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Abstract: Traffic congestion is increasing steadily worldwide and many researchers have attempted to employ smart
methods to control the traffic. One such approach is the multi-agent reinforcement learning (MARL) scheme
wherein each agent corresponds to a moving entity such as vehicles. The aim is to make all mobile objects
arrive at their target destination in the least amount of time without collision. However, as the number of
vehicles increases, the computational complexity increases, and therefore computation cost increases, and
scalability cannot be guaranteed. In this paper, we propose a novel approach using MARL, where the traffic
junction becomes the agent. Each traffic junction is composed of four Micro Junction Agents (MJAs) and a
MJA becomes the observer and the agent controlling all vehicles within the observation area. Results show
that MJA outperforms other MARL techniques on various traffic junction scenarios.

1 INTRODUCTION

Traffic congestion in cities is getting severe as the
metropolitan area expands. Traffic congestion trig-
gers harmful effects on the environment and low en-
ergy efficiency of transportation. Various social stud-
ies show that Americans burn approximately 5.6 bil-
lion gallons of fuel each year simply idling their en-
gines (Lasley, 2019; Fiori et al., 2019). Recent ad-
vances in autonomous vehicles, vehicle to vehicle
communication, and Internet of Things (IoT) infras-
tructures will allow the control of vehicles to allevi-
ate traffic congestion. Researchers in various fields
attempted to solve the traffic congestion problem,
by applying optimization theories and heuristic tech-
niques (Hartanti et al., 2019; Khoza et al., 2020).
As machine learning methods became successful in
many fields of research, reinforcement learning has
been applied to traffic control (Walraven et al., 2016).

There are two major approaches to traffic con-
trol. One major approach is traffic signal control
(Wei et al., 2019) and is extensively studied. The
traffic congestion problem is solved by intelligently
controlling the traffic light system. Many schemes
such as rule-based, heuristic method, and multi-agent
methods are used. However, traffic lights have been
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argued as a suboptimal way of managing intersec-
tions (Dresner and Stone, 2008). Another major
branch of research is the traffic junction or intersec-
tion problem where there are no traffic lights (Fig-
ure 1). Many researchers use a multi-agent method to
solve this problem. A machine learning method called
multi-agent reinforcement learning (MARL) is used
(Buşoniu et al., 2010) to enhance the performance.
The absence of traffic lights proves to be a more dif-
ficult problem but if the vehicles are controlled cor-
rectly, the traffic junction can be a better system to
reduce the traffic congestion. For all traffic control
research, the collision of the vehicles means failure.
Thus, the goal will be the intelligent control of the
overall system to guide the vehicles to their prede-
termined destination while avoiding collisions. The
environment in this paper assumes an autonomous in-
tersection management problem (Dresner and Stone,
2008) and all vehicles’ routes are predetermined.

We propose a novel method to tackle the no traf-
fic light traffic junction problem for autonomous ve-
hicles. Our method combines two key ideas. The
first is that a junction or intersection is partitioned
into homogeneous Micro Junction Agents (MJAs).
Each MJA controls the vehicles that are situated in
the MJA’s predetermined governing area. Second, the
intersection management problem is formulated as a
Decentralized Partially Observable Markov Decision
Process (Dec-POMDP) (Bernstein et al., 2002) and
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Figure 1: Traffic junction environment and an example of vehicle movements in three modes.

solved using a version of simple parameter-shared in-
dependent Q-learning (IQR) (Tan, 1993). By design-
ing the observation space and the action space of a
MJA to be optimized, we are able to build a scal-
able multi-agent traffic control system without ex-
plicit communication.

This paper is organized as follows. In Section 2,
related research is introduced. Section 3, describes
our proposed approach. In section 4, the experiments
and results are evaluated and compared to other meth-
ods. Section 5 concludes this paper.

2 RELATED WORK

Several studies were conducted using the traffic junc-
tion environment (Sukhbaatar et al., 2016; Singh
et al., 2018; Das et al., 2019; Su et al., 2020). These
works are mainly about achieving a common goal of
guiding vehicles to their destination without any col-
lision by intelligently communicating between mov-
ing agents. These papers use reinforcement learning
where explicit communication between vehicles un-
der partial observability is assumed. Our approach re-
quires communication between a traffic junction and
vehicles within its observation boundary only. There-
fore, the proposed method in this paper require fewer
communication and the computation cost is a function
of the number of traffic junctions not the vehicles.

The problem in this paper is closely related to
a problem called autonomous intersection manage-
ment (AIM), proposed in (Dresner and Stone, 2008),
where each intersection intelligently controls vehicles
that pass through. (Hausknecht et al., 2011) studies
this problem when multiple intersections exist. This
multi-intersection setup is almost identical to the traf-
fic junction environment. The difference is that the
traffic junction environment assumes that the route of
each vehicle is pre-determined. Our approach intro-
duces a multi-agent reinforcement learning scheme,

where an intersection or a traffic junction is divided
into four micro junction agents (MJAs). Contrary to
the approaches using a heuristic method (Chouhan
and Banda, 2018; Parker and Nitschke, 2017), our re-
inforcement learning scheme enables higher scalabil-
ity.

3 PROPOSED APPROACH

3.1 Traffic Junction Environment

The traffic intersection environment introduced in
CommNet (Sukhbaatar et al., 2016) is used for the ex-
perimental environment (Figure 1). The traffic junc-
tion is a two-dimensional discrete-time traffic simula-
tion environment. Vehicles have pre-assigned routes
and are randomly added to the traffic junctions with
probability Parrive at each time step. They occupy a
single cell at any given time and have two possible
actions: gas (go forward) and stay (stop). A vehicle
will be removed once it reaches its destination grid
cell.

The total number of vehicles at any given time
is fixed at Nmax. In each time-step, they commu-
nicate and need to avoid collisions with each other
and reach their destinations. If all vehicles do not
crash until max-steps, we treat it as a success for
that episode. The task has three difficulty level set-
tings (easy, medium, hard) (Figure 1), and each mode
varies in the number of possible routes, junctions, and
entry points.

3.2 Model

The traffic junction environment can be seen as a
fully cooperative and partially observable multi-agent
problem (Gupta et al., 2017). As a fully cooperative
system, all agents obtains the global reward for ev-
ery time step. We further assume to have homoge-
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Figure 2: MJAs in each mode of traffic junction. Highlighted with colors.

neous agents, so that the solution of the problem is
a shared policy which maximizes the cumulative dis-
counted reward.

The problem is modeled using Dec-POMDP
(Bernstein et al., 2002) using the tuple (N , S , {Ai},
{Zi}, T , R, O). Where N is a finite set of agents, S is
a set of states, {Ai} is a set of actions for each agent
i, {Zi} is a set of observations for each agent i, and T ,
R, O are the joint transition, reward, and observation
models, respectively.

3.3 Environmental Setup

3.3.1 Micro Junction Agent

The intersection grid cells of the traffic junction envi-
ronment are partitioned as shown in Figure 2. Each
partitioned cells (four for each intersection except for
the easy scenario) are homogeneous agents and con-
trol the vehicles in their governing area. These agents
are called Micro Junction Agents (MJAs). In the easy
mode, there is just one junction agent on the single
path routes. For the medium and hard mode scenar-
ios, there are four agents per junction. Because this
is an autonomous environment, vehicles on a non-
intersection grid cell go forward and stop if there is
a vehicle in the forward cell. When a vehicle reaches
the controlling area of MJA, the next time-step move
of the vehicle is determined by the MJA. By adopt-
ing MJA, we change the subject of control policy and
have the benefit of handling multiple vehicles.

3.3.2 Observations

The observation space of each MJA mainly consists
of the features of the cars in its vision range. Our
agent has a vision range of 5 cells (red bordered cells
in Figure 3), i.e., the center of an MJA and its neigh-
boring 4 cells. The number of features for each cell is
15, including the Boolean feature of whether crashes

Figure 3: The observation of one junction agent.

have occurred at the cell and one-hot-encoded next
cell position of the car in a cell, as shown in Table 1.
These features are called positional features. In ad-
dition, the cell existence (i.e. whether a cell is in the
environment) of the surrounding 13 cells are encoded
(orange bordered cells in Figure 3).

The observation feature vector of an MJA is set as
a concatenation of 5 positional features and the binary
vector for cell existence. Therefore, the size of the
observation vector is 15×5(each direction)+13= 88.

3.3.3 Actions

The vehicle’s actions are gas: go forward and stay:
stop. However, when they are in the controlling areas
of a MJA, they are governed and controlled by MJA’s
actions.

The action configuration of the MJA is to deter-
mine from which direction a vehicle can enter into its
observation area. There are a total of five actions, one
in each direction and none. If the action is 2 (East),
only vehicles from the east can be accepted. Action 0
(None) means that no vehicle can enter. Because the
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Table 1: Observation Features - Positional / Non-positional. Binary feature: (B), One-hot encoded feature:(O).

Features Obs Type Description
0 (B) Pos Existence of vehicle on each cell

1-13 (O) Pos Vehicle’s next position
14 (B) Pos Crash occurrence

75-87 (O) Non-Pos Cell existence of the vehicle’s next position

Table 2: The MJA’s Action Configuration.

Index Action
0 None
1 N
2 E
3 S
4 W

route of vehicles are known, MJAs can determine the
direction of the vehicles. For example, as shown in
Figure 4 (Junction J3), if the vehicle comes in from
the South and wants to move forward (North), only
when the corresponding MJA’s input action is South,
the vehicle can go on to the next cell that is controlled
by another MJA. This scheme remains the same even
if there’s more than one vehicle in the adjacent cell.

Vehicles that are already located on a MJA try to
move forward, but if there is another MJA in that di-
rection, they are controlled by both MJAs (Figure 4b
Junction- J0, J1). A detailed mechanism of recur-
rent agents’ action which is the rule of ‘Agreement’
is essential. Except for easy mode, all roads simu-
late a two-way street and each MJA is adjacent to two
MJAs. One agent that possesses the vehicle on the
cell makes it move forward and the other agent de-
cides whether to accept it. If the relative out-direction
of the vehicle and the absolute acceptance direction
are the same, it will move.

3.3.4 Reward

The vehicle agent’s reward structure from baselines
(Sukhbaatar et al., 2016) is used in this paper.
There are collision penalty rcoll =−10, and time-step
penalty τrtime =−2τ to discourage a traffic jam where
τ is the number time steps passed since the vehicle
appeared in the scenario. The reward for ith vehicle
which is having Ct

i collisions and mean total reward
at time t is:

ri(t) =Ct
i rcoll + τirtime (1)

G(t) =
1
N

N

∑
i=1

ri(t) (2)

where N is the total number of activated vehicles at
time-step t. Averaging N vehicles’ reward, the total

(a) Junctions’ action
A = {J0 = N,J1 = E,J2 = N,J3 = S}

(b) vehicles’ movements
Figure 4: Junctions’ action and vehicles’ movements.

mean reward G is used for all MJAs. Just by using the
global reward in the training process, MJAs learned to
coordinate the whole system without explicit cooper-
ation.

3.4 Reinforcement Learning

To train MJAs, we construct a dueling double deep
Q-learning neural network (DDDQN) (Wang et al.,
2016) and use it for reinforcement learning. It is an
enhanced architecture of DQN (Mnih et al., 2013) by
adopting the target network (Double DQN) method,
and separating state values and action advantages. In
the experiments, we use an identical structure for both
networks using 2 MLP layers (Pal and Mitra, 1992)
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Table 3: Success rate comparison in the Traffic Junction.

Approach Easy Medium Hard
CommNet 93.0±4.2% 54.3±14.2% 50.2±3.5%

IC3Net 93.0±3.7% 89.3±2.5% 72.4±9.6%
GA-Comm 99.7% 97.6% 82.3%
CENT-MLP 97.7±0.9% 0% 0%

DICG-DE-MLP 95.6±1.5% 90.8±2.9% 82.2±6.0%
TarMAC 2-round 99.9±0.1% - 97.1±1.6%

MJA (Ours) 100.0% 99.7±0.3% 99.8±0.2%

Table 4: Comparison of success rate in harder mode.

Harder 40-step Harder 60-step
IQL with comm 94.3% -

COMA 99.1% -
CCOMA 99.3% -

MJA (Ours) 99.9%±0.1% 99.9%±0.1%

Table 5: Traffic Junction environment configuration.

Difficulty # MJA # roads Road dim. Nmax Parrive Max steps
Easy 1 2 7 × 7 5 0.3 20

Medium 4 4 14 × 14 10 0.2 40
Hard 16 8 18 × 18 20 0.05 60

Harder 16 8 18 × 18 20 0.1 40 or 60

of 256 sizes. Observation scheme described in Sec
3.3.2 substitutes the need for observation embedding
and complex architectures. We adopt independent
Q-learning using parameter sharing (Foerster et al.,
2016). Therefore, all agents are operated by the same
parameterized policy.

4 RESULTS
To evaluate and compare to other approaches, the ta-
ble from (Li et al., 2020; Das et al., 2019) is used. Dif-
ferent from other research (Sukhbaatar et al., 2016;
Singh et al., 2018; Liu et al., 2020; Su et al., 2020),
our method does not adopt curriculum training (Ben-
gio et al., 2009).

The configuration for four different difficulty
modes is shown in Table 5. Note that a single MJA
is used in Easy mode, which reduces the setup into
a single-agent problem, although there are multiple
moving vehicles.

The proposed model is trained for 12,000 episodes
for each difficulty setup, where one episode is simu-
lation of a scenario for the maximum number of time-
steps determined by the max steps shown in Table 5.
The definition of ’success rate’ from (Li et al., 2020)
is used, which is the ratio of episodes without any col-
lision versus the number of episodes tested. The suc-

cess rate in Figure 5 (red line) is calculated by run-
ning 100 evaluation episodes for every 100 training
episodes. The best results compared to other meth-
ods are shown in Table 3. A harder mode is investi-
gated, suggested by (Su et al., 2020), and compare to
other methods that considered harder modes in their
research. The result is in Figure 5 and Table 4.

The completion rate is plotted as the blue line in
Figure 5 where, the completion rate refers to the ratio
of vehicles that reached the destination versus the to-
tal vehicles that can arrive at the destination before the
last time-step. in the same color. In the early stage on
training, the policy tends to fall into a local optimum
region where to achieve a high success rate, vehicles
are not moved to avoid collision. Nevertheless, our
learning scheme escapes from the local minimum and
is able to find the optimal solution as shown in Figure
5a, 5b. The cause can be the balancing of two differ-
ent rewards (collision penalty and time-step penalty
which are described in Sec 3.3.4).

Comparing the results of the hard mode with the
harder-60 steps it can be said that harder-60 converges
faster to the optimal solution. This may be because,
as Parrive is increased, there is more opportunity of
learning and thus, faster convergence. The reason for
efficient learning may be because MJAs are homoge-
neous agents, parameter sharing is adopted, and inde-
pendent Q-learning approach is used.
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(a) Easy (b) Medium

(c) Hard (d) Harder-40 steps

(e) Harder-60 steps

Figure 5: Evaluations during training each difficulty mode. 20 random seeds are used for each difficulty. Red and blue lines
indicate the average and the range of success rate and completion rate, respectively.

We also show that our method can perform stable
training across 20 different random seeds. Further-
more, the hyperparameters used for difficulty modes
are the same except for the learning rate (lr = 0.5e−4
for easy and lr = 0.1e−4 for the other modes).

5 CONCLUSIONS

In this paper, we introduce a novel multi-agent rein-
forcement learning (MARL) approach for traffic con-
trol. The proposed approach is tested on a traffic junc-
tion environment where multiple vehicles and junc-
tions exist. A controller agent called Micro Junction
Agent (MJA) is used for an autonomous intersection
management (AIM) environment. Results show that
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even without complex communication mechanisms,
the traffic can be controlled and achieve high perfor-
mance. Because the number of agents is not the func-
tion of vehicles but the function of intersections, it
can be said that the proposed method is scalable. Fu-
ture work may include applying our approach to more
complex large-scale maps including more vehicles.
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