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Abstract: Breast cancer (BC) is a leading cause of death among women worldwide. It remains a critical challenge, 
causing over 10 million deaths globally in 2020. Medical images analysis is the most promising research area 
since it provides facilities for diagnosing several diseases such as breast cancer. The present paper carries out 
an empirical evaluation of recent deep Convolutional Neural Network (CNN) architectures for a binary 
classification of breast cytological images based fined tuned versions of seven deep learning techniques: 
VGG16, VGG19, DenseNet201, InceptionResNetV2, InceptionV3, ResNet50 and MobileNetV2. The 
empirical evaluations used: (1) four classification performance criteria (accuracy, recall, precision and F1-
score), (2) Scott Knott (SK) statistical test to select the best cluster of the outperforming architectures, and (3) 
borda count voting system to rank the best performing architectures. All the evaluations were over the FNAC 
dataset which contain 212 images. Results showed the potential of deep learning techniques to classify breast 
cancer in malignant and benign, therefor the findings of this study recommend the use of MobileNetV2 for 
the classification of the breast cancer cytological images since it gave the best results with an accuracy of 
98.54%.  

1 INTRODUCTION 

Breast cancer (BC) is still the leading cause of death 
among women worldwide (Metelko et al., 1995). It 
remains a global challenge, causing over 1 million 
deaths globally in 2019 (Bish et al., 2005). As the 
number of patients infected by this disease increases, 
it turns out to be increasingly hard for radiologists to 
accurately deal with the diagnosis process in the 
constrained accessible time (Zhang et al., 2011). 
Medical images analysis is one of the most promising 
research areas, it provides facilities for diagnosis and 
making decisions of several diseases such as breast 
cancer. Recently, more attention are paid to imaging 
modalities and Deep Learning (DL) in BC 
(Mendelson and Eb, 2019). Therefore, interpretation 
of these images requires expertise and consequently  
several algorithms have been developed and 
evaluated to improve and help oncologist’s diagnosis. 
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In general, DL showed better performance in breast 
cancer detection, and provided high accurate 
classifications compared with classical Machine 
Learning (ML) techniques (Saha, Mukherjee and 
Chakraborty, 2016) (Sadoughi et al., 2018). For 
instance, the study (Saha, Mukherjee and 
Chakraborty, 2016) showed that the use of deep CNN 
architectures is very powerful and efficient in the 
domain of DL since it tested the InceptionRecurrent 
Residual CNN in the dataset BreakHis and it gave 
better results compared to existing techniques such as 
CNN and SVM. The study (Xie et al., 2019) used 
AlexNet and LeNet for the binary classification of the 
BreakHis dataset and showed an improvement of the 
accuracy compared to the traditional ML techniques. 
However, the present study develops and evaluates 
the performances measured in terms of accuracy, 
sensitivity, recall, precision and F1-score of seven of 
the most recent DL techniques in BC classification 
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over the FNAC dataset. To the best of our knowledge, 
this study is the first to evaluate and compare seven 
DL techniques (VGG16, VGG19, DenseNet201, 
InceptionResNetV2, InceptionV3, ResNet50 and 
MobileNetV2) using the Scott Knott (SK) statistical 
test and the borda count voting method in BC binary 
classification. Note that the SK test has been widely 
used to comparing, clustering and ranking multiple 
machine learning models for parameters tunning 
(Idri, Hosni and Abran, 2016; Ottoni et al., 2020) in 
different fields such as software engineering (Ottoni 
et al., 2020) and breast cancer (Idri et al., 2020) . 
Therefore, we use the SK test since: (1) it shows high 
performance compared to other statistical tests such 
as Jollife (Jolliffe, Allen and Christie, 1989), Calinski 
and Corsten (Calinski and Corsten, 1985), and Cox 
and Spjotvoll (Worsley, 1986) and (2) its ability to 
select the best non-overlapping groups of machine 
learning techniques. Moreover, we use the Borda 
Count voting method (García-Lapresta and Martínez-
Panero, 2002; Emerson, 2013) to rank the best SK 
selected techniques based on the four performance 
criterias.  

The present study discusses two research 
questions (RQs): 
 (RQ1): What is the overall performance of DL 

techniques in BC classification? 
 (RQ2): Is there any DL techniques which 

distinctly outperform the others? 
The main contributions of this empirical study are the 
following: (1) Designing seven DL architectures: 
VGG16, VGG19, DenseNet201, 
InceptionResNetV2, InceptionV3, ResNet50 and 
MobileNetV2 in BC classification, (2) Avoiding 
overfitting by using weight decay and L2 
regularizers, (3) Comparing the performances of the 
seven architectures using SK clustering test and borda 
count voting method. 

The remainder of this paper is organized as 
follow. Section 2 describes the related work. In 
Section 3, we present the configuration and 
parametrization of the seven DL techniques, the 
empirical methodology followed throughout the 
research, the data preparation which includes data 
acquisition and image processing and the 
abbreviations. Section 4 presents and discusses the 
empirical results. Section 5 outlines conclusions and 
future works.  

 
 
 
 
 

2 RELATED WORKS 

This section presents the results and the main findings 
of the related work as shown in Table 1, the results 
are summarized as follow:  
 Accuracy is the most frequently criterion used to 

evaluate the performance of the DL techniques in 
BC when using balanced datasets (Zerouaoui and 
Idri, 2021). 

 Most of the studies only compared two to three 
DL techniques. Although the DL architectures 
used in the selected studies were different, it is 
worth notable that the most investigated 
techniques were InceptionResNet, VGG16, 
VGG19 and ResNet50 (Alom et al., 2019; Spanhol 
et al., 2016; Xie et al., 2019) 

 Some studies (Kassani et al., 2019; (Nahid, Mehrabi 
and Kong, 2018; Zhu et al., 2019) combined more 
than  two  DL  techniques  in  order  to  have  better  

Table 1: Summary of the literature review of the use of DL 
techniques in BC classification. 

Authors Findings and results  
Alom et 
al. 
(Alom et 
al., 
2019) 

Conduct a study on the use of Inception 
Recurrent Residual Convolutional Neural 
Network (IRRCNN) which is a hybrid 
DCNN architecture based on RCNN, 
Residual Network and Inception tested on 
two datasets: BreakHis and BC 
classification challenge 2015.  
The performance was evaluated on image 
level, patch level, image based and patch-
based analysis. The results show an 
improvement of 3,67% and 2.14% of 
accuracy on the BreakHis dataset compared 
to scientific results since 2016 

Fabio et 
al. 
(Spanhol 
et al., 
2016) 

Investigate a deep learning approach, using 
two DCNN architecture which are AlexNet 
and LeNet, in order to avoid hand crafted 
features. The results of the experiments 
demonstrated an improved accuracy 
compared to the experiments that used 
traditional feature extractor techniques.

Xie et al. 
(Xie et 
al., 
2019) 

Evaluate Inception_V3 and Inception_ 
ResNet_V2 for classification of Brekhis 
using two types of learning: the supervised 
and the unsupervised learning. The authors 
used the transfer learning by pre training the 
model on ImageNet, applying Data 
augmentation and Fine tuning using the 
BreakHis dataset. The experiment shows 
that the results of the augmented dataset is 
much better than the normal dataset, that 
Inception_ ResNet_V2 has better results for 
the feature extraction and the supervised 
learning has a better accuracy than 
clustering
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Table 1: Summary of the literature review of the use of DL 
techniques in BC classification (cont.). 

Authors 
 

Findings and results  

Al 
Nahid et 
al. 
(Nahid, 
Mehrabi 
and 
Kong, 
2018) 

Use three models: CNN techniques, LSTM 
structure and the combination of CNN and 
LSTM on the BreakHis Dataset. As results 
91% of accuracy was obtained using 200x 
images dataset, 96 of precision with 40x 
images dataset, and the best F-Measure was 
obtained using 40x and 100x datasets. 

Kassani 
et al. 
(Kassani 
et al., 
2019) 

Use of a combination of CNNs deep 
learning architectures such as VGG19, 
MobileNet and Densenet for feature 
extraction on 4 histopathological dataset 
images: ICIAR, BreakHis, Densenet and 
MobilNet. Then they compared the results 
of the classification on traditional single 
models and machine learning techniques 
namely Decision tree, Random Forest, 
XGBoost, AdaBoost and bagging classifier. 
The main finding is that the proposed 
ensemble method gives better results thant 
the solo methods with an accuracy of: 
98.13%, 

Chuang 
et al. 
(Zhu et 
al., 
2019) 

Propose a hybrid architecture where they 
assembled multiple CNN architectures 
(Inception module, Residual Net and Batch 
Normalization techniques) and tested it on 
two datasets (BreakHis and BACH). The 
proposed model shows a comparable and 
better performance. 

Jiang et 
al. (Jiang 
et al., 
2019) 

Design a new CNN that includes a 
convolutional layer, a small SE-ResNet 
module and a fully connected layer, 
they tested their architecture on the 
BreakHis dataset and the results 
achieved 98,87% and 99,34% for the 
binary class and 90.66% and 93.81% for 
the multi class. 

prediction results, since the ensemble methods in 
general outperformed their single techniques. 

3 EXPERIMENT 
CONFIGURATION 

This section presents the parameter tuning of the DL 
models, the empirical design, the data preparation 
followed and finally the abbreviations. 
 
 
 
 

3.1 Experiment Configuration 

Toward an automatic binary BC classification based 
on publicly available image FNAC dataset, the 
different DL architectures have been implemented 
using several parameters tuning experiments. All the 
images of the FNAC dataset were resized to 224x224 
pixels except those of InceptionV3 and 
InceptionResNetV2 models that were resized to 
299x299 since it is the default input size in their 
architectures. To train the models, we used the 
transfer learning technique where we downloaded the 
seven DL techniques pre-trained in the ImageNet 
dataset (Fei-Fei, Deng and Li, 2010). For the 
parameter tunning, we set the batch size to 32 and the 
number of epochs to 300. As for the optimization, we 
used Adam (adaptive moment estimation) (Kingma 
and Ba, 2015) with β1=0.9, β2=0.999, and an initial 
learning rate set to 0. 0001 and decrease exponentially 
to 0.000001. Moreover, we used weight decay and 
L2- regularizers to reduce the overfitting for different 
models. A fully connected layer was trained with the 
ReLU, followed by a dropout layer with a probability 
of 0.5. We updated the last dense layer in all models 
to output two classes corresponding to benign and 
malignant instead of 1000 classes as was used for 
ImageNet.  

3.2 Empirical Design 

Figure 1 shows the methodology followed to carry 
out all the empirical evaluations. It consists of three 
steps we describe hereafter. Note that similar 
methodologies were used in  (Worsley, 
2009)(SHARMA et al., 2003)(Azzeh, Nassif and 
Minku, 2015)(Idri, Abnane and Abran, 
2018)(Zerouaoui et al., 2021)(Idri and Abnane, 
2017).  

 
Figure 1: Experimental process. 
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3.3 Data Preparation 

This section presents the data preparation process 
followed for the FNAC as described in Figure 2, 
which consists of Data pre-processing by using 
intensity normalization and Contrast Limited 
Adaptive Histogram Equalization (CLAHE) and Data 
augmentation. The Images of the FNAC dataset were 
captured by us using Leica ICC50 HD microscope 
using 400 resolution and 24 bits color depth and with 
5 megapixels camera associated with the 
microscope(Saikia et al., 2019). Digitized images 
captured were then reviewed by experienced certified 
cyto-pathologists and selected a total of 212 images 
(113 Malignant and 99 Benign). The database can be 
downloaded from the link in (Saikia et al., 2019). 

 
Figure 2: Data preparation process. 

Data Processing: The next stage is to pre-process 
input images using intensity normalization and 
Contrast Limited Adaptive Histogram Equalization 
(CLAHE). Intensity normalization is a pre-processing 
step in image processing applications (Kassani et al., 
2019). We normalized input images to the standard 
normal distribution using min-max normalization of 
Equation 1. Furthermore, before feeding input images 
into the proposed models, CLAHE is a necessary step 
to improve the contrast in images as shown in Figure 
3 (Makandar and Halalli, 2015; Kharel et al., 2017). 

 
Figure 3: Original and transformed images. 

minmax

min

xx
xxX norm −

−=  (1)
 

Data Augmentation: was used for the training 
process after dataset pre-processing and has the goal 
to avoid the risk of overfitting (Perez and Wang, 
2017). Moreover, the strategies we used include 

geometric transforms such as rescaling, rotations, 
shifts, shears, zooms and flips. 

3.4 Abbreviations 

To assist the reader and shorten the names of the DL 
techniques, we use the following naming rules in the 
rest of this paper. We abbreviate the name of each 
variant of DL techniques as shown in Table 2. 

Table 2: Abbreviations used for the DL techniques for the 
FNAC dataset. 

D.L techniques with the image 
magnification factor 

Abbreviation 

VGG 16 VGG16
VGG 19 VGG19
ResNet 50 Res50
Inception V3 INV3
Inception ResNet V2 INRES
DensNet201 DENS
MobilNetV2 MOB

4 RESULTS 

This section presents and discusses the results of the 
empirical evaluations of seven DL techniques: 
VGG16, VGG19, InceptionV3, ResNet50, 
InceptionResNetV2, DenseNet201, and 
MobileNetV2, over the FNAC dataset. The 
performances of the DL techniques were evaluated 
using 5-fold cross validation and four criteria’s: 
accuracy, recall, precision and F1-score. First the 
performance is compared in terms of accuracy of each 
DL technique (RQ1). Thereafter, we use the SK 
statistical test to cluster the selected DL techniques, 
and borda count to rank the DL techniques belonging 
to the best SK cluster (RQ2). 

4.1 Accuracy Evaluation and 
Comparison of the Seven DL 
Techniques  

This section compares the accuracy values of the 
seven DL techniques to each other over the FNAC 
dataset. Note that the training and testing of the DL 
techniques are implemented in Python using Keras 
and Tensorflow DL frameworks and run on a TPU 
processing unit of 8 cores with 35 GB in RAM and 
Linux-based OS, provided by google in Colab 
Notebook. 

Figure 4 and Table 3 show the accuracy values of 
the baseline VGG16, VGG19, DenseNet201, 
InceptionResNetV2, InceptionV3, ResNet50 and 
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MobileNetV2 vs the number of epochs over the 
FNAC dataset. We observe that the best accuracy 
values were achieved with the number of epochs 25 
using VGG16, VGG19, InceptionV3, DenseNet201, 
InceptionResNetV2 and MobileNetV2; and with the 
number of epochs 100 when using ResNet 50 since. 
The best accuracy value was achieved by MobileNet 
V2 (98.54%) followed by DenseNet201, VGG16, 
VGG19, InceptionV3 and InceptionResNetV2 with 
an accuracy value of 98.07%, 97.65%, 95.72%, 
93.51% and 91.34% respectively. The worst accuracy 
value was achieved using ResNe 50 with a value of 
91.34% 

 
Figure 4: Accuracy values vs number of epochs of the seven 
deep learning architectures over the FNAC dataset (The 
abbreviation used in Figure 3 for the DL techniques for the 
FNAC dataset are defined in Table 4 of section 6.5). 

Table 3: Accuracy values of the seven deep learning 
architectures over the FNAC dataset (The abbreviation used 
in Table 3 for the DL techniques for the FNAC dataset are 
defined in Table 1 of section 3.4). 

DL technique Accuracy (%) 

VGG16  97.65 

VGG19  95.72 

INV3 95.06 

Res50 91.34 

INRES 93.51 

DENS 98.07 

MOB 98.54  

4.2 Clustering DL Techniques using 
SK Test and Ranking Them using 
Borda Count 

This step uses the SK statistical test to evaluate the 
predictive capabilities of the DL techniques evaluated 
in step 4.1 and discusses the ranking results when 
applying the borda count voting method based on 
accuracy, recall, precision and F1-score on the best 
SK clusters. Table 4 shows the values of the four 
performance measures of all the DL techniques over 

FNAC dataset. Note that the SK test consists of 
grouping DL techniques with no significant 
difference between their accuracy values.  Since the 
SK test requires that its inputs should be normally 
distributed we verified the normality of the data by 
the Kolmogorov-Smirnov test, and since the data is 
normally distributed we didn’t use the Box Cox 
transformation (Sakia, 2012).  Afterwards, we 
performed the SK test to cluster the selected DL 
techniques into overlapping free groups and 
identified the best group based on accuracy. The DL 
techniques belonging to the same group have similar 
predictive capability and the best group contains the 
DL techniques that have the highest value of 
accuracy. 

Table 4: Best performance values of the DL techniques over 
the FNAC Dataset (The abbreviation used in Table 4 for the 
DL techniques for the FNAC dataset are defined in Table 1 
of section 3.4). 

DL  Accur
acy 
(%)

Recall 
(%) 

Precis
ion 
(%) 

F1 score 
(%) 

VGG16  97.65 98.15 97.49 97.8 

VGG19  95.72 94.98 96.95 95.95 

INV3 95.06 94.19 96.5 95.32 

Res50 91.34 91.9 91.98 91.86 

INRES 93.51 94.28 93.79 93.94 

DENS 98.07 98.42 98.86 98.63 

MOB 98.54  98.15 98.24 98.2 

From the results of the SK test shown in Figure 5, it 
is noticeable that the SK test results gives 4 clusters 
which implies that the accuracy performances are 
highly influenced by the DL model used for the 
classification. The figure shows that the best SK 
cluster contains 3 DL models including 
DenseNet201, MobileNetV2 and VGG16 and that 
last SK cluster contains the DL model ReseNet50.  

 
Figure 5: Results of SK test for the DL techniques over the 
FNAC dataset. 

Table 5 shows the borda count ranking of the 
architectures belonging to the best SK clusters for the 
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FNAC dataset. The DL architecture MobileNetV2 is 
ranked first followed by DenseNet201 and finally 
VGG16.  

Table 5: Best performance values. 
Borda Count Ranking Deep Learning model  

1 MOB 

2  DENS 

3 VGG16 

As a summary, when using the cytological FNAC 
dataset, it is recommended to use the DL architecture 
MobileNetV2 since it was ranked first when using the 
borda count voting method based on accuracy, 
precision, recall and F1-score and achieved an 
accuracy of 98.54%. On top of that MobileNetV2 
remains the perfect DL architecture since it is light 
weighted in terms of architecture and is designed for 
mobile and web application. Therefore, we highly 
recommend the use of MobileNetV2 for a binary 
cytological classification.  

5 CONCLUSIONS 

The present paper presented and discussed the results 
of an empirical comparative study of seven recent DL 
techniques (VGG16, VGG19, DenseNet201, 
InceptionResnetV2, InceptionV3, ResNet50 and 
MobileNetV2) for BC binary imaging classification. 
All the empirical evaluations used four performance 
criteria’s, SK statistical test, and borda Count to 
assess and rank these seven DL techniques over the 
FNAC dataset. The findings of this study are:  

(RQ1): What is the Overall Performance of DL 
Techniques in BC Classification? 
The accuracy results of the seven DL techniques were 
highly influenced by the characteristics of the dataset. 
Nevertheless, we observed that MobileNetV2, 
DenseNet201, VGG16, VGG19 and InceptionV3 
gave the best results. However, ReseNet50 
underperformed compared to the others. 

(RQ2): Is There Any DL Techniques, Which 
Distinctly Outperform the Others?  
MobileNetV2 technique gave the best results since it 
belonged to the best SK clusters for the FNAC dataset 
and was ranked first using the borda count voting test 
based on accuracy, recall, precision and F1-score. As 
results we recommend the use of MobileNet V2 to 
develop DL computer assister diagnosis systems 

since it gives good results when using cytological 
images for binary BC classification. 

Ongoing works investigate homogenous and 
heterogeneous ensembles whose members are deep 
learning techniques with different meta-learning 
techniques such as bagging, boosting and stacking for 
breast cancer imaging classification.  
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