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Abstract: Particle size is an important quality parameter for raw materials in steel industry processes. In this work, we
propose to implement the Mask-R-CNN algorithm to segment quasi-particles by size classes. We created a
dataset with real images of an industrial environment, labeled the quasi-particles by size classes, and performed
four training sessions by adjusting the model’s hyperparameters. The results indicated that the model segments
with well-defined edges and applications as classes correctly. We obtained a mAP between 0.2333 and 0.2585.
Additionally, hit and detection rates increase for larger particle size classes.

1 INTRODUCTION

The advent of deep learning models strengthened the
development of works in the areas of object recog-
nition and detection and classification, with superior
results compared to conventional machine learning
techniques (LeCun et al., 2015). Another advantage
is the generalization to problems involving complex
images as they learn how to extract more abstract fea-
tures.

Some of the limitations are that these models are
computationally intensive and require a large volume
of data for training. Within the scope of data prepara-
tion, a complex problem to solve is labeling the data.
This process is an expensive operation that often re-
quires an expert to do it manually, which can be ex-
hausting. Additionally, images with small objects are
potentially challenging. The challenge of segmenting
small objects in images tends to increase when many
objects of interest are in the scene.
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Thus, these applications increasingly aim to solve
different problems, including the industrial scope in
some cases. One of these problems is the detection
of small particle sizes in a scene. Obtaining particle
size by imaging methods can significantly contribute
to process improvement.

Obtaining particle size from images is a challeng-
ing problem. The initial issue is because, in many
contexts, these particles are small. Also, the image
characteristics are affected: (i) by image resolution
and noise; (ii) variations in ambient lighting; (iii) the
density of objects that produce complex background;
(iv) overlapping and occlusion of objects, and; (v) ho-
mogeneity in the particles’ shape, color, and texture.

There is a non-conventional sintering process in
the steel industry plants known as the Hybrid Pel-
letized Sinter (HPS) process. This stage produces
micro-agglomerates of raw materials (iron ore, fuels,
and fluxes) known as quasi-particles. Controlling the
size of micro-agglomerates is essential, as it is the
main characteristic that affects the permeability of the
sintering furnace and, consequently, the productivity
of the process. The particle size distribution of the
quasi-particles is performed manually by an operator
using the conventional sieving method several times a
day.
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In this work, we propose the segmentation of
quasi-particles by size classes through images. The
implementation uses the Mask R-CNN algorithm,
known as the most influential instance segmentation
structure. Thus, from an image obtained with the
sample of micro-clusters, the algorithm segments the
edges and assigns the size class. Thus, the main con-
tribution of our work is:

• An implementation to obtain the size classes of
micro-clusters from a dataset elaborated with sys-
tematically labeled industrial data.

This work is organized as follows: Section 2
presents the literature review, Section 3 presents re-
lated works, Section 4 presents the methodology used,
from the elaboration of the dataset to its labeling,
training hyperparameters, and metrics. In the evalu-
ation, Section 5 presents the results obtained in the
segmentation of microclusters and in Section 6 the
Conclusion.

2 THEORETICAL BACKGROUND

This section presents the theoretical background ap-
plied in the context of this work. Here, we present the
features and architecture of the Mask R-CNN model,
used in this implementation.

2.1 Mask R-CNN

The computer vision community, driven by baseline
systems such as Fast and Faster RCNN (Girshick,
2015; Ren et al., 2015) and Fully Convolutional Net-
work (FCN) (Long et al., 2015), advanced in the de-
tection and semantic segmentation tasks of objects.
The semantic segmentation task is a challenging task,
as it requires the correct detection of objects in the im-
age and precisely segmenting each instance (He et al.,
2017).

Semantic segmentation combines classic com-
puter vision tasks: detecting objects individually, lo-
cating with a bounding box, and performing semantic
segmentation, in which each pixel is classified into
a set of categories without differentiating object in-
stances (He et al., 2017). Thus, He et al. (He et al.,
2017) proposed the Mask R-CNN method, which
extends the Faster R-CNN to predict segmentation
masks in each region of interest (Rol Align – RoI)
with a parallel branch for classification and bounding
box regression.

An advance on the work of He et al. (He et al.,
2017) was the impact of RoI, which improved mask
accuracy from 10% to 50%, and gains by decoupling

mask and class prediction, so that RoI could predict
category individually without class competition. This
advance is mainly due to the contrast caused by the
FCNs, which combined segmentation and classifica-
tion, which did not work for instance segmentation.

Mask R-CNN’s network architecture was instan-
tiated in several architectures, divided into: (i) con-
volutional backbone architecture for resource extrac-
tion from an entire image and (ii) network head for
bounding box recognition (classification and regres-
sion) and mask prediction applied individually to each
RoI. For the backbone architecture, the ResNet (He
et al., 2016) and ResNeXt (Xie et al., 2017) net-
works were evaluated, with depths of 50 or 101 layers.
For the head of the network, Mask R-CNN added a
fully convolutional mask prediction branch (He et al.,
2017).

3 RELATED WORK

Works with challenging problems seek to implement
the Mask R-CNN, mainly for small objects, which set
the Mask R-CNN as the most influential instance seg-
mentation structure according to (Zhang et al., 2020).
De Césaro Júnior and Rieder (De Cesaro Júnior et al.,
2020) proposed a routine for counting and automati-
cally identifying insects in images. For the authors,
the manual task of counting and identifying small in-
sects is an exhaustive task, and the implementation of
the Mask R-CNN had as a preliminary result a mAP
of 60.4%.

The work by Cohn et al. (Cohn et al., 2021) im-
plemented the Mask R-CNN for image analysis of
gas-atomized nickel superalloy metallic powder par-
ticles with potential application in additive manufac-
turing. The authors obtained the images by Scanning
Electron Microscopy (SEM), and after training with
the Mask R-CNN, the masks showed good agreement
with the dust particles present in the image. The
achieved precision was 0.938 and the recall 0.799.

Chen et al. (Chen et al., 2020) implemented the
Mask R-CNN in metallographic images for the seg-
mentation of an aluminum alloy microstructure. As a
contribution of the article, the authors suggested that
the implementation can perform the segmentation of
instances of microstructures in metallographic images
of aluminum alloys automatically, providing a more
effective tool for analyzing these images.

Other works showed the generalization of the im-
plementation of the Mask R-CNN and its improve-
ment for the automatic detection of animals (Tu et al.,
2021; Bello et al., 2021; Xu et al., 2020), detection
of aircraft and buildings in images remote sensing
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and satellite images (Wu et al., 2021; Zhang et al.,
2019; Zhao et al., 2018), medical imaging, for exam-
ple, for the segmentation of nuclei and tumors, cell
nuclei and nodules pulmonary (Vuola et al., 2019;
Zhang et al., 2019; Johnson, 2018),maintenance and
control of manufacturing processes (Xi et al., 2020)
and mapping, quantization and particle size distribu-
tion of clasts (Soloy et al., 2020).

Due to the generalization of the Mask R-CNN for
several problems of different nature, and the need to
individualize the quasi-particles, we implemented the
Mask R-CNN for the problem presented in this work.

4 METHODOLOGY

In this section, we present the methodology imple-
mented for the segmentation of quasi-particles. We
describe dataset design, hyperparameter adjustment,
training, and assessment metrics.

4.1 Dataset

We elaborated the datasets with images from real
samples of quasi-particles, obtained in the industrial
environment. After sampling in a tray with the assis-
tance of an operator, the particles were photographed
on the tray and sieved. The particles from each sieve
were placed again in trays and photographed. Thus,
each image had particles with a known particle size
range. We consider these size ranges as classes for
segmentation in the Mask R-CNN algorithm.

The classes were named according to the particle
size range in millimeters: ‘2-3’, 3-4’, ’4-6’, ’8-9’ and
‘>9’, totaling 5 classes. The Mask R-CNN algorithm
considers the image background as a class, totaling 6
classes for training.

To carry out the training using the Mask R-CNN
modifying the hyperparameters, we created a dataset
containing 81 images for training, with 4801 anno-
tated regions (labeled) and 46 images for validation,
containing 460 annotations (Table 1). Images were
resized to 1488x1488x3 before annotation to accom-
modate available hardware capacity.

Table 1: Number of images and annotations in the dataset.

Number of
images

Annotated
regions

Training 81 4801
Validation 46 460

We perform the annotations manually using the
VIA tool (VGG Image Annotator), which is an open-
source project developed by the Visual Geometry

Group (VGG) for manual annotation.

4.2 Hyperparameters

We implemented the Mask R-CNN1 from the original
repository available on GitHub. We adjusted some hy-
perparameters to reconcile with the model proposed
in this study, based on the explanations of De Cesaro
Júnior (De Cesaro Júnior et al., 2020). The first hy-
perparameter consists of the backbone, convnet archi-
tecture of the first stage of Mask R-CNN.

The training used the two backbones, ResNet50
and ResNet101, to compare the differences in train-
ing time and precision. We performed all training
with the same dataset presented in the previous sec-
tion to compare only the results and adjustments of
the hyperparameters.

We implement it with the standard values of learn-
ing rate and weight decay, with values of 0.001 and
0.0001, respectively.

The hyperparameters adjusted in each training
are in Table 2. The backbone is the ConvNet ar-
chitecture used in the first stage of Mask R-CNN.
TRAIN ROIS PER IMAGE is the maximum number
of ROI’s (Region of Interest) that the RPN will gen-
erate for the image. MAX GT INSTANCES is the
number of instances that can be detected in an im-
age. DETECTION MIN CONFIDENCE is the con-
fidence threshold beyond which classification of an
instance will occur.

The IMAGE MIN DIM and IMAGE MAX DIM
hyperparameters control the input resolution of the
image which, by default, is resized to 1024x1024
sizes. In addition to these hyperparameters, the
weights were initialized to the standard value of 1.

4.3 Training

We performed 4 training sessions, and for transfer
learning, we used the weights from the MS COCO
set. The trainings were carried out with 50 epochs
and 100 epochs, and 100 steps per epoch.

We carry out the implementation in the Python
programming language. We use the OpenCV library
for image resizing and the Tensorflow and Keras li-
braries for training.

The hardware available for training was a com-
puter with an Intel Core I7-6950X processor, 32 GB
of RAM, and the GTX2080 graphics processing unit
(GPU) with 8 GB of VRAM.

1https://github.com/matterport/Mask RCNN
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Table 2: Hyperparameter values adjusted in Mask R-CNN training for quasi-particles. The TRAIN columns symbolize each
of the training.

HYPERPARAMETERS TRAIN 1 TRAIN 2 TRAIN 3 TRAIN 4
BACKBONE ResNet101 ResNet50 ResNet101 ResNet50
TRAIN ROIS PER IMAGE 500 500 500 500
MAX GT INSTANCES 300 300 300 300
DETECTION MAX INSTANCES 500 500 500 500
DETECTION MIN CONFIDENCE 0.7 0.7 0.7 0.7
IMAGE MIN DIM 800 800 800 800
IMAGE MAX DIM 1024 1024 1024 1024
EPOCHS 50 50 100 100

4.4 Evaluation Criteria

For the graphical visualization of model losses, we
use Tensorboard. The loss of Mask R-CNN is calcu-
lated according to Equation 1. In defined multitasking
loss, Lcls is rank loss, Lbox is bounding box loss, and
Lmask is mask loss (He et al., 2017).

L = Lcls +Lbox +Lmask (1)

To assess the precision of the model, we used the
mAP metric, which is a metric often used in object
recognition tasks. During detection, we seek to pre-
dict bounding boxes that overlap the labeled funda-
mental truth.

We can predict how good this overlap is by divid-
ing the area of the overlap by the total area of both
bounding boxes, giving the IoU (Intersection over
Union) metric as shown in Equation 2. It is common
for datasets to predefine an IoU threshold of 0.5 when
sorting whether the prediction is a true positive or a
false positive.

IoU =
Area o f Intersection

Area o f Union
=

A∩B
A∪B

(2)

In image detection, precision refers to the per-
centage of bounding boxes predicted correctly (IoU
> 0.5) about all bounding boxes predicted in the im-
age, while recall is the percentage of bounding boxes
predicted correctly (IoU > 0.5) of all objects in the
image.

The IoU metric is the threshold for a correct pre-
diction. Thus, we can plot a precision versus recall
curve by the 0.5 IoU limit. This representation pro-
vides a curve with zigzag behavior for detection mod-
els, although it may vary for other models.

We then maximized the recall value for each pre-
cision value to smooth the curve’s behavior. The area
below the curve gives the average precision value, that
is, the average precision, metric AP (Average Preci-
sion). The average of the AP metric across all images

in a dataset gives the mAP metric (Mean Average Pre-
cision). We use the mAP metric to evaluate the model
against the labeled validation dataset.

5 RESULTS

In this section, we present the results obtained with
the implementation of the segmentation model. Pre-
liminary results indicated that instance segmentation
is an adequate approach for quasi-particle individual-
ization and separation by size classes. Next, we de-
scribe the results of the segmentation masks, classes,
evaluation metrics, and histograms generated by the
Tensorboard.

5.1 Segmentation

We performed the training with the adjusted hyper-
parameters, shown in Section 3.2. The results showed
that the segmentation masks converged with the edges
of the quasi-particles and with the segmented in-
stances separately, highlighting the class and the con-
fidence of the class, as shown in Figure 1. The edges
were well defined, especially for the larger particles.

The models were also accurate in avoiding the de-
tection and segmentation of occluded and overlapping
particles, a factor that could lead to errors incorrectly
identifying the class.

5.2 Tensorboard

We visualize the values of training and validation
losses with the help of the Tensorboard tool. In the
graphs, the x-axis represents the number of training
epochs and the y-axis represents the loss values. The
loss values obtained by Mask RCNN are shown in Ta-
ble 3.

The training loss values were between 0.5663 and
0.7702, in which the smallest loss was recorded in
training 3, with the ResNet101 backbone and 100
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Figure 1: The prediction correctly demonstrates the masks as instances of the same class, the bounding box, and the predicted
confidence results. The image was taken from training 3.

Table 3: Loss values obtained in the 4 training sessions performed. The highlighted values represent the lowest value for the
selected loss.

LOSSES TRAIN 1 TRAIN 2 TRAIN 3 TRAIN 4
50 epoch 50 epoch 100 epoch 100 epoch

loss 0.7702 0.7541 0.5663 0.5728
mrcnn bbox loss 0.06478 0.06426 0.031 0.03347
mrcnn class loss 0.1252 0.1221 0.077 0.0768
mrcnn mask loss 0.1567 0.1616 0.1215 0.1267
rpn bbox loss 0.3335 0.3062 0.2627 0.259
rpn class loss 0.08497 0.08507 0.07416 0.0768
val loss 0.8825 0.8783 0.8222 0.7977
val mrcnn bbox loss 0.1002 0.1001 0.0879 0.08419
val mrcnn class loss 0.1121 0.1259 0.1646 0.1446
val mrcnn mask loss 0.1657 0.1649 0.1684 0.1641
val rpn bbox loss 0.3875 0.3715 0.2952 0.3012
val rpn class loss 0.1168 0.1159 0.1061 0.1035

Figure 2: Example of an image containing particles of class 4-6’ from training 1. In a) the highlighted particles represent the
particles labeled and calculated as ground truth, and in b) the highlighted particles represent the particles found by the model
in predictions.
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Figure 3: An example image of particles of class ‘8-9’ from training 4. In a) the highlighted particles as particles labeled and
calculated as ground truth, and in b) the highlighted particles represent the particles found by the model in the prediction.

training epochs. Losses for detection by bounding
boxes, generation of masks, and classification were
quite positive, with the greatest loss for bounding
boxes in the RPN refinement step. The graphics on
the tensorboard were smooth for losses.

The graphs generated on the Tensorboard for the
loss values for the validation showed fluctuations,
mainly in the prediction of the classes in the val-
idation. This behavior can be associated with the
small number of labeling per image and the learning
rate. Thus, the suggestions for improving this valida-
tion fluctuation behavior are annotation of a greater
amount of images and objects per image and a de-
crease in the learning rate during training.

The overall validation loss values were between
0.7977 and 0.8825. Training 2 recorded the least
loss, with the ResNet101 backbone and 100 training
epochs.

Table 4 shows the time of each training accord-
ing to the number of epochs. The number of epochs
was decisive in the execution time of the training time,
while the number of layers initialized by the Mask R-
CNN backbone had no significant impact. Compared
with the general loss values “loss” for training and
“val loss” for validation, there was a decrease in loss
with the increase in the number of times trained, with
a single counterpart of the increase in model execu-
tion time.

We obtained the general loss values for training
(loss) and validation (val loss) in the graphs generated
by the Tensorboard, in Figures 4 and 5. The training
graphs demonstrate a smooth descent to model con-
vergence. We did not observe the same behavior in
the validation step loss graphs, with constant fluctua-
tions and increase after a certain number of epochs.

Table 4: Training execution time according to the backbone
and number of epochs selected.

training backbone epochs time to execution
TRAIN 1 ResNet101 50 1h 33m 29s
TRAIN 2 ResNet50 50 1h 33m 7s
TRAIN 3 ResNet101 100 3h 9m 13s
TRAIN 4 ResNet50 100 3h 9m 29s

5.3 Model Performance

To assess the performance of the model, we use the
mAP metric with an IoU of 0.5. We obtained the ones
for the 46 images in the validation set. The values
obtained in each training are in Table 5.

Table 5: mAP metric values obtained for each training.

training backbone epochs mAP
TRAIN 1 ResNet101 50 0.2334
TRAIN 2 ResNet50 50 0.2585
TRAIN 3 ResNet101 100 0.2333
TRAIN 4 ResNet50 100 0.2511

The mAP metric values were close for all training,
and training 2 with ResNet50 and 50 epochs had the
highest value. However, there was a discrepancy that
impacted the mAP values. Images containing smaller
particles, from the first three size classes, contained
much more particles (objects per image) than images
with larger particles, as the representations followed
the sampling: for each sample containing 1Kg of ma-
terial, proportionally, there are fewer particles of par-
ticle size greater than 6mm.
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Figure 4: The graphs represent the overall training loss: a) training 1; b) training 2; c) training 3, and; d) training 4.

Figure 5: The graphs represent the general loss of validation: a) training 1; b) training 2; c) training 3, and; d) training 4.

Thus, with only ten annotations on each image in
the validation set, even though the model predicted
many more particles than annotated, the mAP of these
images were very small values. An example can be
seen in Figure 2, where the prediction predicted many
more particles than those labeled as ground truth.

The image in Figure 2 reached an AP of only
0.003 for an IoU of 0.5, showing the practical result
of this discrepancy as shown in Figure 6.

For the cases of images containing larger parti-
cles, such as those of the ‘>9’ class, the AP values
per image were higher, reaching 90% for some im-
ages. This is because almost all particles in the image
were labeled, so the chance of being contained in the
prediction was also greater (Figure 3).

Figure 7 shows the result of the AP metric in Fig-
ure 3 on the precision-recall curve, with AP value
equal to 0.551, that is, AP50= 55.1%, revealing the
discrepancy with Figure 6.

Figure 6: The precision-recall curve for the image in Figure
2.

Thus, the Mask R-CNN architecture was able to
detect and segment the quasi-particles, as well as cor-

Figure 7: The precision-recall curve for the image in Figure
3.

rectly classify the labeled classes, providing coherent
results.

6 CONCLUSION

In this work, we propose to obtain the quasi-particle
size in an imaging method based on the implementa-
tion of the Mask R-CNN algorithm for the detection
and segmentation of the quasi-particles according to
the desired class. To do so, we label the dataset by
classes according to the specified particle size range.

We performed four training sessions with hyper-
parameters adjusted and customized for the problem.
The model evaluation demonstrated good detection
and segmentation, correctly predicted classes, and
well-defined quasi-particle edges. The model also had
good results by avoiding the segmentation of overlap-
ping and occluded particles, a factor that could lead
to the wrong prediction of the class.
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The mAP metric used in evaluating the Mask R-
CNN model customized for this problem had results
between 0.2333 and 0.2585 for an IoU of 0.5. In the
individual evaluation of the AP metric of each image,
we verified that the AP values were lower for images
that contained many particles present in the sample
and higher AP values for images that contained few
particles present.

This factor may be associated with a small number
of labels in the validation set (only 10 per image), in-
creasing the probability for images with few particles
that the predicted value was associated with labeled
ground truth. For better AP results for these classes,
we suggest in future work that a greater proportion of
particles be labeled in the validation set and that the
training and validation sets have particles from differ-
ent classes labeled in the same image.

We emphasize that our implementation has the
challenge of working with images derived from an
industrial environment. These images are complex,
as they present homogeneity in color, texture, com-
plex background, overlapping, and occlusion. Fur-
thermore, we did not find any database available for
the implementation, and we designed our database.

From the results obtained in this step, it was pos-
sible to raise new hypotheses of approaches to im-
prove the algorithm to obtain the particle size distri-
bution of the quasi-particles present in a sample in fu-
ture work. The development of applied solutions with
deep learning can bring significant benefits, both in
the improvement of processes and in the insertion of
steelmaking processes in Industry 4.0.
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