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Abstract: Order Picking in warehouses is often optimized through a method known as Order Batching, wherein several 
orders can be assigned to be picked by the same vehicle. Although there exists a rich body of research on 
Order Batching optimization, one area which demands more attention is that of computational efficiency, 
especially for warehouses with unconventional layouts and vehicle capacity configurations. Due to the NP-
hard nature of Order Batching, computational cost for optimally solving large instances is often prohibitive. 
In this paper we focus on approximate optimization and study the rate of improvement over a baseline solution 
until a timeout, using the Single Batch Iterated (SBI) algorithm. Modifications to the algorithm, trading 
computational efficiency against increased memory usage, are tested and discussed. Existing and newly 
generated benchmark datasets are used to evaluate the algorithm on various scenarios. On smaller instances 
we corroborate previous findings that results within a few percentage points of optimality are obtainable at 
minimal CPU-time. For larger instances we find that solution improvement continues throughout the allotted 
time but at a rate which is difficult to justify in many operational scenarios. The relevance of the results within 
Industry 4.0 era warehouse operations is discussed.

1 INTRODUCTION 

Order Picking is the process in which human pickers 
or vehicles (henceforth vehicles) retrieve sets of 
products (orders) from locations in a warehouse. 
Order Batching is a method in which vehicles can be 
assigned to pick several orders at a time. Order 
Batching can be formulated as an optimization 
problem known as the Order Batching Problem 
(OBP) (Gademann et al., 2001) or the Joint Order 
Batching and Picker Router Problem (JOBPRP) 
(Valle et al., 2017), where the Picker Router Problem 
is a Traveling Salesman Problem (TSP) applied in a 
warehouse environment (Ratliff & Rosenthal, 1983). 
We consider the OBP and JOBPRP versions 
equivalent if solutions to the OBP are assumed to 
include TSP solutions (henceforth we use the term 
OBP to refer to this version). There are several further 
versions and focus areas in OBP’s, including 
dynamicity, traffic congestion, depot setups and 
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obstacle layouts. One area in need of more attention 
is computational efficiency. As will be laid out in 
Section 2, computational efficiency is considered 
important in OBP-related research, but detailed 
discussions are sparse and there are significant 
differences in how CPU-times and timeouts are used. 
Although the variability of OBP’s and results 
concerning computational efficiency is high, we 
believe more research in this domain is warranted. 
We delimit our work to OBP’s where the aim is to 
minimize aggregate distances, and as measurement of 
computational efficiency we use the rate with which 
aggregate distance is reduced through CPU-time over 
a baseline solution. We use a distance based OBP cost 
because this is the predominant Key Performance 
Indicator (KPI) in OBP benchmark datasets. 
Although a KPI based on capital cost is what is 
mostly sought by warehouse management, it is 
difficult to work with: There are a multitude of 
complex and variable features that go into capital, 
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such as time-based aspects of work, traffic 
congestion, maintenance, ergonomics etc. A distance 
based KPI makes it easier to generate instances and 
solutions in a more generalizable and reproducible 
way.  

For experimentation we use the approximate 
optimizer Single Batch Iterated (SBI), to which we 
introduce novel search heuristics that permit stronger 
solution improvement at the cost of increased 
memory usage. We only work with CPU-times in the 
range 0 – 300 seconds. Results are compared with 
previous work by Aerts et al. (2021) and Henn & 
Wäscher (2012b), who have proposed approximate 
optimization results for sets of smaller instance sizes. 
For smaller instances we also assess SBI against 
optimal results on the Foodmart dataset (Briant et al. 
2020). For larger instances we introduce a new 
dataset and make it available on a public repository 
(Section 5.1). For instance generation we use the 
TSPLIB format (Hahsler & Kurt, 2007). As far as we 
are aware, there exists no standard benchmark format 
in OBP research, rendering experiments difficult to 
reproduce. Further discussions on how to represent 
key OBP features in reproducible data is highly 
relevant. This would allow for more data-driven 
evaluation of algorithmic performance, for example 
when investigating computational efficiency. Our 
research aims are as follows: 

1. To investigate the importance of 
computational efficiency in OBP 
optimization. 

2. To analyse computational efficiency of an 
approximate OBP optimizer on both existing 
and new test-instances and to discuss results 
in the light of previous work. 

2 LITERATURE REVIEW 

In this section we first present how the OBP and some 
of its key features are formulated in the literature. 
Then we present commonly used OBP optimization 
algorithms and heuristics. Finally, we present how 
computational efficiency has been motivated and 
evaluated in different OBP scenarios. 

As several studies have pointed out, the Order 
Batching Problem (OBP) shares significant 
similarities with the more well-known Vehicle 
Routing Problem (VRP) (Cordeau et al., 2007; Valle 
et al., 2017; Valle & Beasley, 2019). Aerts et al. 
(2021), distinguish three points of separation between 
the OBP and the standard VRP:  

1. Order-integrity constraint: In the OBP the 
products belonging to an order may only be picked by 

one vehicle, whereas there exists no concept of orders 
or order-integrity in the standard VRP.  

2. Number of visits constraint: In the OBP the 
same location may be visited several times by various 
vehicles, whereas a location may only be visited once 
in the standard VRP.  

3. Obstacle-layout: In the OBP it is assumed that 
there exists an obstacle layout, whereas there is no 
such assumption in the standard VRP.  

Concerning the latter point, most of the research on 
the OBP assumes that the warehouse uses a 
conventional layout, which means racks are arranged 
with parallel aisles (between racks) and parallel cross-
aisles (between sections of racks). If these conditions 
are not met the layout is unconventional (see Figure 1). 

Aerts et al. argue that the OBP can be modelled as 
a Clustered VRP (CluVRP) with weak cluster 
constraints. Weak cluster constraints mean that a 
vehicle may visit the locations in several clusters of 
locations in any sequence. The CluVRP was first 
introduced by Defryn & Sörensen (2017) and is 
according to Aerts et al. equivalent to the OBP since 
clusters can be mapped as orders. In experiments they 
utilize this problem on a conventional layout 
warehouse and on OBP scenarios involving up to 100 
orders. 

 

Figure 1: Examples of a conventional (top) and 
unconventional (bottom) layout warehouse, and example 
OBP’s with four orders. The colored diamonds denote 
origin and destination locations. The colored dots denote 
products and the orders which they belong to. In the 
solutions (right of the arrows), one vehicle is assigned to 
pick the red and lime orders and a second vehicle is 
assigned to pick the blue and green orders. 

For conventional layouts, proposed optimization 
algorithms include integer programming (Valle et al., 
2017), clustering (Kulak et al., 2012), datamining 
(Chen & Wu, 2005), dynamic programming (Briant 
et al., 2020) meta-heuristics and heuristics: Examples 
of meta-heuristics include Variable Neighborhood 
Search (Aerts et al., 2021), Tabu Search (Henn & 
Wäscher, 2012b), Ant Colony Optimization (Li et al., 
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2017) and Genetic Algorithms (Cergibozan & Tasan, 
2020). The heuristic algorithms can be divided into 
three categories: Priority rule-based algorithms, 
savings algorithms and seed algorithms (Henn et al., 
2010). Priority-rule based algorithms build batches by 
sorting orders according to a heuristic, for example 
First-Come-First-Serve, First-Fit or Best-Fit. In 
savings algorithms batches with single orders are first 
initialized and evaluated. Then, pairs, triplets and 
larger collection of orders are constructed and the 
combination with the best total result is retrieved 
(Henn & Wäscher, 2012a). In seed algorithms batches 
are generated in two phases: Seed selection and order 
addition. In seed selection, an initial seed order is 
chosen and then orders are added to the seed. There 
are several proposals for how to choose the first seed 
and add orders to it (Ho et al., 2008). One example is 
the Sequential Minimal Distance (SMD) heuristic 
(Sharp & Gibson, 1992), where the sum of minimal 
distances between products in the seed order and 
remaining orders is computed: 

𝑆𝑀𝐷ሺ𝑠, 𝑜ሻ ൌ ෍ 𝑚𝑖𝑛
௝∈௢

ห𝑑௜௝ห ,
௜∈௦

𝑜 ∈ 𝒪, 𝑜 ∉ 𝑏, 𝑠 ∈ 𝑏, (1)

where 𝑠 denotes a seed order in batch 𝑏, where 𝑜 
denotes an order which does not exist in 𝑏, and where 
𝑖 and 𝑗 denote products in order 𝑠 and 𝑜 respectively.  

Whenever there are more than two products in a 
batch, we assume some form of TSP algorithm is used 
within the OBP algorithm. For conventional layouts, 
the highly efficient S-shape or Largest Gap 
algorithms are commonly used (Henn, 2012; 
Roodbergen & Koster, 2001). We are not aware of 
any attempts to extend these to unconventional 
layouts. Given a distance matrix is provided, 
however, TSP’s can be optimized reasonably fast 
using e.g. OR-tools (Kruk, 2018) or Concorde (D. 
Applegate et al., 2002; D. L. Applegate et al., 2006).  

Computational efficiency in OBP optimization 
can be motivated in two general ways. The first 
concerns the direct impact of CPU-time on warehouse 
operations. In models where orders are coming in to 
the warehouse dynamically, for example, 
optimization should ideally be faster than the time it 
takes a vehicle to finish a picking round (Henn, 2012; 
Scholz et al., 2017). Otherwise, vehicles must wait in 
an idle state at the depot. Dynamic models are 
generally more realistic than static ones (incoming 
orders are there assumed to be known beforehand). 
The literature still tends to model OBP’s as static 
since dynamicity incurs more complexity (Scholz et 
al., 2017).  

The second motivation for computational 
efficiency stems from a system architecture 

perspective and how an OBP optimization module 
can integrate with a Warehouse Management System 
(WMS) without leading to higher optimization costs 
in a more indirect sense. As an example, if an OBP 
module is deployed on the cloud as a 3rd party 
software service (SaaS) there are some advantages 
with short CPU-times: A WMS client may be more 
interested in buying a service if it is safe and simple 
to integrate and this is made easier with short CPU-
times (Esposito et al., 2016). Furthermore, rental cost 
of servers can be assumed to rise with CPU-time and 
this also motivates more efficiency in regard to CPU-
times (Naumenko & Petrenko, 2021).  

The efficiency considerations described above are 
rarely considered of central importance in the broader 
literature on the OBP, however. CPU times are 
chosen to be “tolerable” (Kulak et al., 2012), 
“reasonable” (Bozer & Kile, 2008), “acceptable” or 
“realistic” (Aerts et al., 2021), but often lack in 
explanations of what these terms actually entail. 
Some examples are provided below for how 
researchers have used CPU-times and timeouts in 
optimization experiments with OBP’s.  

For approximate optimization, Henn & Wäsher 
(Henn & Wäscher, 2012a) use timeouts between 1 – 
180 seconds for a heuristic optimizer and OBP’s 
where 40 – 100 unassigned orders are to be batched. 
Aerts et al. (2021), set timeouts between 1 and 60 
seconds on the same instance set and propose a meta-
heuristic algorithm specifically designed to terminate 
at around 60 seconds, since solution improvement is 
found to be insignificant beyond that point. Both 
Aerts et al. and Henn & Wäscher’s algorithms come 
to within 5% of the best solution overall within the 
first 10% of optimization time. Scholz et al. (2017) 
experiment with instances of similar size but in a 
dynamic setting and report a much lower efficiency: 
70% of maximum allowed CPU-time is necessary to 
reach within 5% of best solution overall. Efficiency 
also decreases non-linearly with instance size in their 
results: For 10 orders their optimizer needs 2 seconds, 
for 100 orders it needs 11 minutes, and for 200 orders 
60 minutes. Henn (2012) also presents an algorithm 
for dynamic OBP’s and sets it to self-terminate after 
60 seconds, partly due to operational considerations 
(to avoid vehicles from idling at the depot). Many 
publications do not present concrete results for 
timeouts or rate of solution improvement, or a low 
number of experiments (Azadnia et al., 2013; Bué et 
al., 2019; Jiang et al., 2018). Kulak et al. (2012) and 
Li et al. (2017), for example, present highly efficient 
meta-heuristic optimizers, but use only 5 to 10 
instances and do not show their rate of solution 
improvement. For authors presenting algorithms 
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capable of finding optimal solutions to static OBP’s, 
Henn & Wäscher (2012b), set timeouts between 2 – 
1328 seconds for instances with up to 60 orders. 
Gademann et al. (2001), set timeouts to 10 – 30 
minutes for up to 100 orders. Valle et al. (2017) and 
Briant et al. (2020), on the Foodmart dataset, present 
timeouts in the range 300 seconds to 2 hours for 20-
30 orders.  

These examples show that computational 
efficiency in OBP experiments is difficult to judge 
generally. Choice of static or dynamic modelling, 
optimal versus approximative optimization, 
experimental setup, instance sizes and the technology 
level of used software and hardware, are all factors 
that can have a complex effect on results in this 
regard. 

3 PROBLEM FORMULATION 

We define the OBP objective as the assignment of  
batches to vehicles such that the aggregate distance 
needed to pick the batches is minimized. Each batch 
𝑏  consists of a set of orders 𝑏 ∈ 2𝒪, 𝑏 ് ∅  where 
each 𝑜 ∈ 𝒪  is a subset of products 𝑜 ∈ 2𝒫, 𝑜 ് ∅. 
Each product 𝑝 ∈ 𝒫 is a set which includes a unique 
product identifier, an order identifier, weight 𝑤 and 
volume 𝑣𝑜𝑙 , 𝑤, 𝑣𝑜𝑙 ∈ ℝା . The sum of weight, 
volume or number of orders in a batch can be 
retrieved with function 𝑞ሺ𝑏ሻ, 𝑞 ∈ ሼ𝑤, 𝑣𝑜𝑙, 𝑘ሽ. The x, 
y location coordinates of all products is defined as set 
ℒ𝒫, and the location of a product is retrievable with 
function 𝑙ሺ𝑝ሻ . The locations of the products in an 
order are retrievable with function 𝑙ሺ𝑜ሻ ൌ∪௣∈௢ 𝑙ሺ𝑝ሻ, 
and all locations in a batch are retrievable with 
function 𝑙ሺ𝑏ሻ ൌ∪௢∈௕ 𝑙ሺ𝑜ሻ. We define a single origin 
location for all vehicles 𝑙௦ , a single destination 
location 𝑙ௗ  and a set of polygonal obstacle location 
sets ℒ𝒰. The aggregate of all locations is ℒ ൌ ሼ𝑙௦ሽ ∪
ሼ𝑙ௗሽ ∪ ℒ𝒫 ∪ ℒ𝒰. 

We build undirected graph 𝐺 ൌ ሺ𝑉, 𝐸ሻ.  Each 
vertex in 𝑉  represents a unique location in ℒ  and 
function 𝑣ሺ𝑙ሻ gives a vertex for a location and 𝑙ሺ𝑣ሻ 
gives a location for a vertex. The vertices in batch 𝑏 
includes the origin and destination vertices 𝑣ሺ𝑏ሻ ൌ
𝑣ሺ𝑙௦ሻ ∪ 𝑣൫𝑙ሺ𝑏ሻ൯ ∪ 𝑣ሺ𝑙ௗሻ. 𝐸  represents the set of all 
Euclidean edges between all locations that 
circumvent obstacles in ℒ𝒰 . Distance matrix 𝐷 and 
shortest paths between all edges is computed using 
the Floyd-Warshall algorithm. How 𝐸  and shortest 
paths can be constructed with polygonal obstacles is 
beyond the scope of this paper; for details see 
(Rensburg, 2019). We also permit several products to 

be assigned to the same location in our model. This 
can be useful to help reduce the memory footprint of 
𝐺 . The path to pick batch 𝑏 is retrievable with the 
following function:  

𝑇ሺ𝑏ሻ ൌ ሼ𝑣௜ሽ௜ୀଵ
௡ , 𝑛 ൌ |𝑣ሺ𝑏ሻ|, (2)

𝑣௜ ൌ ൝
𝑣௦ 𝑖 ൌ 1
𝑣௞ 1 ൏ 𝑖 ൏ 𝑛 
𝑣ௗ 𝑖 ൌ 𝑛

 (3)

and represents the solution to a Traveling 
Salesman Problem (TSP). The distance of 𝑇ሺ𝑏ሻ  is 
retrievable with function 𝐷ሺ𝑏ሻ ൌ ∑ 𝑑்ሺ௕ሻ೔்ሺ௕ሻೕ

, 𝑖, 𝑗 ∈
ℤା, 𝑗 ൌ 𝑖 ൅ 1, 𝑖 ൏ |𝑇ሺ𝑏ሻ|, where 𝑑 represents entries 
in distance matrix 𝐷. Vehicles are defined as 𝑚 ∈ ℳ 
where each vehicle has capacities expressed in weight 
𝑤, volume 𝑣𝑜𝑙 and number of orders 𝑘. The scenario 
where a vehicle 𝑚 is assigned a batch, order, and/or 
product location is defined with binary variables 𝑥௠௕, 
𝑥௠௢  and 𝑥௠௟ , respectively. We then formulate the 
OBP as follows: 

𝑚𝑖𝑛 ෍ 𝐷ሺ𝑏ሻ𝑥௠௕,
௕∈ℬ

𝑚 ∈ ℳ 

s.t.

(4)

෍ 𝑥௠௢

௠ ∈ ℳ

ൌ 1, ∀𝑜 ∈ 𝒪 (5)

෍ 𝑥௠௟

௟∈௟௢௖ሺ௢ሻ

൒ 𝑥௠௢, ∀𝑜 ∈ 𝒪, 𝑚 ∈ ℳ (6)

𝑞ሺ𝑏ሻ ൑ 𝑞ሺ𝑚ሻ𝑥௠௕, 𝑏 ∈ ℬ,  

𝑞 ∈ ሼ𝑤, 𝑣𝑜𝑙, 𝑘ሽ, 𝑚 ∈ ℳ 
(7)

where (4) states the objective, i.e., minimize 
distances for all generated batches ℬ , where (5) 
enforces order-integrity, where (6) enforces all 
locations in all orders to be visited at least once and 
where (7) ensures vehicle capacities are never 
exceeded. Since this OBP is highly intractable we 
also formulate a less ambitious objective in the single 
batch OBP:  

𝑎𝑟𝑔𝑚𝑖𝑛
௕∈ℬ

𝐷ሺ𝑏ሻ (8)

Here the aim is to find a single batch for an already 
selected vehicle. For this case we also enforce the 
single batch to come as close as possible to vehicle 
capacity: ∃𝑞൫𝑞ሺ𝑏ሻ ൅ 𝑞ሺ𝑜ሻ  ൒  𝑞ሺ𝑚ሻ൯, ∀𝑜 ∈ 𝒪, 𝑜 ∉
𝑏, 𝑞 ∈ ሼ𝑤, 𝑣𝑜𝑙, 𝑘ሽ.  

4 OPTIMIZATION ALGORITHM 

SingleBatchIterated (SBI) (Algorithm 1) is a heuristic 
multi-phase optimizer. In the core of the algorithm 
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unassigned orders 𝒪 are iteratively sent as input to the 
SMD (Sequential Minimal Distance) seed function, 
together with distance matrix 𝐷, a randomly chosen 
available vehicle and a variable seed index. The SMD 
function builds a single batch 𝑏 by first selecting a 
seed order according to the seed index and adding 
orders to it according to minimal distances (Equation 
1). Batch 𝑏  is then removed from the set of 
unassigned orders and the procedure repeats until all 
orders have been batched into ℬ . An approximate 
solution to the OBP can thus be obtained by pre-
selecting vehicles and approximately solving a  single 
batch OBP for that vehicle (Equation 8).  

Algorithm 1: Single Batch Iterated (SBI). 

 

The path to visit all locations in batch 𝑏 ∈ ℬ, 𝑇ሺ𝑏ሻ 
and its distance, 𝐷ሺ𝑏ሻ,  is computed using the OR-
tools TSP optimization suite4, in function TSPf. OR-
tools is set to finish quickly by using a number of 
iterations parameter, which is set to grow linearly 
with number of vertices in the TSP. If the aggregate 
distance was found to be lower than the best result so 
far, the TSP’s are optimally solved using Concorde5. 
If the aggregate distance is still lowest, the solution is 
stored as the best result.   

The algorithm self-terminates after |𝒪|  outer 
loops (or after a manually set timeout of 300 seconds 
in our experiments). Since the number of calls to 
SMD is approximately cubic to number of orders: 
|𝒪| ∑ሺ|𝒪| െ 𝑖ሻ, 𝑖 ∈ ሾ|𝒪| െ 1ሿ, we use an SMD order-

 
4  https://developers.google.com/optimization/routing/tsp, 
collected 13-09-2021. 
5  http://www.math.uwaterloo.ca/tsp/concorde/index.html, 
collected 16-09-2021. 
6    https://pagesperso.g-scop.grenoble inp.fr/~cambazah/ 

batching/, collected 04-05-2021.  

order enumerated matrix, which is populated through 
the optimization procedure: If SMD between two 
orders does not exist in the matrix, it is computed and 
pushed to the matrix. Once the value is stored it is 
subsequently queried. Caching SMD’s this way 
reduces number of calls to SMD from cubic to square, 
at an insignificant increase of memory usage (~25 
megabytes for 5000 orders assuming 8 bits per cell in 
the matrix). It should be noted that this only works for 
an SMD algorithm where the seed is defined as a 
single order, which cannot provide more than a noisy 
estimate of the subsequent TSP solution distance for 
batches with more than two orders. We still deem 
pairwise order-order SMD caching is suitable, since 
distance estimates are inaccurate even if SMD’s for 
larger collections of orders are computed (TSP 
optimization is required for accurate estimates). 
Caching could also be used to store all generated 
single batches and their solved TSP’s in a hash tree or 
equivalent, to prevent the same TSP to be optimized 
twice (memoization). We leave an implementation of 
this for future work, but there are likely gains to be 
made in general by storing and reusing results from 
the most expensive parts of the algorithm.   

5 EXPERIMENTS 

5.1 Benchmark Datasets 

The publicly shared datasets Foodmart6, L6_2037 and 
L09_251 8  are used for experimentation. Foodmart 
was introduced by Valle et al. (2017) and models a 
warehouse with a conventional layout with a 
maximum of 8 aisles and 3 cross-aisles. A feature in 
Foodmart is that vehicles carry bins and that vehicle 
capacity is expressed as a volume unit per bin. If an 
order cannot fit in a single bin, splitting it between 
different bins is permitted. SBI is not specifically 
designed to optimize for this feature (an extra bin 
packing problem within the OBP), so a greedy 
heuristic module is appended to the optimizer for the 
Foodmart experiment (for details see Oxenstierna et 
al., 2021).  

L6_203 and L09_251 model scenarios for up to 
six unconventional warehouse layouts and multiple 
depots. In these instances, vehicle capacity is 

7  https://github.com/johanoxenstierna/OBP_instances, co-
llected 23-09-2021.  

8  https://github.com/johanoxenstierna/L09_251, collected 
10-06-2021. 
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expressed in number of orders. To allow for some 
degree of comparability between L6_203 and 
Foodmart, we chose to exclude the largest six 
instances in Foodmart (100 – 5000 orders). Apart 
from these the number of orders is similar between 
Foodmart and L6_203. For larger instances we 
instead use L09_251, where number of orders range 
between 50 – 1000.  

Number of orders only gives a rough idea of how 
much CPU-time might reasonably be needed to 
optimize an OBP instance. Number of products and 
vehicle capacities are further examples of features 
that have a considerable impact. To classify instances 
by size, we use the amount of computational time SBI 
requires to obtain a baseline solution: 0-2, 2-5, 5-7 or 
7-10 seconds. The resulting number of instances for 
the four classes are as follows: 0-2 s: 395, 2-5 s: 191, 
5-7 s: 88, 7-10 s: 32. For all our experiments we use 
Intel Core i7-4710MQ 2.5 GZ 4 cores, 16 GB RAM.  

5.2 Experiment Results  

Aggregations of all results are presented in Table 1, 
Figure 2 and Figure 3. In Figure 2, the average 
improvement rate from the baseline is shown for the 
four instance size classes. The shades around the lines 
represent 95% confidence intervals.  

 

Figure 2: Optimization time versus relative OBP distances 
in percentages, for four instance size classes.  

The solution improvement rates for smaller instances 
(blue and orange) generally corroborate those of 
Henn & Wäscher (2012b) and Aerts et al. (2021): 
Improvements are significant in the initial stage of 
optimization (1-4% improvement over baseline 
within the first 10% of optimization) and then taper 
off. In our case all instances with up to 100 orders 
require no more than 2 seconds to obtain a baseline. 
Within this class we also note SBI always self-
terminates within 10 seconds (in figures 2 and 3 we 

show this by cutting the blue curve at 10 seconds; it 
could also have been extended as a horizontal line 
beyond 10 seconds).  

The Foodmart instances fit within the smallest 
class and there we compare against optimal results in 
Briant et al. (2020): On average, a gap to optimality 
of 2.3% was achieved after a maximum of 10 
seconds. The gap between the baseline solution and 
the best solution found was 3.2% on Foodmart. On 
generated instances in L6_203 the corresponding gap 
was 3.5%. 

For our larger instance classes (2-10 seconds to 
find a baseline solution), the pattern is similar, but 
more time is needed to reach the same percentage 
improvement over the baseline. This is expected since 
fewer candidate solutions can be generated for larger 
instances within the same CPU-time (more 
computational time is needed by the SMD and TSP 
functions to generate a solution).  

In terms of absolute distance rate of improvement, 
we first standardize the data such that the average 
pick round is of similar length between the three 
datasets. The absolute distance improvements for the 
four instance size classes are shown in Figure 3: 

 

Figure 3: Optimization time versus standardized absolute 
distance savings, for four instance size classes.  

Only toward the end of the maximum allotted CPU-
time we observe larger absolute gains for larger 
OBP’s. As solution space grows, the probability of 
SBI finding a strong baseline decreases and possible 
improvement percentages can therefore be assumed 
to be higher for larger instances. As we can see in 
Figure 3, the red curve, for example, starts with the 
least amount of distance saved compared to the other 
curves, but ends with the most amount of distance 
saved. The time to get there is 4 minutes, however. 
This is explainable since larger instances require 
more time to produce candidate solutions. Since there 
are only 32 instances in the class of largest instances, 
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more data would be needed to investigate this pattern 
further and to narrow the confidence intervals. The 
less regular pattern and larger confidence interval in 
the red curve is primarily assumed to be due to the 
fewer number of data points.  

Concerning rate of solution improvement, we can 
see that it decreases to less than ~1% / minute after 
the initial gains taper off after 30 – 60 seconds (Figure 
2). In terms of standardized distance, this is on 
average equivalent to around 18% of the length of a 
single batch TSP solution (~12 standardized distance 
units).  

As discussed in Section 2, generalization of results 
is difficult due to the high variability of OBP 
scenarios. Overall, we believe 1% / min is a slow rate 
of improvement and that it would be difficult to 
justify in many scenarios, especially when 
considering various indirect advantages of short 
CPU-times (Section 2). 

6 CONCLUSION 

We investigated computational efficiency in 
approximate Order Batching Problem (OBP) 
optimization, both in previous work and in an 
experiment involving the Single Batch Iterated (SBI) 
optimizer. In previous work, computational 
efficiency is rarely discussed in detail, especially for 
warehouses with various types of obstacle layouts. It 
is an important topic, however, affecting costs in real 
warehouse operations both directly and indirectly. 
Suitable modifications to the SBI optimizer and its 
usage of the Sequential Minimal Distance (SMD) 
heuristic, where more computational efficiency is 
achieved at the cost of more memory, were tested and 
discussed. For OBP instances with up to 100 orders 
and a few seconds of CPU-time, SBI yielded 
distances only a few percentage points higher than 
results obtained when optimization was set to run for 
up to five minutes. The result corroborates previous 
research claims: Fast approximate optimization is a 
practicable choice in many common OBP scenarios.  

For larger instances, with 100 – 1000 orders, more 
time was required to obtain similar savings. The 
standardized absolute distance saved through the 
optimization procedure was shown to grow very 
similarly for all instance sizes, which may seem 
counterintuitive. The SBI algorithm only constructs 
weak batches (with products located far from each 
other) whenever there are few orders left to select 
from (SMD prevents this in other cases). Since this 
phenomenon occurs an equal number of times 
regardless of instance size, the amount of possible 

solution improvement in larger instances is relatively 
low. This is a feature specific to SBI and other 
optimizers may avoid this issue, while facing others.  

Regardless of instance size, we conclude that 
spending extra CPU-time to obtain a result a few 
percentage points better than a baseline might be 
justified, but at the same time it needs to be weighed 
against the less measurable and indirect costs that 
come with lower computational efficiency. 
Unfortunately, that type of analysis is usecase-
dependent and difficult to generalize.  

For future work we believe the investigation can 
be widened to include more optimizers which are 
compared side by side. We also believe there are 
significant savings to be made in optimization if more 
memory is allocated to store and reuse parts of 
expensive computations. Modeling of OBP’s and 
data-driven performance evaluation are also of 
primary importance. Currently there exists no 
standard format for OBP benchmark datasets and this 
poses a serious threat to scientific reproducibility. 
Since there are many possible versions of OBP’s, the 
community should discuss how OBP benchmark data 
can best be built to balance realism with simplicity 
and reproducibility. Until then it will remain 
challenging to concretely and fairly judge the 
computational efficiency of OBP optimizers.   
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APPENDIX 

Table 1: Aggregation of test-instance results into categories based on number of orders in the OBP’s. Within each category 
the average over all results is shown. Whenever the optimizer (SBI) failed to obtain a result within the specified time, or when 
it self-terminated, a minus sign (-) is shown. The distances shown are standardized. 
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