
From Monolithic Models to Agile Micromodels

Sebastian Copei1, Christoph Eickhoff1, Adam Malik2, Natascha Nolte1, Ulrich Norbisrath3,
Jonas Sorgalla4, Jens H. Weber5 and Albert Zündorf1

1Kassel University, Germany
2Adam Malik Consulting, Germany

3Tartu University, Estonia
4Dortmund Uni. App., Germany
5University of Victoria, Canada

jonas.sorgalla@fh-dortmund.de, jens@uvic.ca, zuendorf@uni-kassel.de

Keywords: Modeling, Work Flow, Event Based Systems, Micromodels.

Abstract: This paper proposes a new modeling approach that allows to split classical monolithic class models into a
system of small micromodels. The events of such a system are modeled through an additional Event Storming.
This new approach facilitates evolution as Event Storming uses events with relatively simple structures and new
events may be added easily. Similarly, sets of micromodels are more evolveable as changes remain local to
only those micromodels that are concerned by the particular subset of changed events. Different micromodels
communicate via a small set of dedicated “interface" events, which again aids evolution.

1 INTRODUCTION

In our modern world, software systems, e.g. in health-
care, are characterized by ever-increasing complexity.
A trend whose end is not in sight. A classic approach
taught today by universities around the globe to deal
with this complexity is to use a holistic model in de-
sign, implementation, and communication of a soft-
ware system (Brambilla et al., 2017). Another popular
academic option is the use of a common domain model.
This results in an architecture where multiple compo-
nents collaborate on a common database that holds
the whole model. Inspired by Richardson (Richardson,
2018), we call such big uniform models monolithic
models. In our experience, such monolithic models
quickly gain significant complexity and become a ma-
jor obstacle to maintenance and evolution - curiously,
these challenges led us originally to the usage of mod-
els in software engineering.

In this article, we propose to rethink the use of
models in the software engineering process. In our
vision, we move away from the demand of a holistic
model to multiple micromodels that represent only a
fragment of a complex system in the software engi-
neering process. In detail, we propose Event Storming
(Brandolini, 2013) to model the central workflows of
our system based on a common event model, cf. Fig-

ure 1. This common event model may become pretty
large (some thousand event types), thus we structure
it into bounded contexts and group the events, accord-
ingly, cf. Figure 3. Next, our process foresees to model
the structure of the events, i.e. the data that each event
transports cf. Figure 2. This event data model is then
used as event schema for an event broker that is the
core of the proposed event based architecture. Here,
a generic event broker or messaging service, such as
Kafka1, may be used (cf. Figure 6). In addition, the
grouping of events into bounded contexts may result
in topics for the event broker. Event schema and topics
facilitate a type safe communication.

Based on this event model and the bounded con-
texts, we derive micromodels. A micromodel uses
event handlers to map events into an object oriented
data model that allows to implement complex algo-
rithmic tasks and e.g. supports special model queries.
Based on these micromodels, we propose (web based)
GUI components. The GUI components may use
REST requests to retrieve relevant data from our mi-
cromodels and to present this data in dedicated views.
Then the GUI components provide dialogues and in-
teractions that enable their users to execute their tasks.
Eventually, these tasks raise events to notify relevant

1https://kafka.apache.org/

Copei, S., Eickhoff, C., Malik, A., Nolte, N., Norbisrath, U., Sorgalla, J., Weber, J. and Zündorf, A.
From Monolithic Models to Agile Micromodels.
DOI: 10.5220/0010837200003119
In Proceedings of the 10th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2022), pages 227-233
ISBN: 978-989-758-550-0; ISSN: 2184-4348
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

227



micromodels and to trigger subsequent tasks.
The overall development process is iterative and

agile, i.e. at any point in time, there may be multiple
teams working on different features in different phases
of the development lifecycle in parallel. Based on a
continuous integration and deployment process, the
whole system is constantly evolving.

The remainder of the paper is structured as fol-
lows. In Section 2 we present related work. Section 3
elaborates about the connection between Event Storm-
ing and micromodeling in detail. Section 4 especially
addresses the concern for model evolution and, last,
Section 5 concludes the paper.

2 RELATED WORK

Classical modeling approaches opt for a common en-
terprise wide or domain wide model. We call this a
monolithic model. As example, the medical domain
has a standardized domain model, the Reference Infor-
mation Model (RIM) that is provided by the Health
Level 7 (HL7) standard in version 3 (HL7, ). The RIM
is the basis for deriving even more complex models
for processing and exchanging medical information.
This complexity has been difficult and costly to imple-
ment. Thus, in version 4 of the HL7 standard, the RIM
and its derived holistic models have been replaced by
multiple smaller models, so called Fast Healthcare In-
teroperability Resources (FHIR). This relates closely
to our idea of micromodels. However, HL7 is not
yet using Event Storming as a means for modeling
the main workflows and as start for the modeling and
development process.

In industry, the derivation of suitable software ar-
chitectures using Event Storming is an established
practice. For example, Junker (Junker, 2021) describes
a corresponding approach using Event Storming to
derive service boundaries in a microservice architec-
ture in the context of platforms in the healthcare sector.
However, Junker does not refer to an event based archi-
tecture but her microservices exchange more complex
documents which results in a more strong coupling of
microservices.

Generally, the idea of using partitioned smaller
models to address the problem of growing model com-
plexity is a well established method. For example
Scheidgen et al. (Scheidgen et al., 2012) describe a
process to split models into smaller fragments to cope
with transportation and persistence of large models.
Also, the area of Collaborative Model-Driven Soft-
ware Engineering (Di Ruscio et al., 2018) provides
concepts to create smaller models to describe a larger
complex software system. We support these efforts,

but go a step further in our vision. Instead of reassem-
bling smaller models, we think that within the software
engineering process of modern applications it is not
necessary to have a unified, large model of the system
by using the proposed micromodel approach. In addi-
tion, the combination of micromodels with an Event
Storming model is new.

3 EVENT STORMING AND
MICROMODELING

In the following, we illustrate our approach using the
example of a software application for a family doc-
tor. As proposed, the modeling starts with an Event
Storming workshop, cf. (Brandolini, 2013). During
the Event Storming workshop a large group of domain
experts and future users collects domain events us-
ing orange sticky notes that name relevant events in
past tense, e.g. patient registered. A detailed Event
Storming may contain additional sticky notes (using
other colors) that may model commands, policies, read
models, etc. cf. (Brandolini, 2013). cf. Figure 1.

Figure 2 shows a small cutout of an Event Storming
for our medical example. We start with a disease regis-
tered event that adds a disease to our system. Then test
registered events add tests that allow to identify symp-
toms. A patient registered event adds a patient and a
consultation registered event protocols a consultation
where the doctor does tests to identify symptoms that
result in the diagnosis of a disease and a treatment.

Compared to business process models (BPM)
(Recker et al., 2009), Event Storming models work-
flows in a very informal way. According to Brandolini
the informal approach is a major advantage of the
Event Storming model as it allows to involve domain
experts and future users very easily. However, to turn
an Event Storming into software we need to add more
details. This shall be done by a requirements engineer
or a software engineer. For the medical example some
engineer refines the initial Event Storming notes by
adding example data. We call this step event modeling,
cf. Figure 9. The event model specifies the structure of
the events of our system. It is important input for the
implementation or configuration of the event broker
used in our approach, cf. Figure 6. In Figure 2 we use
a simplified YAML notation for our event modeling
data. For example, the disease registered event shows a
name attribute and a symptoms attribute that consists of
a list of symptom names. Similarly, the test registered
event has attributes for the type and for the symptom
that the test clarifies and for the price of the test. Note,
the data model for our events has a relatively simple
overall structure: there are event types with primitive

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

228



Figure 1: Event Storming Big Picture (general example taken from (Brandolini, 2013)).

Figure 2: Event Storming Model for the medical domain (small cutout).

attributes only. Complex relations are not represented
by associations between different event types. Instead
our approach uses unique keys like a patient’s name
or some patient id, or the names of diseases and symp-
toms. While such keys create hidden relationships,
Event Storming is tuned to deal with such hidden com-
plexity by using a ubiquitous language, i.e. consistent
naming of attributes throughout all events or at least
throughout a bounded context, cf. (Brandolini, 2013),
(Evans, 2004) and Figure 3. Still, Event Storming
models may easily comprise several thousand events
and become very large. Event Storming makes its over-
all model size manageable by grouping related events
into so-called bounded contexts (Evans, 2004). Ac-
cording to Conway’s law (Conway, 1968), in a larger
enterprise a bounded context typically covers work-
flow parts that are internal e.g. to a certain department

or organizational unit. By focusing on smaller organi-
zational units, it becomes easier to come up with an
appropriate Event Storming model and with consistent
event data models that stick to a consistent ubiquitous
language. Later on, most micromodels will only fo-
cus on a single or a few bounded contexts and thus
deal with limited complexity. Domain events that hand
over a workflow from one organizational unit to the
next are exchanged between multiple bounded con-
texts. These higher level events need to be discussed
at least between the participating organizational units
and also between the teams in charge of the corre-
sponding micromodels. In the implementation we also
propose to use the bounded contexts as topics for the
event broker. Such topics give structure to the event
model and facilitate to identify the events relevant for
a micromodel.

From Monolithic Models to Agile Micromodels

229



Figure 3: Bounded Contexts Model.

While Event Storming is effective for modeling
workflows, such a workflow model is not well suited
for certain complex algorithmic tasks. Thus, for com-
plex algorithmic tasks or for complex data queries we
propose e.g. object oriented micromodels. In the fam-
ily doctor example, we use a medical micromodel for
tests and symptoms and diseases, cf. Figure 4. The
medical micromodel is designed to help the doctor
during a consultation to identify the tests that may be
used to clarify certain symptoms that indicate certain
diseases. Figure 5 shows a cutout of an object diagram
for our accounting micromodel.

Our approach uses an event based architecture, cf.
(Richardson, 2018), cf. Figure 6. This means, the
micromodels subscribe with the event broker as lis-
tener for the event types or topics they are interested
in. For each interesting event type, the micromodel
provides an event handler. On event arrival, the respon-
sible event handler maps the event to the correspond-
ing object structures (e.g. within a local database)
that then may be queried e.g. by a GUI to show a
list of tests or diseases to the family doctor. Simi-
larly, an event may be raised by a GUI e.g. when
the family doctor enters data during a consultation cf.
Figure 6. Such user events may be sent to a local mi-
cromodel first and then the micromodel may forward
these events to an event broker which forwards the
event to other interested (i.e. subscribed) micromod-
els. For example our disease registered event created
the flu:Disease object and the Symptom objects at the
top of Figure 4. However, disease registered events
are ignored by our accounting micromodel. The test
registered event resulted in the t101:Test object in our
medical model (at the top right of Figure 4) and in the
temperature:PriceItem object within our accounting
micromodel (in the middle of Figure 5). The patient
registered event results in a p42:Patient object within
both micromodels. However, note that the two mi-
cromodels use the state attribute in different manners.
Within the medical micromodel, the consultation regis-
tered event results in a c1337:Consultation object that
identifies a medium flu as diagnosis. In addition, the
state attribute of the patient is set to see again as the
doctor wants another consultation within some days.
(We use the term “medium flu" in lieu of a precise
clinical code to increase readability for the reader.)

Within the accounting micromodel the same event cre-
ates a c1337:Invoice object, that lists the prices for the
used tests and the consultation and the diagnosis itself.
In addition the accounting model sets the state of its
Patient to pending as the invoice is not yet paid.

p42 :Patient

address = "Wonderland 1"
birthDate = "1970-01-01"
fullName = "Alice"
id = "p42"
state = "see again"

flu :Disease

id = "flu"

coughing :Symptom

id = "coughing"

fever :Symptom

id = "fever"

d301 :Diagnosis

id = "d301"
state = "medium"

c1337 :Consultation

date = "2021-06-02T11:00"
doctor = "Dr. Bob"
id = "c1337"

consultations

symptomssymptoms

con
pat

t101 :Test

date = "2021-06-02T11:00"
id = "t101"
result = "39.8 Celsius"

t201 :Treatment

date = "2021-06-02T11:00"
drug = "IBU 400"
frequency = "1-1-1"
id = "t201"

parent

tests

parent

diagnosis
treatments

parent

consultations

symptoms

diseases

symptoms

diseases

diagnoses

disease

symp
test

Figure 4: Medical Model.

Ideally, each micromodel deals only with a small
set of related events from some bounded context(s).
Each micromodel focuses on a certain logical aspect
e.g. to support a certain user for a small number of
workflow steps. Therefore, micromodels remain rela-
tively simple and easy to maintain.

4 EVOLUTION

As discussed, we propose an agile and evolutionary
modeling approach. The activities are grouped into
three major workflows for events, micromodels, and
GUIs, cf. Figure 9. Evolution usually starts within
Event Storming activities. The developer may change
some workflow part by adding new events, by extend-
ing existing events, or by deprecating events. While en-
suring safe and consistent workflows is hard, the tech-
nical steps at the event level are quite simple. Within
the event modeling activity the developer adds a de-
scription of the events’ data fields and extends the
event schema of the event broker, accordingly.

Eventually, the new events need to be raised and
handled by some micromodel(s) which requires to add
e.g. new GUI dialogues and appropriate event handlers
to the implementation of these micromodels. Adding a
new event handler is relatively simple, as this is a quite
local change that usually does not require to refactor
large parts of the corresponding micromodel. As soon
as everything is implemented, the application may start
to raise the new events.

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

230



price list :PriceList

id = "price list"

consultation :PriceItem

id = "consultation"
price = 10.0

items

parent

diagnosis :PriceItem

id = "diagnosis"
price = 12.0

items

parent

temperature :PriceItem

id = "temperature"
price = 12.0

items

parent

lungs listening :PriceItem

id = "lungs listening"
price = 8.0

items

parent

p42 :Patient

address = "Wonderland 1"
birthDate = "1970-01-01"
fullName = "Alice"
id = "p42"
state = "pending"

c1337 :Invoice

date = "2021-06-02T11:00"
id = "c1337"
total = 42.0

invoices

patient

c1337.consultation :Item

id = "c1337.consultation"
price = 10.0

items

parent

c1337.diagnosis :Item

id = "c1337.diagnosis"
price = 12.0

items

parent

t101 :Item

id = "t101"
price = 12.0

items

parent

t102 :Item

id = "t102"
price = 8.0

items

parent

Figure 5: Accounting Model.

Figure 6: Micromodel Architecture.

For event deprecation, the workflows may stop to
use the deprecated event as soon as the affected micro-
models have implemented the GUI and the handlers
for the new workflow events. As soon as the old events
are no longer raised, the developer may remove the
corresponding event handlers from the micromodels.
However, the application may contain some micromod-
els that e.g. do statistics on the event history, e.g. mean
waiting time, etc. Such parts may deal with old events
for a longer time. Changing the data model of an al-
ready used event e.g. by adding additional attributes
would require the event handlers to be updated, accord-
ingly. However, there may be old micromodels that
either still raise the (old) event or handle only the old
events. All these micromodels need to be adapted to
the new event structure. This will be done by different
persons or teams at different speeds. Thus, during a
certain period, we may need to deal with old and new
versions of events in parallel. This may be achieved by
adding version information to the event which even-
tually results in a new event type. Thus, we propose
to handle changes to the data model of an event by
creating a new event type (e.g. by adding a version
post-fix to the event type like disease registered v2 and
by deprecating the old event type).

Another kind of evolution is a major change to
the algorithmic requirements or to the model queries
for one of our micromodels. Such a major change
probably requires a refactoring or new modeling of
the current data model and the adaption of all event
handlers that contribute to the data model. In addition,
a migration of existing data may be required before
the new micromodel is deployed. For this kind of
evolution, all the existing model evolution techniques
may be used. As our architecture is event based, de-

velopers may also build (parts of) the new data model
by re-executing some old events with the help of the
new event handlers. If necessary, an explicit migration
strategy can be added to the Event Storming / work-
flow description of the application, followed by the
implementation, deployment, and execution of these
workflow parts. This allows incorporation of some
manual steps (e.g. re-enter old data) into the migration
of your micromodel. This idea has e.g. been proposed
by (Jacobson et al., 2013). Eventually, we claim that it
is easier to migrate a small micromodel than to migrate
a similar change within a complex monolithic model.

As an alternative for refactoring an old micromodel
and for handling new events within existing micromod-
els, we can evolve our system by introducing a new
micromodel that handles the new events and supports
the new query model. Adding a new micromodel has
the advantage that we do not need to deal with old
code but we almost have a green field project. Actu-
ally, the new micromodel will also need to listen to
some old events in order to incorporate information of
old system parts. Identifying and incorporating rele-
vant old events is facilitated e.g. through the bounded
contexts of our Event Storming. In addition, the events
are relatively simple, thus subscribing to some relevant
event will hopefully not require to incorporate a large
number of additional events that the relevant event
depends on.

As an example consider that the family doctor
wants to offer Covid-19 vaccinations in Germany
(early in 2021) and thus the family doctor needs some
software computing the priorities for patients that ask
for a vaccination. The computation of a Covid-19
priority needs the age of the patient and some extra
priority e.g. for people that work in health care jobs
and some priority for people with certain diseases. To
address these issues, in the example we introduce a
Covid-19 risk registered event, that e.g. adds 2 points
to the priority of patients with a flu, cf. Figure 7. In ad-
dition, we introduce a Covid-19 vaccination requested
event that records the patient and optionally a job re-
lated extra priority, cf. Figure 7.

As shown in Figure 8, the new Covid-19 micro-
model first handles Covid-19 risk registered events and

From Monolithic Models to Agile Micromodels

231



adds corresponding Disease objects to our Covid-19
micromodel. Similarly, an event handler for Covid-
19 vaccination requested events adds patients to our
Covid-19 model. As we need the age of patients, the
Covid-19 micromodel also subscribes to patient regis-
tered events. To identify interested patients, we use a
filter on patient registered events that returns patients
that have requested a vaccination. Finally, we need the
consultation registered events of interested patients to
identify relevant diseases of these patients. This allows
us to compute e.g. the priority of Alice as 51 years old
plus 40 points for working in health care plus 2 points
for having a flu resulting in 93 points.

Figure 7: Covid Events.

p42 :Patient

address = "Wonderland 1"
birthDate = "1970-01-01"
extraPriority = 40.0
fullName = "Alice"
id = "p42"
priority = 93.0

flu :Disease

id = "flu"
risk = 2.0

diseases

patients

Figure 8: Covid Events and Model.

The important design decision here is that the
Covid-19 micromodel relies only on local events. We
might have been tempted to retrieve the diseases of
a patient from the medical model. However, when
micromodels use each other directly, we soon end up
in a complex network of micromodels that is as hard
to maintain and evolve as a monolithic model. Having
the Covid-19 micromodel directly accessing the medi-
cal micromodel would create a dependency between
these two models. Whenever we wanted to restructure
the medical model, the Covid-19 micromodel would
be affected. By basing the Covid-19 micromodel on
events only, such dependencies are avoided. On the
other hand, the Covid-19 micromodel now needs to
identify the consultation registered event as the event
relevant for the retrieval of diseases and to some extend
the handler for consultation registered events repeats
work already done in the medical micromodel. In
order to identify the relevant events, the bounded con-
texts of the Event Storming provides us with guidance
for our search. Similarly, the Covid-19 micromodel
is interested only in the diagnosis of a Consultation
Registered event, thus only little work is repeated.

Figure 9: Modeling and Development Process.

5 CONCLUSIONS

Classical modeling uses e.g. a domain model that cov-
ers almost all aspects of a certain domain. Such a
monolithic model soon becomes complex and hard to
maintain. Splitting a large monolithic model into mul-
tiple event based micromodels results in a separation of
concerns that facilitates modeling and evolution. For
example, in a monolithic model, our Covid-19 priority
computation would touch the single global model with
all the details of symptoms, tests, consultations, and
invoices. It only needs to know, whether the current
patient has a common cold or the flu. It would then add
a priority attribute to our global patient class which
would likely collide with other priority attributes and
would add more complexity to all other system parts
and may require complex data migration.

Micromodels are dedicated for small purposes
and thus avoid complexity and achieve flexibility.
Note, micromodels frequently contain overlapping
data, for example each of our micromodels has a Pa-
tient class. However, while these different patient
classes have some common attributes, each patient
class has micromodel-specific attributes that serve the
needs of its respective micromodel. Within a micro-
model such special attributes are introduced, easily,
without cluttering a common monolithic model.

The basis for our micromodeling approach is Event
Storming. It provides us with bounded contexts and a
ubiquitous language, e.g. for events and their attributes.
Event Storming also assigns clear ownership for events
and the resulting model changes. This avoids a lot of
merge conflicts usually related to distributed appli-
cations. Finally, our micromodels communicate via
fine grained events rather than exchanging complex
documents. The medical model raises consultation
registered events instead of sending a complete list of

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

232



diseases, symptoms, tests, patients, and this week’s
consultations to our accounting service. This allows
for agile development and evolution of event handlers.

Our co-author Adam Malik currently evaluates the
Event Storming and micromodeling approach in an in-
dustrial project. Adam is the lead architect of a project
in the domain of billing of health clinics in Germany.
Using Event Storming helped indeed to capture institu-
tional knowledge as well as deriving bounded contexts
and identifying respective micromodels. So far, the
micromodels enabled fast iterative development. We
will report, whether the project keeps agile while it
grows.

REFERENCES

Brambilla, M., Cabot, J., and Wimmer, M. (2017). Model-
driven software engineering in practice, second edition.
Synthesis Lectures on Software Engineering, 3(1):1–
207.

Brandolini, A. (2013). Introducing event storming. Available
at: goo. gl/GMzzDv [Last accessed: 8 July 2017].

Conway, M. E. (1968). How do committees invent. Datama-
tion, 14(4):28–31.

Di Ruscio, D., Franzago, M., Malavolta, I., and Muccini, H.
(2018). Collaborative model-driven software engineer-
ing: A classification framework and a research map
[extended abstract]. In 2018 IEEE/ACM 40th Inter-
national Conference on Software Engineering (ICSE),
pages 535–535.

Evans, E. (2004). Domain-driven design: tackling complex-
ity in the heart of software. Addison-Wesley Profes-
sional.

HL7. Health level 7 standard. http://www.hl7.org/.
Jacobson, I., Ng, P.-W., McMahon, P. E., Spence, I., and Lid-

man, S. (2013). The essence of software Engineering:
applying the SEMAT kernel. Addison-Wesley.

Junker, A. (2021). Microservices as architectural style. In
Glauner, P., Plugmann, P., and Lerzynski, G., editors,
Digitalization in Healthcare: Implementing Innova-
tion and Artificial Intelligence, Future of Business and
Finance, pages 177–190. Springer, Cham.

Recker, J., Rosemann, M., Indulska, M., and Green, P.
(2009). Business process modeling-a comparative anal-
ysis. Journal of the association for information systems,
10(4):1.

Richardson, C. (2018). Microservices patterns. Manning
Publications Company,.

Scheidgen, M., Zubow, A., Fischer, J., and Kolbe, T. H.
(2012). Automated and transparent model fragmen-
tation for persisting large models. In International
Conference on Model Driven Engineering Languages
and Systems, pages 102–118. Springer.

From Monolithic Models to Agile Micromodels

233


