means lapping the same input tensor with multiple 
filters and concatenating their results. Inception_V3 
is an improved version of inception_V1 and 
inception_V2 with more parameters. It is 42 layers 
deep with a default input size fixed to 299x299 
(Szegedy et al., 2016).  

ResNet50: Short for Residual Networks is a classic 
convolutional neural network that has 50 layers deep, 
it expects as an input a 224 x 224 image. The 
architecture of ResNet50 is inspired by VGG; it has 
3×3 filters and follows two simple design rules: (1) 
for the same output feature map size, the layers have 
the same number of filters; and (2) if the feature map 
size is halved, the number of filters is doubled so as 
to preserve the time complexity per layer (He et al., 
2016). 

Inception_ResNet_V2: Is a convolutional neural 
network that is trained on more than a million images 
from the ImageNet database. It is built on the 
Inception family of architectures but incorporates 
residual connections, it expects as an input 299 x 299 
image(Szegedy et al., 2017). 

DenseNet201: Is a CNN architecture that is 201 
layers deep. It is composed of dense blocks that are 
densely connected together: Each layer receives in 
input all previous layers output feature maps (Huang 
et al., 2017). DenseNet201 is an improvement of 
ResNet that includes dense connections among 
layers. It connects each layer to every other layer in a 
feedforward fashion. Unlike traditional CNNs with L 
layers that have L connections, DenseNet201 has L 
(L+1)/ 2 direct connections. 

MobileNet_V2: Its architecture is based on an 
inverted residual structure where the residual 
connections are between the bottlenecks layers. It 
contains 53 layers and it is a lightweight architecture 
that performs a single convolution on each color 
channel rather than combining all three and flattening 
it (Sandler et al., 2018). 

2.2 Classification Techniques 

This section presents the four classification 
techniques used in the hybrid architectures. Note that 
we used the default configuration of the four 
classifiers.  

MLP: short for multilayer perceptron (MLP) is a feed 
forward artificial neural network model that maps 
input data onto appropriate output data(Bhatkar and 
Kharat, 2016). It is used for both classification and 
regression. Five parameters should be seated 
carefully when an MLP is used: the number of hidden 
layers, the number of neurons of each hidden layer, 
the number of training epochs, the learning rate and 
the momentum. 

SVM: Short for Support Vector Machine, it is a 
supervised machine learning algorithm which is used 
for classification and regression. The main idea of 
SVM is to find maximum marginal hyperplane that 
best divides the dataset into classes(Kaur et al., 2019). 

DT: Short for decision tree, it is used for both 
classification and regression problems. In the tree 
structures, each node represents a feature from the 
data pattern, each branch is a decision rule, and each 
leaf represents an output depending on the 
problem(Poolsawad, Kambhampati and Cleland, 
2014). 

KNN: Short for k-Nearest Neighbor, itis a supervised 
machine learning technique used for classification 
and regression tasks. It uses in general the Euclidian 
distance to measure the similarity between its nearest 
neighbors(Bandyopadhyay et al., 2018). 

3 DATA PREPARATION 

This section presents the data preparation process we 
followed for the the APTOS dataset, which consists 
of data acquisition, data pre-processing and data 
augmentation. 

3.1 Data Acquisition 

In this study, we evaluated the performances of the 
twenty-eight hybrid architectures using the APTOS 
dataset which contains 3662 images. The images 
were gathered from multiple clinics using a variety of 
cameras and it contains the grades of DR on a scale 
of 0 to 4 (APTOS 2019 Blindness Detection | Kaggle, 
2019).  Note that DR is usually classified into five 
grades: no DR, mild, moderate, severe non 
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proliferative diabetic retinopathy, and proliferative 
diabetic retinopathy.  

3.2 Data Preprocessing and 
Augmentation 

Figure 1 show samples before and after the 
preprocessing. Preprocessing is an important step to 
improve the quality of the images since the images of 
low quality can produce inaccurate results (Razzak, 
Naz and Zaib, 2018). Therefore, in order to reduce the 
noise, several pre-processing methods were applied to 
the fundus images. First, we have started by 
relabeling the data since the target variable of our 
study is the referable diabetic retinopathy; therefore, 
we needed to relabel the three datasets from a scale of 
0 to 4, to a scale of 0 to 1 where 0 stands for no 
referable DR and 1 stands for referable DR. Note that 
referable diabetic retinopathy was defined as a 
diabetic retinopathy severity level of moderate non 
proliferative diabetic retinopathy or worse. Then, the 
images were cropped in order to distinguish the 
foreground (the retina) from background of the 
images. After that, all the images were resized in 
accordance with the input requirement of the seven 
deep learning architectures. And, we applied the 
algorithm of Graham by subtracting each pixel value 
of images by the weighted means of its surrounding 
pixel values, and add it by 50% grayscale which 
makes the blood vessels as well as the lesion areas in 
fundus images more explicit (Diabetic Retinopathy 
Detection | Kaggle, no date). Then, we normalized the 
data by converting the pixel values of images from [0, 
255] to [0, 1] before feeding images to the network in 
order to remove the noise from the images. Finally, 
we resampled the images of the dataset by generating 
three new images from each single input image with 
different augmentation techniques such as shifting, 
rotating and flipping because of the fact that the 
number of images in each category (rDR and no rDR) 
is imbalanced since half of images in the dataset were 
labeled with No rDR class. Therefore, the total 
number of samples with rDR was increased by 2.  

 
Figure 1: Samples before and after the preprocessing. 

4 EMPIRICAL DESIGN  

This section presents the empirical design of the 
present study, including:  (1) the five-fold cross 
validation and the performance metrics used to 
evaluate the architectures, (2) the statistical test Skott 
Knott used to cluster the architectures based on their 
accuracy values, (3) Borda Count voting method used 
to rank the architectures of the best SK cluster 
according to accuracy, sensitivity, precision and F1-
score and (4) the experimental process we followed 
to carry out all the empirical evaluations.  

4.1 Performance Metrics 

In this study, we trained and evaluated the 
architectures using the k-fold cross validation with k 
equal to 5, and we reported the average of the 
performance metrics during the five iterations of each 
technique. We used four metrics to evaluate the 
performances of the classifiers: accuracy, sensitivity, 
precision, and F1 score.  

4.2 Statistical Test SK and Borda 
Count  

Scott Knott Test: is an exploratory clustering 
algorithm usually used in the analysis of variance 
(ANOVA) context. It was proposed by Scott and 
Knott to find distinction overlapping groups based on 
the multiple comparisons of treatment means 
(Jelihovschi and Faria, 2000).  

Borda Count: is a voting method for single winner 
election methods. In this technique, points are given 
to candidates based on their ranking; 1 point for last 
choice, 2 points for second-to-last choice, and so on 
until you are at the top. The point values for all ranks 
are totaled, and the candidate with the largest point 
total is the winner (García-Lapresta and Martínez-
Panero, 2002). In this study, we used Borda count 
technique to find the best performing hybrid 
architectures based on the four performance measures 
with equal weights. This strategy was used to make 
sure that we do not favor a particular performance 
criterion. We used the Borda Count method based on 
the four-performance metrics: accuracy, precision, 
sensitivity and F1-score. 

4.3 Experimental Process 

In this subsection, we explain the methodology we 
followed to carry out the empirical evaluations. It 
consists of five steps and it is similar to 
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methodologies used in (Bony et al., 2001; Sharma et 
al., 2003; Azzeh, Nassif and Minku, 2015; Idri and 
Abnane, 2017; Idri, Abnane and Abran, 2018). The 
evaluation process involves: 

1) Assess the four-performance metrics of each 
variant of the four classifiers (SVM, DT, MLP, 
KNN) using the seven deep learning 
architectures as feature extractors 
(DenseNet201, MobileNet_V2, VGG16, 
VGG19, Inception_V3, ResNet50, 
Inception_ResNet_V2). 

2) Cluster the hybrid architectures of each 
classifier using the SK test based on accuracy 
and identify the best SK clusters. 

3) Rank the hybrid architectures of the best SK 
cluster of each classifier using the Borda count 
voting method based on the four performance 
measures (accuracy, precision, sensitivity and 
F1-score). And select the best hybrid 
architecture of each classifier. 

4) Cluster the best hybrid architectures of the four 
classifiers (obtained in Step 3) using the SK test 
based on accuracy. 

5) Rank the best hybrid architectures of Step 4 
using Borda count voting method. 

6) Evaluate and compare the performances of the 
best selected hybrid architectures of step 4 with 
seven end-to-end DL architectures (the same DL 
techniques used as feature extractors) using SK 
test and Borda Count voting method.  

5 RESULTS AND DISCUSSION 

In this section, we discuss the results of the empirical 
evaluations of the hybrid architectures over the 
APTOS dataset. The performances of the 
architectures were evaluated using four performance 
criteria: accuracy, sensitivity, precision and F1-score. 
First, for each classifier we evaluated the 
performances in terms of accuracy. Thereafter, we 
evaluated the influence of the seven DL feature 
extractors on the performances of the four classifiers 
to identify which ones of them are positively 
impacting the performance of the classification. 
Then, we compared the best hybrid architectures of 
the four classifiers to identify the best hybrid 
architecture. Finally, we compared the best hybrid 
architectures with the seven end-to-end DL 
techniques to identify which hybrid architecture (if 
exist) outperformed the end-to-end architectures. 

5.1 RQ1: What Is the Overall 
Accuracy Performance of the 
Hybrid Architectures in Referable 
DR Classification? 

In this section we are going to evaluate and compare 
the hybrid architectures by assessing the accuracy 
values for each classifier. Table 1 summarizes the 
testing accuracy values of the hybrid architectures 
over the APTOS dataset. We observe that: 

• For SVM, the best accuracy value was 
achieved by using MobileNet_V2 for FE, it 
reached 88.80%, and the worst accuracy value 
was achieved by using ResNet50 for FE and it 
reached 75.80%. 

• For MLP, the best accuracy value was 
achieved by using the DenseNet201 for FE, it 
reached 87.15%, and the worst accuracy value 
was achieved by using ResNet50 for FE and it 
reached 72.07%.  

• For KNN, the best accuracy value was 
achieved by using MobileNet_V2 for FE, it 
reached 82.89%, and the worst accuracy value 
was achieved by using DenseNet201 for FE 
and it reached 73.58%. 

• For DT, the best accuracy value was achieved 
by using MobileNet_V2 for FE, it reached 
73.16%, and the worst accuracy value was 
achieved by when using VGG19 for FE and it 
reached 69.99%.  

5.2 RQ2: Is There Any Deep Learning 
Technique for Feature Extraction 
Which Distinctly Outperformed the 
Others When Used in Hybrid 
Architectures? 

This section aims to evaluate the effect of the seven 
DL feature extractors on the performances of the four 
classifiers to identify (if exist) the DL techniques that 
are positively influencing the classification 
performances. For this purpose, we used: (1) the SK 
test based on the accuracy values to cluster the 
architectures having the same predictive capabilities 
regardless the feature extractor used, and (2) the 
Borda count method based on the four-performance 
metrics to rank the architectures belonging to the best 
SK clusters of each classifier. Table 1 shows the 
values of the four performance measures of all the 
hybrid architectures. Figure 2 shows the results of SK 
test. We observe that: 
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• For SVM, we obtained three clusters. The best 
SK cluster contains 3 feature extraction 
techniques: MobileNet_V2, 
InceptionResNet_V2 and DenseNet201. The 
second SK cluster contains the VGG16, 
Inception V3 and the VGG19. The last cluster 
contains the ResNet50.  

• For MLP, we obtained four clusters which 
imply that the MLP classifier is impacted by 
the DL feature extractor used. The best SK 
cluster contains 3 FE techniques: 
DenseNet201, MobileNet_V2, and 
InceptionResNet_V2. The second SK cluster 
contains VGG16, and Inception V3. The third 
SK cluster contains VGG19. And, the last 
cluster contains MLP with ResNet50.  

• For DT, we obtained two clusters. The best SK 
cluster contains 4 FE techniques: 
MobileNet_V2, InceptionResNet_V2, 

DenseNet201 and VGG16. The second SK 
cluster contains the ResNet50 and the 
Inception_V3 and VGG19.  

• For KNN, we obtained two clusters. The best 
SK cluster contains 5 FE techniques: 
MobileNet_V2, VGG16, Inception_V3, 
InceptionResNet_V2 and VGG19. The second 
SK cluster contains ResNet50 and the 
DenseNet201.  

Table 2 shows the Borda count ranks of the DL 
architectures of the best SK cluster for each classifier. 
As can be seen, the architectures designed with 
MobileNet_V2 were ranked first regardless the 
classifier, except the MLP. The DenseNet201 was 
ranked first with MLP and third with the SVM and 
DT. As for the InceptionResNet_V2, it was ranked 
second for SVM, DT and MLP and it was ranked third 
with the KNN. The VGG16 was ranked second with 
the KNN and fourth with the DT. For the VGG19 and  

Table 1: Accuracy, precision, recall and F1 score values of the hybrid architectures. 

Classifier Feature extractor Accuracy Sensitivity Precision F1-Score 
MLP VGG16 83.66% 76.43% 89.66% 82.52% 

VGG19 80.56% 69.30% 90.27% 78.41% 
MobileNet_V2 86.86% 80.77% 91.32% 85.72% 
DenseNet201 87.15% 80.93% 92.66% 86.40% 
Inception_V3 83.20% 80.77% 85.01% 82.34% 

ResNet50 72.07% 53.73% 85.91% 66.11% 
InceptionResNet_V2 86.59% 86.11% 87.12% 86.61% 

SVM VGG16 85.30% 78.07% 91.58% 84.29% 
VGG19 84.45% 78.28% 89.41% 83.48% 

MobileNet_V2 88.80% 85.89% 92.03% 88.85% 
DenseNet201 87.68% 82.61% 92.10% 87.10% 
Inception_V3 84.83% 83.16% 86.11% 84.61% 

ResNet50 75.80% 76.73% 75.59% 76.16% 
InceptionResNet_V2 88.72% 88.59% 88.99% 88.80% 

DT VGG16 72.21% 65.63% 75.86% 70.38% 
VGG19 69.99% 59.96% 75.51% 66.84% 

MobileNet_V2 73.16% 65.95% 78.81% 71.80% 
DenseNet201 72.87% 63.22% 78.71% 70.12% 
Inception_V3 70.00% 68.95% 70.61% 69.77% 

ResNet50 70.19% 58.43% 77.20% 66.52% 
InceptionResNet_V2 72.95% 67.32% 76.29% 71.52% 

MobileNet_V2 73.16% 65.95% 78.81% 71.80% 
KNN VGG16 81.36% 73.31% 88.06% 80.01% 

VGG19 79.62% 71.87% 85.25% 77.99% 
MobileNet_V2 82.89% 73.67% 90.57% 81.25% 
DenseNet201 73.58% 52.42% 91.10% 66.54% 
Inception_V3 81.24% 76.65% 84.53% 80.40% 

ResNet50 74.49% 64.15% 81.22% 71.68% 
InceptionResNet_V2 80.22% 73.70% 85.09% 78.99% 
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Figure 2: SK test Results of the hybrid architectures using the four classifiers. 

Table 2: Borda count ranking of the best hybrid architectures using the four classifiers. 

Classifier 
 

Rank 

MLP SVM KNN DecisionTree 

1 DenseNet201 MobileNet_V2 MobileNet_V2 MobileNet_V2 
2 IncepResNet_V2 IncepResNet_V2 VGG16 and Inception_V3 IncepResNet_V2 
3 MobileNet_V2 DenseNet201 IncepResNet_V2 DenseNet201 
4 - - VGG19 VGG16 

Table 3:  Occurrences of DL techniques in the best SK clusters and their Borda count ranks. 

DL for feature extraction Appearance in the best SK cluster Borda Count Ranking 

MobileNet_V2  4 3 times first rank 
1 time third rank 

InceptionResNet_V2 4 3 times second rank 
         1 time third rank 

DenseNet201  3 1 time first rank 
2 times third rank 

VGG16  2 1 time second rank 
1 time fourth rank

VGG19  1 Fourth rank 
ResNet50  -- -- 

Inception_V3  1 Second rank 
 
Inception_V3, they only belong to the best cluster of 
the KNN classifier and were ranked second and 
fourth respectively. Finally, ResNet50 in general 
underperformed all the other feature extractors. 

To evaluate the impact of each feature extraction 
technique on the classification performance 
regardless the classifier, we count the number of 
occurrences of each feature extractor in the best SK 
clusters. In case of a tie, we refer to the Borda count 
voting method. As can be seen in Table 3, the best 
performing feature extractor is MobileNetV2, 
since it appears 4 times in the best SK clusters and 

was ranked 3 times first. The following feature 
extractors are the DenseNet201 and 
Inception_ResNet_V2 since they appeared 3 and 4 
times in the best SK clusters respectively, note that 
the DenseNet201 was ranked first and two times 
third, and Inception_ReseNet_V2 was ranked second 
3 times and third one time. The VGG16 appears in the 
best cluster 2 times and was ranked second and fourth 
respectively. Finally, the VGG19 and Inception V3 
appeared 1 time in the best SK clusters.  

To summarize, DT and KNN are the less sensitive 
classifiers to the FE techniques used since we 
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obtained only two clusters for each. MobileNet_V2 
was the best feature extractor positively impacting the 
DR classification performance regardless the 
classifier used. Finally, DenseNet201 and 
InceptionResNetV2 were the following best feature 
extractors. 

5.3 RQ3: Is There Any Hybrid 
Architectures Which Distinctly 
Outperformed the Others 
Regardless the Feature Extractor 
and the Classifier Used? 

This Section uses the SK test based on accuracy to 
evaluate the predictive capabilities of the best hybrid 
architectures of the four classifiers (i.e., hybrid 
architectures ranked first in Table 2).  
Subsequently, we discuss the ranking results of the 
architectures belonging to the best SK clusters by 
using the Borda count voting method to identify the 
best hybrid architecture regardless the classifier. 
Figure 3 shows the results of the SK test applied on 
the best ranked hybrid architectures. We obtained 
three clusters. The best SK cluster contains two 
hybrid architectures: SVM with MobileNet_V2 and 
MLP with DenseNet201. The second SK cluster 
contains KNN with MobileNet_V2. The last cluster 
contains DT with and MobileNet_V2. This means 
that SVM with MobileNet_V2 and MLP with 
DenseNet201 significantly outperformed the other 
techniques. Using the Borda count voting method on 
the hybrid architectures of the best SK cluster, we 
notice that the SVM with MobileNet_V2 and MLP 
with DenseNet201 were ranked first and second 
respectively as shown in Table 4. 

 
Figure 3: Results of SK test over the best hybrid 
architectures. 

Table 4: Borda count ranking of the best hybrid 
architectures. 

Rank Hybrid architecture
1 MobileNet_V2 + SVM
2 DenseNet201 + MLP

5.4 RQ4: Is There Any Hybrid 
Architectures Which Distinctly 
Outperformed the End-to-End 
Classifiers?  

In this section, we used the SK test based on accuracy 
to compare the performances of the best hybrid 
architectures of the four classifiers (i.e., hybrid 
architectures ranked first in Table 2) with seven end 
to end DL architectures. The end-to-end deep 
learning architectures we used are the same 
architectures that have been used for the feature 
extraction. In fact, we trained the end-to-end models 
by using the hyper-parameter tuning; we used the 
Adam (adaptive moment estimation) for the 
optimisation with an initial learning rate set to 0.0001. 
Moreover, we usedL2- regularizers and weight decay 
to reduce the overfitting. A fully connected layer was 
trained with the ReLU activation function, followed 
by a dropout layer with a probability of 0.5. We 
modified the last layer in all models to output two 
classes (referable DR and No referable DR) instead 
of 1000 classes as was used for ImageNet(Deng et al., 
2010). Finally, we trained the models using 200 
epochs. 

Thereafter, we discuss the ranking results of the 
best architectures. Table 5 shows the values of the 
four performance measures of all the end-to-end 
architectures. Figure 4 shows the results of the SK test 
applied on the seven end-to-end techniques and the 
best ranked hybrid architectures. We obtained six SK 
clusters. The best cluster only contains two end-to-
end architectures: MobileNet_V2 and DenseNet201.  

The second cluster contains two end to end 
architectures: InceptionResnet_V2 and Inception_V3 
and only one hybrid architecture: MobileNet_V2 with 
SVM. The third cluster contains the hybrid 
architecture DenseNet201 with MLP and the end-to-
end architecture VGG16.The fourth cluster contains 
the end-to-end architecture VGG19 and the hybrid 
architecture MobileNet_V2 with KNN. Finally, the 
fifth and sixth SK clusters contain the end-to-end 
architecture ResNet50 and the hybrid architecture DT 
with MobileNet_V2 respectively. This means that the 
end-to-end architectures belonging to the best cluster 
outperformed all the hybrid architectures in terms of 
accuracy. The hybrid architecture SVM with 
MobileNet_V2belongs to the second cluster which 
means that it performed better than all the end-to-end 
architectures of the remaining clusters; however, the 
other hybrid architectures, in particular MobileNet 
with KNN and DT were the worst since they belong 
to the last clusters.  
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Figure 4: Results of SK test of the best hybrid architectures and the end-to-end techniques. 

Table 5: Performance of the end-to-end DL techniques. 

DL technique Accuracy Sensitivity Precision F1-score 
VGG16 85.89% 77.41% 93.33% 84.63% 
VGG19 84.63% 73.95% 94.24% 82.87% 

DenseNet201 91.62% 90.06% 93.03% 91.52% 
MobileNet_V2 93.09% 89.27% 98.22% 93.53% 
Inception_V3 89.75% 90.34% 89.26% 89.80% 

ResNet50 78.25% 67.30% 86.39% 75.66% 
Inception_ResNet_V2 89.82% 90.31% 89.35% 89.83% 

 
We conclude that in terms of accuracy the end-to-

end architectures in general outperformed the hybrid 
ones. Note that the best cluster contains only the end-
to-end techniques, and therefore, there is no need to 
use the Borda count voting method. 

6 THREATS OF VALIDITY 

This section presents the threats to this paper’s 
validity with respect to external and internal validity. 

Internal Validity: This paper used the K-fold cross 
validation method to promote robustness of the mean 
accuracy of the architectures (Xu and Goodacre, 
2018). Another internal threat for this experiment is 
the use of the most popular pre-trained models to 
extract features from images over the APTOS dataset. 

External Validity: This study used the APTOS 
dataset which contains fundus images; therefore, we 
cannot generalize the obtained results for all the 
datasets with the same type of images. However, it 
will be a good benefit to redo this study using other 
DL techniques such as the UNET model with other 
public or private datasets in order to confirm or refute 
the findings of this study.  

Construct Validity: For the reliability of the 
classifier performances obtained, this study focused 
on the accuracy and other three performance criteria 
(precision, sensitivity and F1-score). The main reason 
behind the choice of these performance criteria is that 
most of the studies used them to measure the 

classification performance (Islam et al., 2020). 
Moreover, the conclusion was drawn by using the SK 
test and Borda count voting system with equal 
weights using these four performance criteria. This 
strategy was adopted to make sure that we do not 
favor a particular performance criterion more than 
another. 

7 CONCLUSION AND FUTURE 
WORK 

In this paper, we discussed and presented the results 
of an empirical comparative study of twenty-eight 
hybrid architectures using four classifiers (SVM, DT, 
MLP and KNN) and seven DL techniques for feature 
extraction (MobileNet_V2, DenseNet201, 
Inception_V3, ResNet50, Inception_ResNet_V2, 
VGG19 and VGG16) for referable DR classification. 
All the empirical evaluations used four performance 
criteria (accuracy, sensitivity, precision and F1-
score), SK statistical test, and Borda Count to assess 
and rank these twenty-eight hybrid architectures over 
the APTOS dataset. The main findings of this study 
are: 

 
RQ1: What is the overall performance of the 

hybrid architectures in referable DR 
classification? 

The accuracy results of the constructed hybrid 
architectures were highly influenced by the DL 
techniques used as feature extractors and the 
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classifiers. Nevertheless, we observed that the use of 
MobileNet_V2 for FE regardless the classifier, 
DenseNet201 with SVM, MLP and DT, 
Inception_ResNet_V2 regardless the classifier, 
VGG16 with KNN and DT and finally the VGG19 
and the InceptionV3 with KNN gave good results. 
However, the use of ResNet50 regardless the 
classifier underperformed the other techniques. 

 
RQ2: Is there any deep learning technique for 

feature extraction which distinctly outperformed 
the others when used in the hybrid architectures? 

The architectures using MobileNet_V2 gave the 
best results, followed by the DenseNet201 and 
InceptionResNetV2 since they appeared in the best 
SK clusters. Finally, ResNet50 is the worst 
performing compared to the other DL techniques. 

 
 RQ3: Is there any hybrid architectures which 

distinctly outperforms the others regardless the 
feature extractor technique and the classifier 
used? 

The hybrid architecture using SVM with 
MobileNet_V2 gave the best results. Followed by the 
hybrid architecture designed using MLP with 
DenseNet201. Followed by the hybrid architectures 
designed using the KNN classifier and 
MobileNet_V2. The most underperforming 
architectures are the ones designed using DT. As 
results we recommend the use of SVM with 
MobileNet_V2 hybrid architecture for the 
classification of fundus images with referable DR. 

 
RQ4: Is there any hybrid architectures which 

distinctly outperformed the end-to-end classifiers? 
The two end-to-end architectures DenseNet201 

and MobileNet_V2 outperformed all the hybrid 
architectures. Nevertheless, the hybrid architecture 
designed using SVM with MobileNet_V2 is 
promising and it was classified among the best end-
to-end architectures. Therefore, we recommend the 
use of the hybrid architecture designed using SVM 
with MobileNet_V2 since it is the best performing 
hybrid architecture. 
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