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Holistic scene understanding is pivotal for the performance of autonomous machines. In this paper we propose

anew end-to-end model for performing semantic segmentation and depth completion jointly. The vast majority
of recent approaches have developed semantic segmentation and depth completion as independent tasks. Our
approach relies on RGB and sparse depth as inputs to our model and produces a dense depth map and the
corresponding semantic segmentation image. It consists of a feature extractor, a depth completion branch,
a semantic segmentation branch and a joint branch which further processes semantic and depth information
altogether. The experiments done on Virtual KITTI 2 dataset, demonstrate and provide further evidence, that
combining both tasks, semantic segmentation and depth completion, in a multi-task network can effectively
improve the performance of each task. Code is available at https://github.com/juanb09111/semantic_depth.

1 INTRODUCTION

Computer vision and holistic scene understanding
have become pivotal topics as we intend to provide
machines with autonomous capabilities. When we, as
humans, see things we unconsciously assign multiple
attributes to what we see and we also perform mul-
tiple tasks simultaneously. For instance, we can ef-
fectively assess the distance of the objects we see, the
quantity, the size, the texture, etc. all at once. We are
also capable of understanding the world around us in
its semantic complexity. On the other hand, machines
can outperform humans in several tasks individually.
That is the case for tasks such as object detection
(Ren et al., 2016), (Zhai et al., 2017), (Redmon and
Farhadi, 2018), semantic segmentation (Ronneberger
et al., 2015), (Chen et al., 2018a), (Lin et al., 2016)
and/or depth estimation (Chen et al., 2020), (Godard
et al., 2019), (Guizilini et al., 2020), where machines
have been able to successfully carry out those tasks
individually. However, when it comes to performing
multiple tasks, machines are still lagging behind, in
comparison to humans.

In an attempt to provide a more holistic approach
to the problem of scene understanding, multi-task net-
works have become a highly active field of research in
computer vision. In addition to provide a more com-
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Figure 1: Overview of our proposed SemSegDepth archi-
tecture. Our model produces a dense depth map and se-
mantics prediction given an RGB image and sparse depth
as input.

plete representation of a scene, there is growing evi-
dence that multi-task networks can improve the per-
formance of each individual task (Liebel and Koérner,
2018). Panoptic segmentation, for example, combines
instance segmentation, object detection and seman-
tic segmentation (Mohan and Valada, 2020), (Cheng
et al., 2020), (Wang et al., 2020), (Weber et al., 2020).
To our best knowledge, only few methods have com-
bined semantic segmentation and depth completion
(Sanchez-Escobedo et al., 2018), (Zou et al., 2020).
As compared to other applications, e.g. panoptic
segmentation, combining semantic segmentation and
depth completion poses additional challenges such as
processing heterogeneous data jointly, since seman-
tic segmentation relies on RGB images while depth
completion relies on sparse depth data.
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Semantic segmentation refers to the task of as-
signing a semantic label to every single pixel in an
image, e.g. determining whether a pixel in an image
belongs to a ’car”, ’person”, bike” or background”.
On the other hand, depth estimation, more specifically
depth completion, predicts the distance of every pixel
in an image, where, in most cases, a sparse depth in-
put is provided. In applications such as autonomous
driving, combining semantic segmentation and depth
completion can improve the performance of the sys-
tem as a whole significantly, as the machines would
not only understand their surroundings semantically,
but also, they would have knowledge about the prox-
imity of the things on a given scenario.

In this paper we proposed a new end-to-end multi-
task network for performing semantic segmentation
and depth completion jointly. ~We combine two
bench-marking models, namely, we use a modified
version of the depth completion network proposed by
Chen et al. (2020) as well as a modified version of
EfficientPS (Mohan and Valada, 2020). An overview
of our model SemSegDepth is shown in Figure 1. It
consists of a feature extractor, a semantic segmenta-
tion branch, a depth completion branch and a joint
branch. The feature extractor is a resnet50 network
(He et al., 2015) wrapped in a Feature Pyramid Net-
work (FPN) (Lin et al., 2017). Our semantic seg-
mentation branch is based on the semantic segmen-
tation branch of the EfficientPS architecture. The
depth completion branch extends (Chen et al., 2020)
by adding semantic logits as input, and finally, the
joint branch further processes semantic and depth in-
formation altogether. We trained and evaluated our
model on Virtual KITTI 2 (Cabon et al., 2020) and
demonstrated that our SemSegDepth model improves
the performance for both tasks, semantic segmenta-
tion and depth completion.

2 RELATED WORKS

2.1 Semantic Segmentation

Semantic segmentation takes image classification task
to a pixel level. Fully convolutional networks have
previously been used to perform dense predictions for
pixel-wise segmentation (Long et al., 2014). During
the last decade encoder-decoder architectures such as
UNet (Ronneberger et al., 2015) became popular and
achieved the state of art using what today can be con-
sidered rather simple architectures based deep con-
volutional networks (DCNN) that were capable of
restoring the original spacial resolution with a series
of upsampling layers in an end-to-end manner. How-
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ever, traditional upsampling layers such as bi-linear
upsampling or deconvolutional layers are computa-
tionally expensive.

Atrous convolution is a more efficient alterna-
tive and architectures such as DeepLab (Chen et al.,
2016) pioneered using atrous convolution in the con-
text of pixel-wise semantic segmentation using DC-
NNs. DeepLab also introduced the concept of “atrous
spatial pyramid pooling” (ASPP) to enhance the net-
work’s capability of representing objects of differ-
ent sizes. Later in (Chen et al., 2018a) ASPP would
be optimized by using depth-wise separable convolu-
tion which would result in a faster yet stronger net-
work. Alternatively, Kreso et al. (2016) proposed a
novel and different approach to deal with the problem
of scale variation in images, by using reconstructed
depth from stereo images and a pixel-wise scale se-
lection multiplexer which provides a scale-invariant
image representation successfully used by a classi-
fication sub-network that finally outputs the seman-
tic segmentation map. Other architectures (Tan and
Le, 2019), (Chollet, 2016), (Mohan and Valada, 2020)
would also benefit from depth-wise separable convo-
lutional layers which are many times faster than tra-
ditional convolutional layers.

Another approach adopted in convolutional neural
networks (CNN) is called gated convolutions which
are based on linearizing belief nets (LBNs) (Dauphin
and Grangier, 2015) that are capable of modeling a
deep neural network (DNN) as linear units that can
be turned on and off in a non-deterministic fashion
reducing the vanishing gradient problem. LBNs were
later used for language modeling by Dauphin et al.
(2016) and further applied in the context of semantic
segmentation by Takikawa et al. (2019) whose work
tackles the problem with two branches, one of which
processes the shape while the other branch processes
semantic information in a classical way, and the two
branches are connected with gating mechanisms.

2.2 Depth Completion

Neural networks have been largely used to produce
dense depth maps out of sparse data provided by
depth sensors such as Lidar and the vast majority of
those networks also use RGB images for guidance
(Imran et al., 2019), (Yang et al., 2019) (Xu et al.,
2019), (Huang et al., 2020), (Tang et al., 2019).

The lack of ground truth dense depth maps poses a
challenge for supervised learning approaches. Exist-
ing datasets like Virtual KITTI 2 (Cabon et al., 2020)
provide synthetic data including dense depth maps
ground truth. However, that is not the case in realistic
scenarios where only sparse ground truth is available.
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Other approaches like (Ma et al., 2018) are capable
of learning a mapping from sparse depth and images
to dense depth with no need of dense depth maps as
ground truth. It is also possible to learn depth features
by using surface normals as in (Qiu et al., 2018) and
(Zhang and Funkhouser, 2018).

One of the challenges of working with 3D data
is its non-grid nature and therefore traditional CNNs
simply do not work unless the 3D points are mapped
on to a 2D space. Motivated by this problem Wang
et al. (2018) introduced what they called Parametric
Continuous Convolution to learn features over non-
grid data.

Making use of the recent continuous convolution
proposed in (Wang et al., 2018), Chen et al. (2020)
introduced a neural network block which extracts 2D
and 3D features jointly. Such block consists of two
branches running in parallel. One of the branches
processes RGB features while the other branch uses
continuous convolution over 3D points and finally the
outputs of both branches are fused together. By stack-
ing the same block N times they managed to effec-
tively produce a dense depth outperforming the state
of the art in 2020. Our proposed model builds upon
the architecture proposed by Chen et al. (2020) for
performing depth completion as described in section
3.4.

2.3 Multi Task Leaning

A CNN can effectively be trained to produce multi-
ple outputs corresponding to different tasks. In the
context of image processing, tasks such as object de-
tection and semantic segmentation have been tackled
successfully (Yao et al., 2012), (Mohan and Valada,
2020), (Kim et al., 2020). Depth estimation and se-
mantic segmentation have also been combined in one
CNN as in (Figen and Fergus, 2014), (Hazirbas et al.,
2016), (Kendall et al., 2017), (Zou et al., 2020)

Multi task networks have shown to achieve better
results as whole in terms of their capability to provide
a more holistic representation, but also the perfor-
mance of each one of the tasks improves as a result of
having a multi task CNN. Inspired by this approach,
Liebel and Korner (2018) introduced the concept of
“auxiliary tasks”, they are side tasks that are less rel-
evant for a given application but that potentially im-
proved the performance of the core tasks. Moreover,
Zamir et al. (2018) suggested that certain visual tasks
contain underlying common and supplementary fea-
tures, meaning that high level representations of an
input for a specific task, may contain relevant infor-
mation for solving a different task, as long as the tasks
are related to one another.

More recently, He et al. (2021) proposed a multi
task network for semantic segmentation and depth
completion which exploits the geometric relationship
between the two tasks by introducing the concept of
semantic objectness, used as a constrain that describes
the correlation between the semantic and the actual
depth.

3 ARCHITECTURE

3.1 Overview

We propose a CNN which takes as inputs a single
RGB image and a sparse depth image, and returns
the corresponding semantic segmentation image and
a dense depth map in an end-to-end manner. The
complete diagram of our model is shown in Figure
2. Our model consists of one feature extractor back-
bone, two task-specific branches, one of which is de-
signed for performing semantic segmentation and an-
other one which performs depth completion, and one
joint branch which combines semantic and depth in-
formation. The two task-specific branches are inter-
communicated at specific points. The semantic seg-
mentation branch is based on a neural network known
as "EfficientPS” for panoptic segmentation (Mohan
and Valada, 2020), from where we neglect the in-
stance segmentation branch, while the depth comple-
tion branch is based on a fusion network introduced
by (Chen et al., 2020) which extracts joint 2D and 3D
features. Thus, our proposed architecture combines
two bench-marking models to perform semantic seg-
mentation and depth completion jointly.

3.2 Backbone

The backbone, as shown in Figure 2, is a resnet50
feature extractor (He et al., 2015) wrapped in a FPN
(Lin et al., 2017) for extracting intermediate features
from the backbone in order to have feature maps at
multiple scales. More specifically, the FPN returns
four feature maps that are down-sampled, with respect
to the input, by a factor of x4, x8, x16 and x32.
These features are then fed to the semantic segmenta-
tion branch.

3.3 Semantic Segmentation Branch

The semantic segmentation head follows the architec-
ture of the semantic segmentation branch proposed by
Mohan and Valada (2020). The inputs of this branch
are the four different outputs of the feature extractor,
that is, four feature maps, each one with a different
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Figure 2: Diagram of the SemSegDepth architecture. The convolutional layers shown in this diagram follow the notation
Conv(k,s,c) where k refers to a k x k convolutional kernel, s is the stride, and c is the number of output feature channels.

spacial resolution. This semantic segmentation head
aims at capturing large-scale features as well as small-
scale features and then on a later stage, such feature
maps at different scales are aggregated. This branch
returns semantic logits as output and the resolution of
the output is nc x H x W where nc corresponds to the
number of classes.

In order to extract large-scale features, we use a
Large Scale Feature Extractor (LSFE) module which
consists of a stack of three layers of 3 x 3 convolutions
and produces a feature map with 128 filters. For ex-
tracting small-scale features, we used what is known
as Dense Prediction Cells (DPC) (Chen et al., 2018b)
which is a modified version of ASPP (Chen et al.,
2016).

Finally, in order to reduce the mismatch between
small-scale features and large-scale features, we used
a Mismatch Correction Module (MC). It consists of
a stack of three layers of 3 x 3 convolutions and one
bilinear upsampling layer at the very end.

3.4 Depth Completion Branch

Our depth completion branch is a modified version of
the depth completion network proposed by Chen et al.
(2020). To begin with, our depth completion branch
receives as input, not only sparse depth and RGB as
in (Chen et al., 2020), but it has one more input which
corresponds to the preliminary output of the seman-
tic segmentation branch. Thus, we are embedding se-
mantic information into our depth completion branch.

The sparse depth, RGB and the semantic segmen-
tation preliminary output are concatenated and passed
through a stack of two 3 x 3 convolutional layers. The
sparse depth image alone is also passed through a
stack of two 3 x 3 convolutional layers. Then, the two
outputs are concatenated and the resulting tensor, as
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well as the sparse depth ground truth, are the inputs
of a stack of N 2D — 3D Fuse Blocks (Chen et al.,
2020). Finally, the resulting output of the Fuse Blocks
passes through two convolutional layers for further re-
finement. The output of this branch is a fully dense
depth map, that is, an image where every pixel is as-
signed a value of depth.

3.5 Joint Branch

Finally, in order to use depth information as guidance
for the semantic segmentation branch, we concate-
nate the output of the depth completion branch and
the preliminary output of the semantic segmentation
branch. The result is passed through a joint branch
that processes semantic and depth information alto-
gether. The purpose of the joint branch is to further
process the semantic segmentation preliminary output
guided by depth information. It consists of a stack of
four 3 x 3 convolutional layers. The output of the joint
branch is the corresponding nc x H x W semantic log-
its based on which we calculate the loss as described
in section 3.6.

3.6 Loss Functions

Semantic Segmentation. For semantic segmenta-
tion we computed the cross-entropy loss for every
pixel. The loss for a pixel i is defined as:

Lyemantic = _Zpi logﬁia (1)
i

where i is the pixel index, p; is the ground truth
and p; is the log Softmax value of the predicted prob-
ability for pixel i. The log Softmax function is defined
as:
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LogSo ftmax(x;) = log (%) 2
J J

Depth Completion. For depth completion we used
the squared error average across all the pixels in the
image for which the ground truth labels were avail-
able. The loss function for depth completion is then
defined as:

l v/
Laeptn = N Y i — i) 3)
where N is the number of pixels, ¥; and y; are the
predicted value and the ground truth for pixel i, re-
spectively.

Joint Loss. In addition using a loss per task, we im-
plemented a joint loss function in order to leverage
the correlation between both tasks, namely semantic
segmentation and depth completion. The joint loss is
simply the sum of each individual loss as follows:

Ljoint = Lsemantic + Ldepth~ €]

4 EXPERIMENT SETUP

4.1 Implementation Details

We implemented the network on PyTorch and used
PyTorch DistributedDataParallel for data parallelism
during training. We used one machine with four
16GB graphics processing units (GPU) for training.
We optimized the loss function using the stochastic
gradient descent (SGD) with an initial learning rate
set to 16 x 107*, momentum set to 0.9 and weight de-
cay setto 5 x 1073,

4.2 Dataset

The experiments were done on the Virtual KITTI 2
dataset (Cabon et al., 2020). Virtual KITTI 2 is a
synthetic video dataset which provides ground truth
annotations for multiple tasks, namely, instance seg-
mentation, semantic segmentation, multiple object
tracking (MOT), optical flow, depth estimation, ob-
ject detection and camera pose. It also provides stereo
images for every scene. Besides, every sequence is
recreated with subtle changes in the viewing angles,
more specifically, £15°and +30° horizontal rotations
and changes in the weather conditions such as foggy,
cloudy, rainy, morning and sunset. We used 500 sam-
ples for training, 125 for evaluation, and 200 samples
for testing.

Virtual KITTI 2 provides fully dense depth maps
as depth ground truth, meaning that the depth values
are provided for every single pixel in the input im-
age. However, in order to reproduce real conditions
where the ground truth depth is acquired with sensors
such as LIDAR, which can only provide sparse values
within a given range, we filtered out all the points ex-
ceeding a distance of 50 meters and then we randomly
sampled the ground truth. Hence, our synthetic depth
ground truth consists of sparse depth images contain-
ing 8000 depth values per image, where each point
is within a range of 50 meters. We cropped all the
images to a resolution of 200 x 1000 (H x W).

4.3 Evaluation

In order to be able to evaluate the performance of
our model, we used the mean Intersection-over-Union
(mloU) for evaluating the performance of semantic
segmentation and root mean squared error (RMSE)
for depth completion. The mloU is defined as:

mloU = LZ i Q)

ncg TP, +FN, -i—FP]7

where nc is the number of classes, TP;, FN; and

F P, are the number of true positive, false negative and

false positive pixels respectively, labeled as class /.
The RMSE metric is defined as:

RMSE = W/N)m" S R C)
where N is the number of pixels, y; and y; are the
predicted value and the ground truth for pixel i, re-

spectively.
4.4 Baseline

In our work, the main purpose is to quantify the
performance improvement of each individual task by
having them as joint tasks in one single model. There-
fore, our baseline consists of two models, one for each
task. In this section, we describe each baseline model.

SemSegNet_b. This is our semantic segmentation
baseline. As proposed by Mohan and Valada (2020),
the semantic segmentation task is carried out by an
architecture which is composed by a feature extrac-
tor and a semantic segmentation branch as shown in
Figure 2. The depth completion branch and the joint
branch are removed from this model.
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(b) SemSegNet_b

(c) SemSegDepth (ours)

Figure 3: Semantic Segmentation results on Virtual KITTI 2. Column a shows the RGB image input, column b shows the
semantic segmentation results using the baseline model SemSegNet_b and column ¢ shows the the semantic segmentation

results using our model SemSegDepth.

(a) RGB

DepthNet b. This baseline network is the model
proposed by Chen et al. (2020) which corresponds
to the depth completion branch of the model shown
in Figure 2 without concatenating the ”Semantic Seg-
mentation Preliminary Output” at the input. Hence,
the only inputs are the RGB Input and the Sparse
Depth.

We compared our model to this baseline networks
and the results are presented in section 4.5. We also
present the results obtained with different configura-
tions of our model as ablation studies in section 4.6.

4.5 Results

The quantitative results for semantic segmentation
and depth completion are shown in Table 1. The best
performance is highlighted in bold letters.

Table 1: Results of our model compared to baseline net-
works.

Method mloU | RMSE(mm)
SemSegNet_b 0.520 -
DepthNet_b - 580.2
SemSegDepth (ours) | 0.5932 458.2

As shown in Table 1, our model outperforms each
one of the baseline networks in every specific task. By
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(b) DepthNet_b
Figure 4: Depth completion results on Virtual KITTI 2. Column a shows the RGB image input, column b shows the depth
completion results using the baseline model DepthNet_b and column ¢ shows the the depth completion results using our model
SemSegDepth.

(c) SemSegDepth (ours)

combining both tasks, depth completion and semantic
segmentation, our model achieved a significant im-
provement in the mloU metric as compared to the
semantic segmentation baseline model SemSegNet_b.
On the other hand, there was also a major improve-
ment in the depth completion task. Qualitatively, the
results are shown in Figure 3 for the semantic segmen-
tation task and in Figure 4 for the depth completion
task.

4.6 Ablation Studies

In addition to the baseline models, namely SemSeg-
Net_b and DepthNet_b, we also designed four other
networks which correspond to slight modifications of
our model. These networks can be understood as in-
termediate steps from the baseline networks to our fi-
nal model. In this section we describe each one of
these models.

SemNet_depth_gt. This is an extension of the se-
mantic segmentation baseline network SemSegNet_b.
This model is based on the model we proposed, shown
in Figure 2, and modified by removing the depth com-
pletion branch. The input to the joint branch is the
concatenation of the Semantic Segmentation Prelim-
inary Output and the depth completion sparse depth
ground truth. The purpose behind this model is to
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evaluate whether or not providing depth information
to the semantic segmentation baseline network can
improve the performance for the task of semantic seg-
mentation. The architecture of this model is shown in
Figure 5.

SemNet_depth_dense gt. In contrast to Sem-
Net_depth_gt, in this model, the input to the joint
branch is the concatenation of the Semantic Segmen-
tation Preliminary Output and a dense depth map
ground truth. Figure 6 shows the architecture of this
model.

DepthNet_semantic_gt. As shown in Figure 7, this
is a modification of the depth completion baseline net-
work DepthNet_b. Similar to SemNet_depth_gt, we
wanted to study whether or not providing reliable se-
mantic information could improve the performance of
the depth completion task alone. Therefore, we added
one more input to the DepthNet_b network, it corre-
sponds to the semantic segmentation ground truth im-
age which is concatenated with the RGB input at the
first concatenation layer.

SemSeg Depth_a. This model, as shown in Figure
8, is based on SemNet_depth_gt, where, instead of us-
ing the depth completion sparse depth ground truth
as input to the joint branch, we predict a dense depth
map using DepthNet_b and pass it then as input to the
joint branch.

SemSeg Depth_b. Similar to SemSegDepth shown
in Figure 2. This model combines semantic segmen-
tation and depth completion in a multi-task network.
However, different to SemSegDepth, the Semantic
Segmentation Preliminary Output is not an input to
the depth completion branch. Instead, we use another
instance of the semantic segmentation branch to ex-
tract semantic features. All in all, this model con-
sists of a feature extractor, two semantic segmentation
branches (one of which works as an input to the depth
completion branch), a depth completion branch and a
joint branch. The architecture of this model is shown
in Figure 9

SemSeg Depth_c. This model follows the exact
same architecture as SemSeg Depth b. The differ-
ence lies in the loss calculation. While in Sem-
Seg_Depth_b we only calculate the semantic segmen-
tation and the depth completion loss as in eq. 1 and
eq. 3, respectively, in SemSeg_Depth_c we also cal-
culate the joint loss as in eq. 4.

The quantitative results of all the models used in
the ablation studies are shown in Table 2.

Table 2: Ablation Experiments.

Method mloU | RMSE(mm)
SemSegNet_b 0.520 -
DepthNet_b - 580.2
SemNet_depth_gt 0.542 -
SemNet_depth_dense_gt | 0.638 -
DepthNet_semantic_gt - 833.7
SemSeg_Depth_a 0.5421 1497.0
SemSeg_Depth_b 0.5463 438.4
SemSeg_Depth_c 0.5841 429.7
SemSegDepth (ours) | 0.5932 458.2

It is important to note that neither Sem-
Net_depth_gt nor DepthNet_semantic_gt are signifi-
cantly better in terms of their performance, despite
having as input the corresponding sparse depth map
ground truth and semantic segmentation ground truth
respectively. SemNet_depth_dense_gt outperforms all
the other models for semantic segmentation, suggest-
ing that reliable depth data contains information use-
ful for other tasks such as semantic segmentation.
However, SemNet_depth_dense_gt relies heavily on a
fully dense depth map ground truth as input, which
is available in virtual environments only, whereas in
real environments such ground truth is not available,
hence sparse depth maps are a far more common.

SemSeg_Depth_a shows to perform better on the
task of semantic segmentation but much worse per-
formance for depth completion. On the other hand,
sharing the backbone weights as in SemSeg_Depth_b
and SemSeg_Depth_c, demonstrates to be a better per-
forming approach. Furthermore, SemSeg_Depth_c
outperforms SemSeg_Depth_b by calculating a joint
loss as in eq. 4, even when both architectures are ex-
actly the same.

Finally, in an attempt to share as many weights as
possible, our proposed model also shares the weights
of the semantic segmentation branch, yielding better
performance in the semantic segmentation task. This
further highlights the relevance of having two task-
specific branches sharing weights in the network as
in our proposed model SemSegDepth. Our model
learns high-level features containing information for
both tasks intrinsically, which is significantly more
accurate as compared to having access to the com-
plementary ground truth.
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S CONCLUSIONS

In this paper, we propose an end-to-end multi-task
network for semantic segmentation and depth com-
pletion. It combines a modified version of two
bench-marking models, more specifically, we used
the model proposed by Chen et al. (2020) for depth
completion and our semantic segmentation branch is
based on the semantic segmentation branch of the
EfficientPS model proposed by Mohan and Valada
(2020).

With the proposed model, we successfully pro-
vide further evidence that multi-task networks can
significantly improve the performance of each indi-
vidual task by learning features jointly. Our model
successfully predicts the fully dense depth map as
well as the semantic segmentation image in a scene,
given an RGB image and a sparse depth image as in-
puts to our model. In addition to that, our ablation
studies demonstrate quantitatively, that our multi-task
network outperforms, by a large margin, equivalent
single-task networks.
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APPENDIX

All the models introduced in section 4.6 are presented
here as appendices.
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