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Abstract: Sharing mobilities, such as car-sharing and ride-sharing, have been widely spreading recently. In this paper, we
consider Car/Ride-Share (CRS) system, which is one of the demand responsive transportations. We consider
the scenario where CRS is introduced on the circular bus route. We propose its theoretical and heuristic
solutions using queueing theory. We validate the heuristic analysis by comparing with the theoretical result
through some numerical examples.

1 INTRODUCTION

Sharing mobilities, such as car-sharing and ride-
sharing have been widely spreading recently. Car-
sharing is a system such as car-rental for short period
time and ride-sharing is a system where people ride
cars to their destinations together, e.g., Uber. In this
paper, we study Car/Ride-share (CRS) system (Ando
et al., 2019), where people carry out car-sharing and
ride-sharing simultaneously. We analyzed a queue-
ing model where CRS is introduced between two
points (Nakamura et al., 2020a). As an extension,
we model and analyze the scenario of the introduc-
tion of CRS on a circular bus route. As we will de-
scribe later, the theoretical analysis of the multiple
points model requires a huge amount of computaiton
and memory capacity when conducting numerical ex-
periments. Therefore, we propose a heuristic solution
of the model to facilitate the numerical experiments.
We compare these two solutions, the theoretical and
the heuristic solutions, and discuss the validity of the
heuristic solution.

There are various studies about sharing mobili-
ties. Specifically, , various studies using optimization
method were conducted, e.g., (Agatz et al., 2012),
(Correia and Antunes, 2012). However, almost all of
these studies ignore the uncertainty of customer be-
haviors. In other words, these studies assume that
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all customer behavior is perfectly understood. In re-
ality, customer behavior has fluctuation. Naturally
that sometimes there are many customers and some-
times there are few because of external factors such
as other transportations, the road congestion, weather,
and so on. A closely related study (Enzi et al., 2021),
which deals with the scheduling problem of multi-
modal car- and ride- sharing problem, also ignores the
uncertainty of customers.

As research considering the randomness of cus-
tomers, Daganzo et al. (Daganzo and Ouyang, 2019)
discussed a simple stochastic model of demand-
responsive transportations that include ride-sharing.
However, they did not consider the coexistence of
multiple transportations, e.g., buses and ride-sharing.
It is crucial to discuss the coexistence of various mo-
bilities and evaluate the impact on each other from a
practical point of view. Research of queueing mod-
els for transportation services (e.g., (Tao and Pender,
2020)) also did not consider the coexistence of vari-
ous types of mobilities.

Based on the above, the novelties of this paper can
be summarized as follows:

• Modeling transportation systems considering the
uncertainty of customers.

• Modeling the coexistence of multiple transporta-
tions, i.e., Car/Ride-Share.

• Presenting both theoretical and heuristic solutions
for this new model.
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The rest of the paper is organized as follows. In Sec-
tion 2, we describe the model based on queueing the-
ory. Sections 3 and 4 present theoretical and heuristic
solutions. Section 5 shows some numerical results.
The final section of the paper, Section 6, presents a
discussion and concluding remarks.

2 MODELING

This section presents the modeling of our scenario for
CRS system on a circular bus route.

Figure 1: Schematic illustration of the modelling.

We consider a circular bus route as Figure 1. We
assume that there is a car parking lot for CRS at one
of the bus stops (the bus stop is painted black in Fig-
ure 1). In the CRS system, car providers provide their
private cars for financial incentives (Nakamura et al.,
2020a). This mechanism refers to the concept of peer-
to-peer car-sharing, where people lend their private
cars. We discussed the beneficial price mechanism
for the car providers between two points (Nakamura
et al., 2020b). In this paper, we focus on the model
extended to capture the travel among multiple points.
Therefore, as the first step in the research of the mul-
tiple points model, we do not consider detailed fi-
nancial discussion for system participants such as car
providers in this research. Of course, it is vital to dis-
cuss its financial perspective to aim for practical use.

On the circular bus route, buses are operated based
on a fixed schedule. This model assumes that a bus ar-
rives according to the interval that follows an Erlang
distribution with rate r and shape q (this means the
sum of q exponentially distributed random variables
of parameter r). Erlang distribution can approximate
a constant value, i.e., this assumption is suitable for
modeling the fixed bus schedule. Erlang distribution
can be constructed by a convolution of exponential
distributions. Therefore, this approximation makes
the model easier to be analyzed as a Markov chain.

Now, we define the concept of “class” of the cus-
tomers. A class means the combination of the bus

Figure 2: The routes of CRS when N = 3.

stop where the customers first arrive, and the bus stop
that is the final destination of the customer. For ex-
ample, class-AB is for the customers who wait for the
bus coming at the bus stop A, and wants to visit bus
stop B finally. Besides, we assume that customers of a
class arrives at a bus stop according to a Poisson pro-
cess with a distinct parameter for that class, e.g., the
customers of class- AB arrive according to the Pois-
son Process of rate λAB. We also assume the cus-
tomers ride on the buses within the designated number
of people for each class, e.g., the customers of class-
AB get on a bus up to XAB (which follows an arbitrary
distribution) customers.

We consider the scenario of the introduction of
CRS on this circular bus route aiming to reduce con-
gestion for the customers. The specific description of
the CRS system is as follows:

• Car providers provide their private cars for the
parking lot to gain financial incentives, i.e., car-
sharing.

• Customers can ride the cars with other customers
who have the same direction, i.e., ride-sharing.

From these explanations, we can understand that CRS
is a hybrid system of car-sharing and ride-sharing.
What is very different from buses is that CRS is
demand-responsive type transportation, i.e., CRS is a
system where a car does not depart unless more than a
certain number of people want to use it. Besides, cars
of CRS should be returned to their original position
(i.e., the parking lot) after the CRS travel. Therefore,
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it is necessary to match the trips that enable the car to
finally return to the parking lot. This constraint seems
to be troublesome at first glance. However, it would
reduce the cost of relocating the cars by the operator
in traditional car-sharing systems. In our scenario, we
assume that the operator of CRS (that can be an op-
erating company dedicated to CRS, and the bus com-
pany itself) controls the occurrences of CRS under a
particular policy. As a simple policy, we assume the
following:

• The minimum and the maximum capacities of the
car are m and n customers, respectively.

• We ignore the lack of cars and whether customers
have a driver license or not to simplify the model.

• We define the “route” as the course of CRS that
starts and ends with the bus stop where there is
the parking lot.

• For example, we assume that there are three bus
stops (A, B, and C) on circular, and there is the
parking lot of CRS at the bus stop-A (see Figure
2). Note that we call a bus stop “node” to the sim-
plified expression and define N as the number of
nodes afterward. The possibilities of the routes
are as follows:

– A→ B→C→ A
– A→C→ B→ A
– A→ B→ A
– A→C→ A

• Supplementary definitions of the route are as fol-
lows: it is impossible to visit the same node more
than once except for the bus stop where there is
the parking lot, e.g., A→ B→C→ B→ A is im-
possible in the setting of Figure 2.

• If there are m or more customers of all classes
that composes a route, CRS of its route occurs
according to the interval which follows the expo-
nential distribution of parameters given for each
route. For example, this is because it takes time
for matching of customers by the operator of CRS
through the control system, e.g., web application
on smartphone. At the moment of the comple-
tion of the matching, maximum number of cus-
tomers not exceeding n (the maximum capacity
of the car) ride on the car and start to drive. Note
that we do not consider who drives the car in this
paper.

• Considering the example in Figure 2, CRS of
route A→ B→C→ A occurs according to the in-
terval which follows the exponential distribution
with rate σABC, on the condition that the num-
ber of all class-AB, class-BC and class-CA is m

or more people. In other words, the customers of
class-AB start driving from node-A to node-B, and
they get off the car at the node-B. The customers
of class-BC take over the car at node-B and go to
node-C. After that, the customers of class-CA start
to drive to node-A (the parking lot). By this series
of flow, the car is returned to its original position.
The same is true for other routes.

• Supplementary explanation about the car
takeover; customers of different classes from
same node would not ride the same car, e.g.,
class-AB and class-AC can not be in same car.

In the next section, we show the theoretical solution
of the scenario using queueing theory.

3 THEORETICAL ANALYSIS

In this section, we show the theoretical analysis of
the model. For simplicity, we describe the example
analysis where the number of nodes (N) is 3, as in the
previous section. Then, we summarize the parameters
and the variables used in the analysis in Table 1.

Table 1: Parameters used in the analysis.

Parameters Definitions
N The number of nodes.

λG The arrival rate for the customers
of class-G.

m The minimum capacity of CRS cars.
n The maximum capacity of CRS cars.

XG The random variable of
the number of customers
who get into a bus in class-G.

qG,rG Parameters of Erlang distribution of
the interval of buses at node-G.

σG The occurrence rate of CRS
for route-G.

KG The capacity for the customers
in node-G.

First of all, we define some sets as follows: SAB =
{0,1,2, . . . ,KAB − 1,KAB}, SAC = {0,1,2, . . . ,KAC −
1,KAC}, SBA = {0,1,2, . . . ,KBA − 1,KBA}, SBC =
{0,1,2, . . . ,KBC − 1,KBC}, SCA = {0,1,2, . . . ,KCA −
1,KCA}, SCB = {0,1,2, . . . ,KCB − 1,KCB}, RA =
{0,1,2, . . . ,rA − 2,rA − 1}, RB = {0,1,2, . . . ,rB −
2,rB− 1}, RC = {0,1,2, . . . ,rC− 2,rC− 1}, and Z =
SAB×SAC×SBA×SBC×SCA×SCB×RA×RB×RC.

Let SAB(t), SAC(t), SBA(t), SBC(t), SCA(t) and
SCB(t) denote the number of the waiting cus-
tomers for each class at time t, respectively, and
RA(t), RB(t) and RC(t) denote the progress of
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the Erlang distributions for buses at each node
at time t, respectively. It is easy to find that
{(SAB(t),SAC(t),SBA(t),SBC(t),SCA(t),SCB(t),RA(t),
RB(t),RC(t)); t ≥ 0} forms a Markov chain in the
state space Z.

Because the Markov chain is finite and irre-
ducible, we define the steady state probabilities as fol-
lows:

π( jAB, jAC , jBA, jBC , jCA, jCB,kA,kB,kC)

= lim
t→∞

P(SAB(t) = jAB,SAC(t) = jAC,SBA(t) = jBA,

SBC(t) = jBC,SCA(t) = jCA,SCB(t) = jCB,RA(t) = kA,

RB(t) = kB,RC(t) = kC),

where iAB ∈ SAB, iAC ∈ SAC, iBA ∈ SBA, iBC ∈ SBC, iCA ∈
SCA, iCB ∈ SCB, kA ∈ RA, kB ∈ RB, kC ∈ RC.

Sorting the all the states in Z in the lexi-
cographic order, the infinitesimal generator QQQ =
(size: ((KAB +1)(KAC +1)(KBA +1)(KBC +1)(KCA +
1)(KCB +1)rArBrC)) of our Markov chain is given as
follows:

QQQ=



0 1 2 . . . Ŷ

0 Qeee0,eee0 Qeee0,eee1 Qeee0,eee2

. . . Qeee0,yyy

1 Qeee1,eee0 Qeee1,eee1 Qeee1,eee2

. . . Qeee1,yyy

2 Qeee2,eee0 Qeee2,eee1 Qeee2,eee2

. . . Qeee2,yyy
...

...
. . . . . . . . .

...

Ŷ Qyyy,eee0 Qyyy,eee1 Qyyy,eee2

. . . Qyyy,yyy


,

where Ŷ = ((KAB + 1)(KAC + 1)(KBA +
1)(KBC + 1)(KCA + 1)(KCB + 1)rArBrC) − 1,
yyy = (KAB,KAC,KBA,KBC,KCA,KCB,rA − 1,rB −
1,rC − 1), eee0 = (0,0,0,0,0,0,0,0,0), eee1 =
(0,0,0,0,0,0,0,0,1), eee2 = (0,0,0,0,0,0,0,0,2).

Moreover, we also define the elements of
QQQ as follows (for subscripts, we write only
where there is a main change in transition):
Q(...,kA ,kB ,kC),(...,kA+1,kB ,kC) = qA, 0 5 kA 5 rA − 2,
Q(...,kA ,kB ,kC),(...,kA ,kB+1,kC) = qB, 0 5 kB 5 rB − 2,
Q(...,kA ,kB ,kC),(...,kA ,kB ,kC+1) = qC, 0 5 kC 5 rC − 2,
Q( jAB , jAC ,...,rA−1,...),( jAB−min(XAB , jAB), jAC−min(XAC , jAC),...,0,...)

= qA, Q(...,rB−1,kC),( jAB , jAC , jBA−min(..., jBA), jBC−min(XBC , jBC),...,0,kC)

= qB, Q(..., jCA , jCB ,...,rC−1),(..., jCA−min(XCA , jCA), jCB−min(XCB , jCB),...,0)

= qC, Q( jAB ,...),( jAB+1,...) = λAB, jAB 5 KAB − 1,
Q(..., jAC ,...),(..., jAC+1,...) = λAC, jAC 5 KAC − 1,
Q(..., jBA ,...),(..., jBA+1,...) = λBA, jBA 5 KBA − 1,
Q(..., jBC ,...),(..., jBC+1,...) = λBC, jBC 5 KBC − 1,
Q(..., jCA ,...),(..., jCA+1,...) = λCA, jCA 5 KCA − 1,
Q(..., jCB ,...),(..., jCB+1,...) = λCB, jCB 5 KCB − 1,
Q( jAB , jAC , jBA ,...),( jAB−min(n, jAB), jAC , jBA−min(n, jBA),...)

= σABA, jAB = m, jBA = m,

Q(...),( jAB , jAC−min(n, jAC), jBA , jBC , jCA−min(n, jCA), jCB ,...)

= σACA, jAC = m, jCA = m,

Q(...),( jAB−min(n, jAB), jAC , jBA , jBC−min(n, jBC), jCA−min(n, jCA), jCB ,...)

= σABCA, jAB = m, jBC = m, jCA = m,

Q(...),( jAB , jAC−min(n, jAC), jBA−min(n, jBA), jBC , jCA , jCB−min(n, jCB),...)

= σACBA, jAC = m, jCB = m, , jBA = m.

It should be noted that the diagonal elements are
the values such that the sum of a row equals 0.

From the above, we obtain the steady state proba-
bilities πππ = (πeee0 ,πeee1 ,πeee2 , . . . ,πyyy) by solving the equi-
librium equation and the normalization condition:

πππQQQ = 000,
πππeee = 1,

where 000 is the vector of zeros of an appropriate size
and eee is the vector of ones of an appropriate size. We
can also define the mean number of the customers of
class-AB as follows (same for the other classes):

E[LAB] =
KAB

∑
jAB=0

KAC

∑
jAC=0

KBA

∑
jBA=0

KBC

∑
jBC=0

KCA

∑
jCA=0

KCB

∑
jCB=0

rA−1

∑
kA=0

rB−1

∑
kB=0

rC−1

∑
kC=0

jABπ( jAB, jAC , jBA, jBC , jCA, jCB,kA,kB,kC).

4 HEURISTIC ANALYSIS

In this section, we present the heuristic solution for
the model. As we showed in the previous section, the
number of the states becomes large even for N = 3.
The theoretical analysis is not practical due to the lim-
ited memory capacity of the computer. Therefore, we
would like to propose the heuristic solution concern-
ing Markov chains of a small number of states.

As a premise, the heuristic solution makes a strong
assumption that the transitions of each class are inde-
pendent. Strictly speaking, CRS reduces the number
of customers in multiple classes at the same time, that
means that they are not independent, but for the sake
of simplicity, we make this assumption.

We describe the heuristic solution based on the ex-
ample where N = 3. We consider 6 (= N(N − 1))
basic models instead of the complicated exact model.
In other words, we consider the basic model for each
class, and estimate the steady state probabilities nu-
merically.

The detailed procedure is given in Algorithm
1. We define several notations; V is the set of
all nodes, P is the set of all classes, and U is
the set of all routes. PA is the set of classes in-
cluding node-A (same for PB and PC). UAB is
the set of routes including class- AB (same for
other classes). TUAB is the set of classes except for
class-AB and consisting of the classes in UAB (same
for other classes). χABCA/AB is the probability that
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Algorithm 1: N = 3.

Input: V = {A,B,C},{qv,rv;v ∈ V},{λp; p ∈
P},{Xp; p ∈ P},{σu;u ∈U},ε.

Output: {πππ∗p; p ∈ P},{χu/p;u ∈U, p ∈ P}.
P = {(A⇒ B),(A⇒ C),(B⇒ A),(B⇒ C),(C⇒
A),(C⇒ B)}
U = {(A→ B→ A),(A→C→ A),(A→ B→C→
A),(A→C→ B→ A)}
PA = {(A⇒ B),(A⇒ C)}, PB = {(B⇒ A),(B⇒
C)}, PC = {(C⇒ A),(C⇒ B)}
UAB = {(A→ B→ A),(A→ B→C→ A)}
UAC = {(A→C→ A),(A→C→ B→ A)}
UBA = {(A→ B→ A),(A→C→ B→ A)}
UBC = {(A→ B→C→ A)}
UCA = {(A→C→ A),(A→ B→C→ A)}
UCB = {(A→C→ B→ A)}
TUAB = {(B⇒ A),(B⇒C),(C⇒ A)}
TUAC = {(B⇒ A),(C⇒ A),(C⇒ B)}
TUBA = {(A⇒ B),(A⇒C),(C⇒ B)}
TUBC = {(A⇒ B),(C⇒ A)}
TUCA = {(A⇒ B),(A⇒C),(B⇒C)}
TUCB = {(A⇒C),(B⇒ A)}
for p ∈ P do

for up ∈Up do
χ
(0)
up/p = 0

Compute πππ∗p
(0) such that πππ∗p

(0)QQQ∗p
(0) = 000 with

πππ∗p
(0)111> = 1

end for
end for
for p ∈ P do

for up ∈Up do
χ
(1)
up/p = ∏t∈TUp

∑
Kt
jt=m ∑

rt̂−1
kt=0 π∗jt ,kt̂

(0)

end for
end for
n = 1
while ||πππ∗p(n)−πππ∗p

(n−1)||> ε do
for p ∈ P do

for up ∈Up do
Compute πππ∗p

(n) such that πππ∗p
(n)QQQ∗p

(n) = 000
with πππ∗p

(n)111> = 1
end for

end for
for p ∈ P do

for up ∈Up do
χ
(n+1)
up/p = ∏t∈TUp

∑
Kt
jt=m ∑

rt̂−1
kt=0 π∗jt ,kt̂

end for
end for
n← n+1

end while

class-BC and class-CA (all classes composing route-

ABCA except for class- AB ) satisfy the conditions for
the occurrences of CRS. This is also the same for the
other classes and routes. The condition for the occur-
rences of CRS is the same as the theoretical analysis;
there are m or more customers of every class that com-
poses a route.

Let S∗AB(t) and R∗A(t) denote the number for the
waiting customers of class-AB and the progress of the
Erlang distribution for the buses on which class-AB
rides (i.e., the buses at node-A), at time t, respectively
(same for other classes). The basic model becomes
two dimensional Markov chain of these two variables,
i.e., {(S∗AB(t),R

∗
A(t))|t = 0}. Our goal is to know

the steady state probabilities of these basic models,
i.e., πAB

jAB,kAB
= limt→∞ P(S∗AB(t) = jAB,R∗A(t) = kA),

πAC
jAC ,kAC

= limt→∞ P(S∗AC(t) = jAC,R∗A(t) = kA), . . . ,
(same for other classes).

We obtain the steady state probabilities by solving
the following formulae (example of class-AB):

πππ
∗
ABQQQ∗AB = 000,

πππ
∗
ABeee = 1,

where,

πππ∗AB =

( 0 1 . . . KAB(rA−1)

0 π∗0,0 π∗0,1
. . . π∗KAB,rA−1

)
,

QQQ∗AB =


0 1 . . . KAB(rA−1)

0 Q∗AB(0,0),(0,0)
Q∗AB(0,0),(0,1)

. . . Q∗AB(0,0),(KAB,rA−1)

1 Q∗AB(0,1),(0,0)
Q∗AB(0,1),(0,1)

. . . Q∗AB(0,1),(KAB,rA−1)

2 Q∗AB(0,2),(0,0)
Q∗AB(0,2),(0,1)

. . . Q∗AB(0,2),(KAB,rA−1)

...
...

. . . . . .
...

KAB(rA−1) Q∗AB(KAB,rA−1),(0,0)
Q∗AB(KAB ,rA−1),(0,1)

. . . Q∗AB(KAB,rA−1),(KAB,rA−1)


,

Q∗AB( jAB,kAB),( jAB+1,kAB)
= λAB, jAB 5 KAB−1,

Q∗AB( jAB,kAB),( jAB ,kAB+1)
= qA, 0 5 kA 5 rA−2,

Q∗AB( jAB,KAB),( jAB−min(XAB , jAB),0)
= qA,

Q∗AB( jAB,kAB),( jAB−min(n, jAB),kAB)

= χABA/ABσABA +χABCA/ABσABCA, jAB = m.
Note that χABA/AB and χABCA/AB (and also for the

other routes and classes; χUp/p) are unknown values.
Therefore, we propose the following procedure;

• Set all χUp/p = 0 at first and solve the basic mod-
els.

• Obtain new values of χUp/p and solve all the basic
models again.

• Repeat the above until the difference between the
steady state probabilities elements of all the basic
models is less than an extremely small value (=
ε).
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See Algorithm 1 for the formal notations. We can also
derive the number of waiting customers of each class
as (for example class AB):

E[LAB] =
KAB

∑
jAB=0

rA−1

∑
kA=0

jABπ
AB
jAB,kA

.

Unfortunately, we cannot theoretically guarantee
the convergence of the algorithm. However, it was
experimentally confirmed that this algorithm works
well. We show the numerical results for both theo-
retical and heuristic solutions in the next section.

5 NUMERICAL EXPERIMENTS

This section presents the numerical results for both
theoretical (strict) and heuristic (approximation) so-
lutions. We set the parameters as ε = 10−5, λAB =
λAC = λBA = λBC = λCA = λCB = 10, m = 2, n = 4,
l = 10, KAB = KAC = KBA = KBC = KCA = KCB = 10,
XAB = XAC = XBA = XBC = XCA = XCB = 10, qA =
qB = qC = 10, rA = rB = rC = 1 unless otherwise spec-
ified.

Figures 3 and 4 show the results for the number
of the waiting customers in class-AB (= E[LAB]) ac-
cording to the values of λBA and λAB, respectively.
Overall, both solutions show a similar trend. The rea-
son why the heuristic solution is that we assume each
class’s independence. Therefore, it is easier to sat-
isfy the condition of CRS occurrences compared to
the theoretical solution, and thus, customers tend to
decrease quickly in the heuristic analysis. However,
it should be noted that the heuristic model has a much
smaller number of states (i.e., less memory capacity
required for the computation). We can consider that
the heuristic analysis is practical to obtain the rough
trend of the system performance with low computa-
tional cost.

6 CONCLUSION

This paper has considered the modeling of the intro-
duction of CRS (one of the demand-responsive trans
portations) on a circular bus route. First of all, we
have shown the theoretical analysis of the model re-
garding queueing theory. However, the theoretical
model is not practical from the perspective of its com-
putational cost. Therefore, we have proposed the
heuristic analysis, which estimates the steady state
probabilities algorithmically. We have confirmed the
validity of the heuristic analysis compared to the theo-
retical analysis by conducting some numerical exper-
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Figure 3: The expected number of the waiting customers.
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Figure 4: The expected number of the waiting customers.

iments. As future works, we plan to conduct numeri-
cal experiments for more various cases, e.g., the case
where the number of nodes is more than 3. Moreover,
it is also an important issue that we confirm the guar-
antee of the theoretical convergence of the heuristic
model.
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