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Abstract: Recently, Audio-Visual Speech Recognition (AVSR), one of robust Automatic Speech Recognition (ASR)
methods against acoustic noise, has been widely researched. AVSR combines ASR and Visual Speech Recog-
nition (VSR). Considering real applications, we need to develop VSR that can accept frontal and non-frontal
face images, and reduce computational time for image processing. In this paper, we propose an efficient multi-
angle AVSR method using a Parallel-WaveGAN-based scene classifier. The classifier estimates whether given
speech data were recorded in clean or noisy environments. Multi-angle AVSR is conducted if our scene clas-
sification detected noisy environments to enhance the recognition accuracy, whereas only ASR is performed
if the classifier predicts clean speech data to avoid the increase of processing time. We evaluated our frame-
work using two multi-angle audio-visual database: an English corpus OuluVS2 having 5 views and a Japanese
phrase corpus GAMVA consisting of 12 views. Experimental results show that the scene classifier worked
well, and using multi-angle AVSR achieved higher recognition accuracy than ASR. In addition, our approach
could save processing time by switching recognizers according to noise condition.

1 INTRODUCTION

Recently, Automatic Speech Recognition (ASR) has
been confirmed to have high recognition performance
by using Deep Learning (DL), one of artificial intel-
ligence (AI) techniques, and is used in various real
scenes such as voice input for mobile phones and
car navigation systems. However, there is a prob-
lem that speech waveforms are degraded by acoustic
noise in real environments, reducing the accuracy of
speech recognition. In order to overcome this issue,
we need to develop robust ASR systems against any
audio noise. One of such ASR systems applicable in
noisy environments is Audio Visual Speech Recogni-
tion (AVSR, also known as multimodal speech recog-
nition), which employs ASR frameworks with Visual
Speech Recognition (VSR, also known as lipreading).
VSR uses lip images which are not affected by audio
noise and estimates what a subject uttered only from
a temporal sequence of lip images. VSR and AVSR
have a potential to be applied in various practical ap-
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plications such as automatic conference minute gen-
eration and human interface on smartphones. Owing
to state-of-the-art DL technology, recently we have
achieved high performance of VSR.

AVSR has been investigated mainly for a couple
of decades and improves speech recognition accuracy
significantly. However, there are still several issues
remaining regarding VSR and AVSR. The first one is
that a speaker does not always face to a camera such
as smart device or tablet device in real environments.
In other words, most of existing VSR and AVSR re-
search works have only considered frontal faces, al-
though VSR technology for non-frontal views is also
essential for real applications. The second issue is in-
creasing processing time. AVSR must conduct image
processing in addition to speech processing simul-
taneously, resulting larger computational costs than
ASR and VSR. In noisy environments, because AVSR
can drastically improve speech recognition accuracy,
it is worthy to carry out AVSR even if longer process-
ing time is required. On the other hand, in clean envi-
ronments, ASR and AVSR often have almost the same
and significantly high recognition accuracy because
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speech signals are not polluted by acoustic noise. This
means that only applying ASR is sufficient to obtain
acceptable speech recognition performance.

Regarding the first problem, we have already de-
veloped a multi-angle VSR, which can accept not
only frontal but also diagonal or profiles face images
(S.Isobe et al., 2021c; S.Isobe et al., 2020; S.Isobe
et al., 2021d). Therefore, in this article we would like
to focus on the second problem about processing time.
The straightforward strategy to handle the issue is to
introduce a noise estimator or a scene classifier; if the
estimator judges given audio data as a clean speech,
we simply perform only ASR to obtain recognition
results; otherwise, we start to carry out image pro-
cessing followed by running multi-angle AVSR.

In this work we choose an anomaly-detection-
based scene classifier for this purpose. We usu-
ally adopt an anomalous sound detection approach in
which a classifier is trained using only acoustically
clean utterance data. One of conventional schemes
for anomaly detection is to employ a reconstruction
model, such as Autoencoder (AE) and Variational Au-
toencoder (VAE). However, in this case it is consid-
ered that these models are not appropriate; it is hard
for AE and VAE to reconstruct data having com-
plicated structures like speech signals, and in fact,
our preliminary experiments show the reconstruction
hardly succeeded. Therefore, in this work, we employ
an anomaly-detection-based scene classifier using a
Parallel WaveGAN architecture (R.Yamamoto et al.,
2020), which is one of neural vocoders. Once the
Parallel WaveGAN model can be built significantly,
it can well generate clean speech signals, on the other
hand, cannot correctly generate utterance data con-
taminated by acoustic noise. Consequently, noisy
speech signals must have higher anomaly scores, and
can be easily discriminated from clean audio data.

We conducted evaluation experiments using two
databases for multi-angle AVSR: an open corpus
OuluVS2 (I.Anina et al., 2015) and a GAMVA
(S.Isobe et al., 2021a) database which was proposed
in our previous research. We employed our multi-
angle VSR method, in which several angle-specific
VSR models were simultaneously applied and in-
tegrated based on angle estimation results (S.Isobe
et al., 2021c). As an ASR model, a 2D Convolu-
tional Neural Network (2DCNN) was chosen; mel-
frequency spectrograms were given to the model.
Angle-specific VSR models each consisted of a
3DCNN, and Bidirectional Long Short-Term Mem-
ory (Bi-LSTM) was adopted as an angle estimation
model using facial feature points. Experimental re-
sults showed that our proposed multi-angle AVSR
method with the scene classifier achieved higher

recognition accuracy than ASR only, and faster than
our previous multi-angle AVSR method.

The rest of this paper is organized as follows. In
Section 2, we briefly review related works. Section
3 summarizes our proposed system. Section 4 in-
troduces a proposed scene classification method, fol-
lowed by ASR, multi-angle AVSR, and angle estima-
tor in Section 5. Two multi-angle audio-visual cor-
pora, experimental setup, results, and discussion are
described in Section 6. Finally Section 7 concludes
this paper.

2 RELATED WORK

In this section, we briefly introduce AVSR, multi-
angle VSR / AVSR, neural vocoder based Text-To-
Speech (TTS) and anomaly detection.

2.1 AVSR

Many research works have been conducted focusing
on AVSR. In this paper we would like to introduce
a couple of state-of-the-art works. An AVSR sys-
tem based on a recurrent-neural-network transducer
architecture was built in (T.Makino et al., 2019).
They evaluated the system using the LRS3-TED data
set, achieving high performance. In (P.Zhou et al.,
2019), the authors proposed a multimodal attention-
based method for AVSR, which could automati-
cally learn fused representations from both modal-
ities based on their importance. They employed
sequence-to-sequence architectures, and confirmed
high recognition performance under both acoustically
clean and noisy conditions. Another AVSR system
using a transformer-based architecture was proposed
in (G.Paraskevopoulos et al., 2020). Experimental re-
sults show that on the How2 data set, the system rela-
tively improved word error rate over sub-word predic-
tion models. In (S.Isobe et al., 2021b), we proposed
an AVSR method based on Deep Canonical Correla-
tion Analysis (DCCA). DCCA consequently gener-
ates projections from two modalities into one com-
mon space, so that the correlation of projected vectors
could be maximized. We thus employed DCCA tech-
niques with audio and visual modalities to enhance
the robustness of ASR. As a result, we confirmed
DCCA features of each modality can improve com-
pared to original features, and got better ASR results
in various noisy environments.
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2.2 Multi-view VSR / AVSR

S. Petridis et al. proposed an end-to-end multi-view
lipreading system based on Bi-LSTM networks in
(S.Petridis et al., 2018). The model simultaneously
extracted features directly from image pixels and per-
formed visual speech classification from multi-angle
views. Experimental results demonstrated the com-
bination of frontal and profile views improved ac-
curacy over the frontal view. In (A.Koumparoulis
and G.Potamianos, 2018), they proposed a scheme
called ”View2View” using an encoder-decoder model
based on CNNs. The method transformed non-frontal
mouth-region images into frontal ones. Their results
show that the view-mapping system worked well for
VSR and AVSR. In (S.Isobe et al., 2020), we pro-
posed a feature-integration-based multi-angle lipread-
ing system using DL, particularly 3DCNN, that is one
kind of Deep Neural Networks (DNNs).

In spite that we can find a lot of VSR and AVSR
methods, there are only a few works combining ASR
and multi-angle VSR to accomplish angle-invariant
AVSR. One of them is (S.Petridis et al., 2017), where
they proposed an early-fusion-based AVSR method
using Bi-LSTMs. In our previous research works,
we also focused on multi-angle AVSR (S.Isobe et al.,
2021c; S.Isobe et al., 2021d). In (S.Isobe et al.,
2021c), we propose a new multi-angle lipreading
method, in which several angle-specific VSR models
are simultaneously performed and integrated based
on angle estimation results. In addition, we con-
ducted decision-fusion-based AVSR. Experimental
results show that our proposed method can accept
lip images at various angles, and improve the recog-
nition accuracy in noisy environments. In (S.Isobe
et al., 2021d), we further extended our previous VSR
to AVSR schemes (S.Isobe et al., 2020).

2.3 Neural Vocoder

In this paper, we select a Parallel WaveGAN model
as a neural vocoder. Nowadays several the other
neural vocoder methods have been proposed in ad-
dition to Parallel WaveGAN. Firstly, we introduce a
WaveNet model (A.Oord et al., 2016), which is an
auto-regressive sequence model that generates highly
real audio waveforms conditioned on auxiliary fea-
tures and previous samples. Next, in (K.Kumar et al.,
2019), they proposed a multi-scale GAN-based archi-
tecture for discriminators. (J.Kong et al., 2020) gener-
ates both efficient and high-quality audio waveforms.
They focused on speech audio of which components
are sinusoidal signals with various periods. Through
experimental results they confirmed that the model-

Figure 1: A flow of our proposed method.

ing of periodic patterns of audio speeches is crucial
for enhancing sample quality.

2.4 Anomaly Detection

Finally, we introduced a few anomalous sound de-
tection research works. In (K.Suefusa et al., 2020),
they investigated conventional anomalous sound de-
tection methods based on the reconstruction errors,
and found that reconstruction models such as AE tend
to be large independent if the target sound is non-
stationary. To solve this problem, they adopted an ap-
proach in which the spectrograms of multiple frames
except their center frame were used as input, and the
deleted frame was predicted. If the model is built
using normal data, anomaly data cannot be well pre-
dicted. In (K.Inagaki et al., 2020), they extracted the
output of an intermediate layer of an AE, and calcu-
lated the degree of abnormality for the output based
on a Gaussian Mixture Model (GMM), representing
a data set by superposition of a mixture of Gaussian
distributions. Since many manufacturing companies
have great interests in anomaly detection, recently
competitions of anomalous sound detection such as
(Y.Koizumi et al., 2020) were held worldwide.

3 METHODOLOGY

The flow of the proposed method is shown in Fig.
1. First of all, an audio utterance is given to our
scene classification model to determine whether the
data is noisy or clean. If the utterance is classi-
fied as clean speech, only ASR is performed to ob-
tain speech recognition results. Otherwise, a face
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movie is loaded to the system, followed by conduct-
ing multi-angle VSR. Before multi-angle VSR, the
recorded face movie was converted to a face image
sequence. Thereafter, we get 68 face feature points
from each face images using face-alignment (A.Bulat
and G.Tzimiropoulos, 2017), and the LF-ROI (lower
face region of interest) is cut out to obtain lip images.
After that, AVSR is carried out to acquire recogni-
tion results in the late-fusion manner. Our system fi-
nally outputs either results from ASR or those from
AVSR according to scene classification. Note that, if
the face feature points are not detected, we conducted
only ASR.

4 SCENE CLASSIFICATION

4.1 Parallel WaveGAN

Parallel WaveGAN is one of non-autoregressive neu-
ral vocoders, and one of the Generative Adversarial
Networks (GANs). The architecture of Palallel Wave-
GAN is shown in Fig. 2. GANs are generally cat-
egorized into generative models, having two neural
network models: a generator (G) and a discrimina-
tor (D). In the GAN framework, a generator tries
to create fake data which are almost the real one as
much as possible. A discriminator, on the other hand,
tries to classify fake and real data as correct as possi-
ble. Generator and discriminator are thus adversar-
ial, and trained so that either of them tries to fool
another model, finally resulting high-level generator
and discriminator. In the TTS field, some of research
works have been reported to generate high-quality au-
dio waveforms using GANs. WaveNet (A.Oord et al.,
2016) is one of such the generative model that is of-
ten used in the field. However, WaveNet has a short-
age that the processing speed is very slow, because the
model has an autoregressive architecture. In contrast,
Parallel WaveGAN is able to be trained and generate
data very fast, because of the parallel architecture.

4.1.1 Generator

The generator model is a WaveNet-based one, receiv-
ing acoustic features and random noise drawn from
a Gaussian distribution as input, and generating par-
allel audio waveforms. Causal convolutions are used
in WaveNet, while in Parallel WaveGAN they are re-
placed into non-causal convolutions.

Here we describe a generator loss function related
to the generator model. First, the generator loss LG
can be computed as a linear combination of a multi-
resolution Short-Time Fourier Transform (STFT) loss

Figure 2: An overview of Parallel WaveGAN.

and an adversarial loss as follows:

LG(G,D) = Laux(G)+α Ladv(G,D), (1)

where Laux and Ladv are a multi-resolution STFT loss
and an adversarial loss, respectively. A hyperparame-
ter α in Equation 1 is used to balance two loss func-
tions. In this paper, α is set to 4.0 as in the original
paper. The multi-resolution STFT loss is a mean of
STFT loss values. Every STFT loss scores are ob-
tained in different Fast Fourier Transform (FFT) set-
tings, such as FFT size, window size, frame shift, and
so on. The multi-resolution STFT loss is then calcu-
lated as follows:

Laux(G) =
1
M

M

∑
m=1

L(m)
s (G), (2)

where L(m)
s is an m-th single STFT loss, and M is the

total number of STFT loss scores. There are two main
reasons for combining single STFT losses under sev-
eral conditions. The first one is to prevent overfit-
ting to any fixed STFT representation. Another rea-
son comes from a trade-off relationship between time
and frequency resolution. The generator model is
thereby able to learn the time-frequency characteris-
tics of speech data by combination several STFT loss.
The single STFT loss denotes by the following equa-
tion:

Ls(G) = Lsc(x, x̂)+Lmag(x, x̂), (3)
where x and x̂ are original data and generated data,
respectively. In Equation 3, Lsc and Lmag are spectral
convergence and log STFT magnitude loss, respec-
tively:

Lsc(x, x̂) =
|| |STFT(x)|− |STFT(x̂)| ||F

|| |STFT(x)| ||F
, (4)

Lmag(x, x̂) =
1
N
|| log|STFT(x)|− log|STFT(x̂)| ||1,

(5)
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Figure 3: An overview of our AVSR method. This architecture is for OuluVS2, having five angle-specific VSRs.

where || · ||F , || · ||1, |STFT(·)| are Frobenius, L1 norm
and STFT magnitudes respectively, and N is number
of magnitude elements.

Second, the adversarial loss is defined as follows:

Ladv(G,D) = Ez∈N(0,I)[(1−D(G(z,h)))2], (6)

where z, N(0, I) and h are random noise drawn from
a Gaussian distribution, a Gaussian distribution with
zero mean and standard deviation of I, and condi-
tional acoustic feature (such as mel-frequency spec-
trogram), respectively. x̂ = G(z,h) indicates gener-
ated data, and 0 ≤ D(x)≤ 1 means a classification re-
sult. The adversarial loss is designed based on least-
squares GANs (X.Mao et al., 2017) for stable train-
ing.

4.1.2 Discriminator

The discriminator model consists of ten non-causal
dilated 1D convolution layers with the leaky ReLU
activation function (α = 0.2). The loss function for
the discriminator is shown below:

LD(G,D) =Ex∈pdata [(1−D(x))2]

+Ez∈N(0,I)[(1−D(G(z,h)))2],
(7)

where pdata is a target waveform distribution.

4.2 Parallel WaveGAN for Scene
Classification

Here, we introduce how to classify whether a given
audio utterance is clean or noisy data using Parallel
WaveGAN. Firstly, we train Parallel WaveGAN using

only clean speech data. After that, we employ not the
discriminator but the generator for the purpose. Given
feature vectors of clean speech data which are not
used for model training, the generator model of Par-
allel WaveGAN is able to generate the corresponding
speech waveform correctly. That is, the model tries
to imitate the same speech signal from the given mel-
frequency spectrogram features. On the other hand,
taken noisy audio features with background noise, the
model cannot imitate the speech utterance correctly.
Hence, by comparing the original speech signal and
the generated speech signal from Parallel WaveGAN,
we can judge whether the input original signal con-
tains background noise or not, i.e. clean or noisy.

This is based on general unsupervised anomaly
sound detection using generation and reconstruction
model. AE and VAE are expected to work prop-
erly for audio signals having relatively simple struc-
tures such as machine operating acoustic data with
stationary anomaly sounds. However, because speech
signals are basically much more complicated, if we
choose the same strategy, deeper and larger AEs
might be needed for speech reconstruction, requir-
ing the huge amount of training data. We then think
employing the Parallel WaveGAN is smarter way for
speech data. Regarding loss functions, we conducted
preliminary experiments to measure a better anomaly
score function, and which loss function should be in-
volved for training. We then found that the multi-
resolution STFT loss function is better than the mean
square error between original and generated audio
data, and the discriminator loss function.
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Figure 4: An overview of our ASR model.
n = the number of classes to conduct classification.

5 ASR, VSR AND AVSR

In this section, we introduce our multi-angle AVSR
method based on late-fusion approach proposed in
(S.Isobe et al., 2021c), as well as ASR and VSR tech-
niques.

5.1 ASR

In our ASR framework, we extract mel-frequency
spectrograms that are commonly used for CNN-based
speech recognition. We then choose a 2D CNN model
illustrated in Fig. 4. The model employs a simple
and common architecture; convolutional and pool-
ing layers are repeatedly applied followed by Fully-
Connected (FC) layers, to get a classification result.
In addition, by adding augmentation data in which
acoustic noise is added to original utterances, we can
compensate the lack of training data and make the
ASR model robust against acoustic noise.

5.2 Multi-angle VSR

We adopt a multi-angle VSR method consisting of
several angle-specific models as well as an angle esti-
mation, proposed in our previous work (S.Isobe et al.,
2021c). The conventional multi-angle VSR research
works have angle-specific VSR models. However,
these methods do not take into account the problem:
at which angle the lip image will be input. We de-
signed our multi-angle VSR so that the model could
properly deal with any angle lip images by involving
an angle classifier. Each angle-specific VSR model is
trained using not only lip images at the correspond-
ing angle, but also those at the surrounding two an-
gles. For instance, a VSR model for 45◦ is build
from 30◦, 45◦ and 60◦ lip data. We have already
confirmed in previous research works that this can
achieve higher recognition accuracy than a conven-
tional scheme training a model with lip images at one
single angle only.

Figure 5: An overview of angle-specific VSR model.
n = the number of classes to conduct classification.

Figure 6: An overview of angle estimation model.
m = the number of the angles.

5.2.1 Angle Estimator

The angle estimation module estimates conditional
probabilities for several angles, employing a Bi-
LSTM architecture. The module is illustrated in Fig.
5. The input is a sequence of lip feature points
which are obtained using face-alignment (A.Bulat and
G.Tzimiropoulos, 2017). As mentioned in detail later,
in this article we use two corpora. We choose the
following five angles for OuluVS2: 0◦ (frontal), 30◦,
45◦, 60◦ and 90◦ (profile). For GAMVA, the follow-
ing 12 angles are chosen: 0◦ (frontal), 0◦ upper, 0◦

lower, 10◦, 20◦, 30◦, 40◦, 50◦, 60◦, 70◦, 80◦ and 90◦

(profile). Hence, the output layer consists of five units
for OuluVS2 or twelve units for GAMVA, each cor-
responding to one of the above angles.

5.2.2 Angle-specific VSR

We put several angle-specific VSR models in our
framework. The framework of each VSR model is
shown in Fig. 6. One VSR model is trained on not
only with lip images at the corresponding angle, but
also with those at neighboring two angles, having a
3D CNN architecture. Since the task when using
OuluVS2 in this paper is a 10-class classification, the
last FC layer has 10 units, each corresponding to a
class probability. For GAMVA, because the task is a
25-class classification, the last layer has 25 units.

5.3 AVSR

Firstly, a sequence of lip feature points is accepted
to the angle estimator model. Second, a sequence
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Table 1: Data Specification of OuluVS2.

Noise #spkr #data

Train Audio Clean 35 1,050
#Random 35 1,050

Visual Clean (/angle) 35 1,050

Valid Audio Clean 5 150
#Random 5 150

Visual Clean (/angle) 5 150

Test Audio
Clean 12 360
Park (/SNR) 12 360
Metro (/SNR) 12 360

Visual Clean (/angle) 12 360
#spkr = the number of the subjects.
#data = the number of the utterance data.

Table 2: Data Specification of GAMVA.

Noise #spkr #data

Train Audio Clean 12 900
#Random 12 900

Visual Clean (/angle) 12 900

Valid Audio Clean 3 225
#Random 3 225

Visual Clean (/angle) 3 225

Test Audio
Clean 5 375
Park (/SNR) 5 375
Metro (/SNR) 5 375

Visual Clean (/angle) 5 375

of lip images is submitted to all VSR models, while
corresponding speech data are recognized in the ASR
model.

As mentioned, the tasks of OuluVS2 and GAMVA
are 10-class and 25-class classification respectively.
We obtain results from ASR and VSR modules as
conditional probabilities for every classes. Let us de-
note a probability for an i-th class from a j-th angle-
specific model by Vi, j, with w j that is a conditional
probability for a j-th angle estimation model, and a
score from ASR by Ai. Angle-specific recognition
results are integrated by the angle estimation scores
to make the VSR result based on the decision-fusion
manner, and with audio classification result, finally
the class having the highest score is selected as:

î = argmax
i

(
Ai +

m

∑
j=1

w jVi, j

)
, (8)

where m is the number of angles.

6 EXPERIMENT

6.1 Database

In this research, we selected two multi-angle audio-
visual corpora: OuluVS2 and GAMVA. DEMAND

Table 3: Utterances in GAMVA.

Japanese pronunciation English meaning
/a-ri-ga-to-u/ thank you

/i-i-e/ no
/o-ha-yo-u/ good morning

/o-me-de-to-u/ congratulation
/o-ya-su-mi/ good night

/go-me-N-na-sa-i/ I’m sorry
/ko-N-ni-chi-wa/ good afternoon
/ko-N-ba-N-wa/ good evening
/sa-yo-u-na-ra/ good bye

/su-mi-ma-se-N/ excuse me
/do-u-i-ta-shi-ma-shi-te/ you are welcome

/ha-i/ yes
/ha-ji-me-ma-shi-te/ nice to meet you

/ma-ta-ne/ see you
/mo-shi-mo-shi/ hello

/ba-i-ba-i/ bye bye
/i-ta-da-ki-ma-su/ I’ll take it

/go-chi-so-u-sa-ma/ thank you for meal
/o-tsu-ka-re-sa-ma/ see you

/ta-da-i-ma/ I’m home
/o-ka-e-ri/ welcome home

/o-jya-ma-shi-ma-su/ excuse me for disturbing you
/si-tsu-re-i-shi-ma-su/ excuse me

/hi-sa-shi-bu-ri/ long time no see
/yo-ro-shi-ku/ nice to meet you

database was also used as a noise corpus.

6.1.1 OuluVS2

We chose the OuluVS2 corpus (I.Anina et al., 2015)
to evaluate our scheme. The database contains 10
short phrases, 10 digits sequences, and 10 TIMIT sen-
tences uttered by 52 speakers. The corpus includes
face images captured by five cameras simultaneously
at 0◦ (frontal), 30◦, 45◦, 60◦, and 90◦ (profile) angles,
respectively. In this paper, we adopted the phrase
data, uttered three times by each speaker. In our ex-
periment, the data spoken by 52 speakers were di-
vided into training data by 35 speakers, validation
data by 5 speakers and testing data by 12 speakers.
We also checked whether the data split was appropri-
ate by changing the different split settings, and con-
firmed that using the data sets could give us the fair
results. The phrases are as follows: ”Excuse me”,
”Goodbye”, ”Hello”, ”How are you”, ”Nice to meet
you”, ”See you”, ”I am sorry”, ”Thank you”, ”Have a
good time”, ”You are welcome”.

6.1.2 GAMVA

We also used the GAMVA corpus (S.Isobe et al.,
2021a), which was build in our previous work. The
database contains Japanese greeting phrases shown
in Table 3 spoken by 20 male subjects. The corpus
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includes face movies simultaneously captured by 12
cameras: 0◦ (frontal), 0◦ upper, 0◦ lower, 10◦, 20◦,
30◦, 40◦, 50◦, 60◦, 70◦, 80◦ and 90◦ (profile). Among
them, 10 movies can be used to evaluate horizontal
difference, while 3 movies are for vertical difference:
0◦, 0◦ upper and 0◦ lower. Face feature points and
speech sounds are also involved in this corpus. Each
subject uttered the same contents three times, similar
to OuluVS2. In our experiment, the data spoken by 20
speakers were divided into training data by 12 speak-
ers, validation data by 3 speakers and testing data by
5 speakers.

6.1.3 DEMAND

We selected another database DEMAND (J.Thiemann
et al., 2013) as a noise corpus. This corpus consists of
six primary categories, each which has three environ-
ments, respectively. Four of those primary categories
are for closed spaces: Domestic, Office, Public, and
Transportation. And the remaining two categories are
recorded outdoors: Nature and Street. In this paper,
we added some kinds of those noises to build audio
training and testing data.

6.2 Experimental Setup

We evaluated a model by utterance-level accuracy:

Accuracy =
H
S
×100 [%] (9)

where H and S are the number of correctly recog-
nized utterances and the total number of utterances,
respectively. Since DNN-based model performance
slightly varies depending on the probabilistic gradi-
ent descend algorithm, that is a common model train-
ing approach, we repeated the same experiment five
times and the mean accuracy was calculated. In terms
of DNN hyperparameters of speech recognition, we
chose a cross-entropy function as a loss function.
Adam was used for all DNNs as an optimizer. Batch
size, epochs and learning rate were set to 32, 50 and
0.001, respectively. Regarding of training of Paral-
lel WaveGAN, we set batch size, epochs and learn-
ing rate as 10, 1000 and 0.0001, respectively. We
carried out our experiments using NVIDIA GeForce
RTX 2080 Ti.

6.3 Preprocessing

6.3.1 Utterance

In the OuluVS2 data set, there are 1,050 (35 speak-
ers × 10 utterance × 3times) sentences available for
training, 150 (5 speakers × 10 utterance × 3times)

sentences available for validation and 360 (12 speak-
ers × 10 utterance × 3times) sentences for testing.
However, the data size is not enough for DNN model
training. To compensate the lack of training data,
we applied data augmentation in the audio and vi-
sual modalities. In the audio modality, we added
three types of acoustic noises in DEMAND to orig-
inal training utterance data. At this time, noise type
and Signal-to-Noise Ratio (SNR) were randomly de-
termined. In addition, we added different types of
acoustic noises to testing data. The details including
noise kind and SNR conditions are shown in Table 1.
In the visual modality, we trained our VSR models
using not only lip images at one angle, but also those
at the neighbor two angles.

In the GAMVA data set, there are 900 (12 speak-
ers × 25 utterance × 3times) sentences for training,
225 (3 speakers × 25 utterance × 3times) sentences
available for validation and 375 (5 speakers × 25 ut-
terance × 3times) sentences for testing. The same
data augmentation was conducted. Details including
noise kind SNR conditions are shown in Table 2.

6.3.2 Audio and Image Processing

The OuluVS2 data set includes face movies (1920 ×
1080) and audio speech data. In the visual modality,
as described in Section 4, we firstly converted face
movies to face image sequences. Next, we detected
68 face feature points on each image, followed by ex-
tracting a lip image. Because cropped lip images had
different sizes, we resized all images to 128×128 in
order to apply DNNs. Furthermore, we normalized
a frame length to 24; if the sequence length was less
than 24 we conducted upsampling, otherwise we sup-
pressed some frames. In addition, we converted all
color images to gray-scale ones. Similar to visual
frames, we normalized an audio frame length to 32
by resizing the mel-frequency spectrogram in the time
direction.

GAMVA data set has face movies (1280 × 720)
and audio speech data. We conducted the similar pre-
processing as OuluVS2. We set the image size, the
image frame length and the audio frame length as
64×64, 48, 72, respectively.

6.4 Results and Discussion

6.4.1 Scene Classification

The result of scene classification is shown in Table
4. At first, we discuss the result of OuluVS2. In
the case of SNR 0dB and 5dB, where the effect of
acoustic noise were large, most of the data could be
correctly classified as noisy. However, in the case
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Table 4: Scene classification results.

corpus env clean Park Metro
0dB 5dB 10dB 15dB 20dB 0dB 5dB 10dB 15dB 20dB

OuluVS2 clean 243 5 55 147 213 239 2 40 140 221 247
noisy 116 354 304 212 146 120 357 319 219 138 112

GAMVA clean 372 0 0 62 269 352 0 59 287 367 371
noisy 0 372 372 310 103 20 372 313 85 5 1

Table 5: A Confusion Matrix in View Classification for
OuluVS2.

Result
Label 0◦ 30◦ 45◦ 60◦ 90◦

0◦ 360 0 0 0 0
30◦ 0 340 39 2 0
45◦ 0 20 148 42 0
60◦ 0 0 173 315 0
90◦ 0 0 0 0 198

of SNR 15dB, 20dB and clean environment, where
the effect of noise were small, misclassification often
occurred. Regarding GAMVA, on the contrary, we
could achieve significantly higher accuracy among all
SNR conditions. In particular, in the case of SNR 0dB
and clean, the estimator classified all the testing data
completely.

Assume that given noisy data are misclassified as
clean. Only speech recognition is then conducted, re-
sulting that the recognition accuracy is reduced. On
the contrary, when input clean data are miscategorized
into the noisy speech, the multi-angle AVSR is con-
ducted; the processing time becomes then longer than
ASR only, but the recognition accuracy is expected
to be still high. Focusing on the results of OuluVS2,
the scene classifier sometimes judged noisy data as
clean. Such the misclassification was not severe in
terms of speech recognition, because AVSR was car-
ried out instead of ASR, but the reduction of computa-
tional cost was no longer expected. We checked gen-
erated utterances by Parallel WaveGAN, and found
that the generator model was able to generate not only
utterances but also background noise in OuluVS2. On
the other hand, in the case of GAMVA, the generator
only regenerated utterances. This might cause such
the differences in terms of scene classification results.
The reason why the generator reconstructed noise in
OuluVS2 should be further investigated, but we con-
sider utterance speed and phonetic differences might
affect the performance.

6.4.2 View Classification

Here we investigated view classification performance.
Table 5 and Table 6 show view classification con-
fusion matrices. The classification accuracy for

OuluVS2 is 83.14%, and the accuracy for GAMVA
is 57.96%. As described already, each angle-specific
VSR model was trained using lip images at three an-
gles. Taking this into account, we may evaluate the
models by counting not only correctly classified ut-
terances but also utterances classified into the next
angle. In the case, the accuracy for OuluVS2 rises
to 99.88%, and the accuracy for GAMVA becomes
95.78%. It is consequently confirmed that our angle
estimation model was able to estimate the angle of the
input lip images, without affecting the performance of
following lip-reading modules.

6.4.3 Speech Recognition

Subsequently, we discuss speech recognition results.
Table 7 and Table 8 show recognition accuracy
of our ASR, VSR, AVSR and our proposed scene
classification-based recognition methods under two
testing noise environments for two multi-angle audio-
visual data sets, OuluVS2 and GAMVA, respectively.
Note that, because the task was a 10-class or a 25-
class classification respectively, the accuracy in noisy
environments tended to be higher compared to large-
vocabulary speech recognition.

First, we discuss the results of the ASR method.
Since audio waveforms were polluted by acoustic
noise, the lower the SNR was, the lower recognition
accuracy became. Based on the recognition results
and the scene classification results, it turns out that
15dB or higher can be considered as ”clean” environ-
ments; the recognition accuracy of 15dB and 20dB
was almost equivalent to that in the clean environ-
ments.

Second, we focus on the results of the multi-angle
VSR method. Table 9 and Table 10 show the recog-
nition accuracy of each angle, in addition to the mean
accuracy among all the angles with or without angle
estimation in the data sets, respectively. The VSR
accuracy was stable and unrelated to SNR since vi-
sual information is not basically affected by acous-
tic noise. Note that, the VSR result of Table 7 and
Table 8 corresponds to the mean accuracy in Table
9 and Table 10 with the angle estimator. As widely
known, the results of VSR were not better than those
of ASR in all the SNRs, because audio features are
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Table 6: A Confusion Matrix in View Classification for GAMVA.

Result
Label 0◦ 0◦ 0◦ 10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦(lower) (upper)

0◦ 130 154 31 11 0 0 0 0 0 0 0 0
0◦(lower) 56 71 19 2 0 0 0 0 0 0 0 0
0◦(upper) 99 107 136 3 0 0 0 0 0 0 0 0

10◦ 90 43 189 301 5 0 0 0 0 0 0 0
20◦ 0 0 0 58 288 11 0 0 0 0 0 0
30◦ 0 0 0 0 82 322 51 0 0 0 0 0
40◦ 0 0 0 0 0 42 259 93 1 0 0 0
50◦ 0 0 0 0 0 0 65 216 75 1 0 0
60◦ 0 0 0 0 0 0 0 66 295 159 11 0
70◦ 0 0 0 0 0 0 0 0 4 210 145 29
80◦ 0 0 0 0 0 0 0 0 0 5 205 171
90◦ 0 0 0 0 0 0 0 0 0 0 14 175

Table 7: ASR, VSR and AVSR Accuracy [%] in Various Noise Conditions in OuluVS2.

Model
Data clean Park Metro

0dB 5dB 10dB 15dB 20dB 0dB 5dB 10dB 15dB 20dB
ASR 95.83 93.17 95.56 95.78 95.89 95.94 92.33 95.94 95.78 95.83 95.83
VSR 83.00

AVSR 97.88 96.53 97.61 97.88 97.99 97.92 96.42 97.69 97.80 97.81 97.84
AVSR with SC 96.84 96.34 97.20 96.82 96.76 96.73 96.42 97.44 96.92 96.53 96.64

Table 8: ASR, VSR and AVSR Accuracy [%] in Various Noise Conditions in GAMVA.

Model
Data clean Park Metro

0dB 5dB 10dB 15dB 20dB 0dB 5dB 10dB 15dB 20dB
ASR 94.35 92.69 93.87 94.19 94.40 94.40 90.19 92.91 94.03 94.19 94.29
VSR 78.47

AVSR 97.78 96.72 97.52 97.72 97.76 97.76 95.70 96.88 97.43 97.60 97.73
AVSR with SC 94.35 96.72 97.52 97.53 96.43 94.86 95.70 96.53 96.01 94.49 94.29

generally more effective and informative than visual
cues. It is found that the recognition accuracy of 90◦

in OuluVS2 was about 5-8% lower than the other an-
gles. This is due to the fact that, the face alignment
used to crop lip images sometimes failed to detect fa-
cial landmarks, which might be caused by less train-
ing data. In other words, this is not because of the an-
gle, but because of the small number of training data
for face alignment.

Third, we discuss the results of the multi-angle
AVSR method. Among the models, AVSR achieved
the best accuracy in all the conditions. As mentioned,
we employed the decision-fusion strategy, which is
the simplest integration method, because the recog-
nition task in this paper was a kind of classification.
Similar to an ensemble approach, we consider our
decision-fusion method could successfully integrate
ASR and VSR results, which had different recogni-
tion errors.

Finally, we discuss the results of our pro-
posed multi-angle AVSR with the scene classification
method. When SNR was 10dB or lower which was
regarded as noisy environments, the recognition ac-

curacy was almost the same as AVSR, and was still
improved compared to the accuracy of ASR. As al-
ready denoted, in the lower SNR environments AVSR
was usually selected, as a result, we could keep the
accuracy. On the other hand, when SNR was 15dB or
higher which was regarded as clean environments, the
recognition accuracy was lower than AVSR, but was
slightly higher than ASR.

6.4.4 Processing Time

Here we focus on processing time of ASR, multi-
angle AVSR and our proposed multi-angle AVSR us-
ing scene classification. Table 11 shows the process-
ing time of each speech recognition in the two data
sets.

At first, we focus on the results of the OuluVS2.
The processing time of inference of ASR model was
205 sec. The processing time was measured during
recognizing not only clean data but also five-level
SNR data of the two types of noise in the test set; the
total number of utterances was thus 3,960 (= 360 ×
11), and the length of utterances was 2,552 (= 232 ×
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Table 9: Recognition accuracy (%) of multi-angle VSR with or without angle estimation in OuluVS2 data set.

0◦ 30◦ 45◦ 60◦ 90◦ Mean
Without AEM 85.39 85.28 84.44 83.30 77.47 83.18

With AEM 85.39 85.11 84.50 82.51 77.47 83.00
AEM = Angle Estimation Module.

Table 10: Recognition accuracy (%) of multi-angle VSR with or without angle estimation in GAMVA data set.
0◦ 0◦(l) 0◦(u) 10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦ Mean

Without AEM 77.97 76.96 78.08 81.60 77.87 81.12 79.31 76.64 75.09 74.67 70.08 68.75 76.38
With AEM 84.48 79.52 80.05 82.35 79.36 82.67 80.37 77.65 75.95 75.31 74.67 69.28 78.47

AEM = Angle Estimation Module, 0◦(l) = 0◦ from the lower camera, 0◦(u) = 0◦ from the upper camera.
.

Table 11: Processing time.

corpus Model processing time (s)

OuluVS2
ASR 205

AVSR 24,553
AVSR with SC 16,586

GAMVA
ASR 112

AVSR 27,872
AVSR with SC 18,605

11) sec. Second, the processing time of multi-angle
AVSR was 24,553 sec. The most of the processing
time was for detection of face landmark using face
alignment, and extraction of lip images using detected
facial landmark. On the other hand, the processing
time of multi-angle AVSR using our scene classifica-
tion was 16,586 sec. Our proposed method was able
to reduce processing time compared to the conven-
tional multi-angle AVSR method. In GAMVA data
set, we found the same result as OuluVS2 data set.

7 CONCLUSION

In this paper, we proposed a scene classification based
multi-angle AVSR method to reduce processing time
of AVSR keeping the recognition accuracy as much
as possible. The scene classifier predicted a record-
ing condition; given speech data were recorded ei-
ther clean or noisy environments. Only ASR was ap-
plied to the clean data, whereas AVSR with multi-
angle VSR was carried out for noisy speech data.
We conducted experiments to evaluate effectiveness
and efficiency of our proposed method, using two
multi-angle AVSR data set: OuluVS2 and GAMVA.
Then we found that our scheme could conduct ro-
bust speech recognition against acoustic noise than
the ASR method, and reduce processing time than
the multi-angle AVSR method. As our future work,
we are planning to conduct our proposed method for
large-vocabulary speech recognition. In addition, cur-
rently, many neural vocoder methods other than Par-
allel WaveGAN have been proposed. In this paper,
we used Parallel WaveGAN, but we are planning to

examine the results of scene classification when other
methods are used.
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