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Abstract: The results of the study of a new method of image coding based on samples of counts are presented. The 
method is based on the concept of an ideal image, motivated by the mechanisms of light perception by the 
retina. In this regard, the article discusses general statistical issues of the interaction of radiation with matter 
and based on a semiclassical approach, formalizes the concepts of an ideal imaging device and an ideal image 
as a point Poisson 2D-process. At the centre of the discussion is the problem of reducing the dimension of an 
ideal image to a fixed (controlled) size representation by a sample of counts. The results of illustrative 
computational experiments on counting representation/coding of digital raster images are also presented. 

1 INTRODUCTION 

In the human visual system, the radiation (light) 
coming from the outside World is registered by the 
special cells called photoreceptors. These cells are the 
main components of the outer layer of the retina, see 
Figure 1, and are divided into rods, cylindrical cells, 
and cones having a conical shape. It is these two types 
of photoreceptors that allow the visual system to 
receive primary information in the form of light 
radiation from the outside. The usefulness of such 
data is due to most objects around us, even though 
they themselves are not sources of light radiation, 
reflect light from other sources quite well, depending 
on their characteristics, such as surface structure, 
shape, luminosity and others. 

 

Figure 1: Scheme of the human eye with retina, based on 
which the data about objects of the external World are 
transformed into internal Visual system representations. 
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The methods of registration and primary 
processing of optical radiation in the visual system 
began to be actively used already since the XVIII 
century, after the discovery of photochemical 
reactions by Wilhelm Homberg in 1694. However, 
the first cameras appeared much earlier, it is known 
that back in the V century BC, the ancient Chinese 
philosopher Mo-Tzu described the action of a pinhole 
camera, the simplest device that allows you to obtain 
an optical image of objects. To date, image 
registration and transformation systems have been 
improved, and with them, the number of borrowed 
mechanisms of the visual system has grown. It is 
worth noting several common borrowings, such as the 
use of an optical focusing system presented in the 
visual system in the form of a lens, a diaphragm 
(pupil), as well as a variety of sensitive elements 
(photoreceptors) registering radiation, ranging from 
the simplest transparent and translucent films and 
plates with a photosensitive mixture applied to the 
surface, and ending with high-tech CCD/CMOS 
photodiodes. Some features of the eye, such as the 
presence of a vitreous body between the lens and 
photoreceptors, the shape of the retina (the 
photosensitive surface of the eye) in the form of a 
hollow ball, not a plane, etc. are not essential in this 
context. 
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The use of visual perception mechanisms in 
artificial systems was best manifested in the 
registration of light radiation. It is worth 
remembering such discoveries as daguerreotype, a 
technology for the manifestation of a weak latent 
image using mercury vapor, developed by Daguerre 
in 1837, and his developments - silver-coated plates, 
which by the 20th century had been improved to 
celluloid photographic films with gelatin-silver 
emulsion, which was the beginning of analog 
photography. And by the beginning of the XXI 
century, with the development of technologies, the 
registration of light radiation moved to a new level, 
digital photography appeared, which was based on 
photodiode arrays registering radiation. To a large 
extent, these successes were provided by the 
invention of a charge-coupled device (CCD) in 1969 
by Willard Boyle and George Smith and the further 
invention of photosensitive matrices on 
complementary metal-oxide-conductor (CMOS) 
structures. In 1993 the team of Eric Fossum 
developed the first CMOS sensor of active pixels. The 
transition from analog photography to digital one has 
made it possible to improve several parameters of 
photo and video cameras, of particular importance 
among which is an increase in spatial resolution, 
which resulted from a reduction in the size of 
photodetectors down to several microns. It is also 
worth mentioning other achievements related to the 
development of digital technologies, such as reducing 
power consumption, increasing frame rate, etc.  

Let us note, that the technological achivements 
listed above are essentially related to the scientific 
developments of the XX century, in particular, such 
branches of science as quantum electrodynamics (the 
interaction of radiation with matter) (Fox, 2006) and 
solid-state theory (the development of semiconductor 
structures) (Holst, 2011). 

Modern ideas indicate that along with the 
progressive decrease in the size of photodetectors of 
digital matrices, the nature of radiation registration 
also changes, acquiring a pronounced quantum 
character, allowing the sensors to work in the so-
called mode of counting single photoelectrons. To 
date, the registration of individual photons has 
already been achieved by several modern 
technologies, such as photon-counting Image Sensors 
(Fossum, 2017). It is also worth mentioning the 
variety of such sensors represented by electron-
multiplying matrices with charge capacity (EMCCD) 
(Robbins, 2011), single-photon avalanche diodes 
(SPAD) (Dutton, 2016), avalanche photodiodes in 
Geiger counter mode (GMAPD) (Aull, 2015), see 
Figure 2. 

 

Figure 2: Modern photon-counting sensor technologies 
based on A) EMCCD, B) SPAD, C) GMAPD. 

Since photons are transformed into the electric 
current from the digital video-matrix of photodiodes, 
the last can be easily included in various electronic 
circuits, which, in turn, may contain microprocessors 
necessary for digital signal processing (DSP). 

Taking into account the high efficiency of modern 
microprocessors, it becomes possible to solve not 
only a standard set of video signal preprocessing tasks 
related to glare compensation, dark current, white 
balance, but also to perform significantly complex 
operations comparable to those that occur in the 
human brain - pattern recognition, event analysis, 
classification of images by features, etc. Such a 
possibility opens up new opportunities in the 
formation, processing, and analysis of images based 
on digital image signal processing (DISP) methods. 

In turn, the modern DISP theory (Gonzalez, 2007) 
provides digital video data recording devices with a 
number of tools and methods for processing visual 
information, see Figure 3.  

 

Figure 3: A rough diagram of modern digital image signal 
processing (DISP). 

Conventionally, all methods aimed at processing 
digital images can be divided into three main types – 
computerized processes of the low, medium, and high 
level (Figure 3). The first level of processes usually 
includes operations related to the preprocessing of 
input data. These include noise reduction, quality 
correction, contrast improvement, etc. The second 
level consists of procedures for segmentation, 
classification of images by common features, 
recognition of individual elements, and bringing them 
into a form convenient for possible further computer 
processing. And finally, the third level of processing 
covers tasks such as semantic analysis of recognized 
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objects and scenes. In other words, high-level 
processing implies some "comprehension" of what 
was recorded in the image, which can be associated 
with human vision. 

It should be noted that some mechanisms of the 
human visual system are also actively used at all 
levels of the DISP (Gabriel, 2015). At the same time, 
each of the three levels can be correlated with the 
corresponding elements of the visual system. The 
methods of the first level are characterized by the 
mechanisms of preprocessing registered data in the 
retina. The third level contains the methods that 
simulate some brain processing of input data 
mechanisms. The last are associated with serious 
work in the cerebral cortex (Rodieck, 1998), in this 
connection, it is worth highlighting machine learning 
methods (Barber, 2012), such as object and scene 
recognition, morphological analysis, etc. As for the 
methods of the second group, they occupy a median 
value between the first and third levels and are 
probably implemented by the visual system also in 
the area between the retina and the cerebral cortex 
itself.  

It should be noted that, despite the current level of 
technological achievements, the use of visual 
perception mechanisms in artificial imaging systems 
is implemented within the DISP with a certain degree 
of approximation. Already at the level of 
representation of registered data, approximate 
modeling is used, since most traditional DISP 
methods are focused on raster (bitmap) images 
representing discrete pixels – the digitized result of 
the accumulated energy of the radiation recorded by 
the detectors during the exposure time. In other 
words, the pixel values are proportional to the total 
number of photons registered by the sensitive areas of 
the corresponding matrix detectors. In the case of the 
retina, photoreceptors react rather to individual 
photons of radiation, transmitting a count signal to the 
ganglion cells of the inner layer instantly, without the 
accumulation (Rodieck, 1998). This difference in the 
representation of input data in natural and artificial 
video systems is a consequence of the fact that until 
recently, the technological capabilities for 
implementing image registration methods similar to 
those occurring in the visual system were simply 
absent. Fortunately, significant progress has been 
made in recent decades in the development of 
photodiode matrices operating in the mode of 
counting single photons (see also (Morimoto, 2020)). 
It opens new opportunities for the DISP methods, 
modeling the processes of registering visual data in 
the retina. One of the possible approaches to 
developing this problem is presented below as a new 

method of encoding (representing) images with 
samples of counts simulating the mechanism of 
registering radiation in the human visual system. 

2 IMAGE CODING BY SAMPLES 
OF COUNTS 

To substantiate the method of coding (representation) 
of visual data (images), first of all, it is worth 
considering the processes of light radiation 
registration by photosensitive elements of the human 
visual system. The following discussion is justified 
by widely known biophysical facts about the 
interaction of radiation with photoreceptor cells of the 
retina (Rodieck, 1998) and are also motivated by the 
provisions of quantum electrodynamics (Fox, 2006) 
at least in its semi-classical approximation (Goodman, 
2015). All results will be further formalized in the 
form of a general model of an ideal image (Pal, 1991), 
which is recorded by an ideal imaging device, 
containing a huge array of point photodetectors 
(Antsiperov, 2021).  

As mentioned above, the primary device in the 
human imaging pipeline is the retina. To substantiate 
the adequacy of retina model used below, it is worth 
mentioning several key facts concerning it. It is well 
known that the retina of the human eye includes about 
100 million rods and 10 million cones capable of 
registering individual photons of the visible spectrum 
of light radiation. The density of these photoreceptors 
varies from 100 to 160 thousand receptors per mm2 
(in some living creatures, this parameter may be 
significantly higher, for example, in birds of prey, 
there are about a million photoreceptors per square 
millimetre of the retina). At the same time, it is worth 
noting that the signals coming to the cerebral cortex 
via the optic nerve are (see Figure 1) not the same data 
that were received by photoreceptors. These signals 
are formed from receptors by the upper layer of cells 
of the retina of the eye, undergoing processing in a 
complex system of cells of the middle and inner 
layers. At the final stage, visual information entering 
the cerebral cortex is transmitted along the optic 
nerve –axons of ganglion cells. Their number is about 
a million, which is about two orders of magnitude less 
than the number of photoreceptors. 

The prototype of the imaging device for forming 
an ideal image, which can also be perceived as a 
technical implementation of the latter, can be selected 
in the form of a matrix of single-photon avalanche 
diodes (SPAD) (Morimoto, 2020), or any of its 
analogues (Fossum, 2017). The production of such 
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matrices currently allows to get amazing results – 
about a million micro-detectors of light radiation are 
placed on a surface of 120 mm2 in pitch of 9.4 
microns. Each detector has a dynamic binary memory 
for storing registered data and has a memory refresh 
rate of 24 thousand frames per second (Morimoto, 
2020). From where the flow of information from the 
SPAD matrix of photodiodes is easily estimated. If 
the information flow in the human visual system is 
approximately 50 Mbit/sec, then the information flow 
of the matrix of single-photon avalanche diodes 
reaches 25 Gbit/sec (Koch, 2006). 

Despite the difference between artificial and 
natural mechanisms of forming an image, they all 
have common features. Both have a finite 2D-
dimensional photosensitive region containing a huge 
number of receptors / photodetectors. Each detector 
can register single photon of radiation incident on it. 
The prototypes have a certain amount of memory that 
allows storing for a short period all the events 
associated with the registration of photons by 
detectors. The above-mentioned characteristics can 
be used to formalize the concept of the imaging 
device, which will be some formal generalization not 
only of the above models but also of several other 
imaging systems, including photographic films with 
an emulsion applied to them, photographic plates, etc. 

Summing up above discussion, it is worth 
formulating the following definition. An imaging 
device is the two-dimensional surface 𝛺 of finite size 
with coordinates �⃗� ൌ ሺ𝑥ଵ, 𝑥ଶሻ, in which small (point) 
photodetectors are located (Antsiperov, 2021). The 
sensitive surface area 𝑑𝑠  of these detectors is so 
small, that allows them to be placed close to each 
other. It follows from the definition that the total 
number of photodetectors can be represented as the 
ratio of the area 𝑆 of a two-dimensional region 𝛺 to 
the surface area 𝑑𝑠  of a single photodetector 𝑁 ൌ
𝑆 𝑑𝑠⁄ . In the case when the area of such receivers 
tends to zero 𝑑𝑠 → 0, it is assumed that their number 
𝑁 will tend to an infinity 𝑁 → ∞. Formally, it can be 
assumed that the imaging device has a continuous 
surface of light-sensitive detectors, indexed by 
coordinates �⃗�.  

When light radiation with the intensity 𝐼ሺ�⃗�ሻ, �⃗� ∈
𝛺  hits the photosensitive region 𝛺 , individual 
photons are registered by individual photodetectors. 
The event of photon registration during the exposure 
time 𝑇 by some detector is defined as a photocount 
with the specified coordinates �⃗� of that detector. In 
the case of an infinitely small sensitive area of the 
photodetector 𝑑𝑠 → 0, the probability of photocount 
is determined in the semiclassical theory of 
radiation/matter interaction as 𝑃ሺ�⃗�ሻ ൌ 𝛼𝑇𝐼ሺ�⃗�ሻ𝑑𝑠 , 

where 𝛼 ൌ 𝜂ሺℎ�̅�ሻିଵ , ℎ�̅�  is the average photon 
energy, 𝜂 ൏ 1  is the dimensionless coefficient 
determining the quantum efficiency of the 
photodetector material, ℎ  is Planck's constant, �̅�  is 
the characteristic frequency of radiation. According 
to the above, each point photodetector with 
coordinates �⃗� ∈ 𝛺 , registering incoming radiation 
with the intensity 𝐼ሺ�⃗�ሻ , can be represented by a 
random binary value 𝜎 ∈ ሼ0, 1ሽ, which, depending on 
whether the detection has occurred or not, takes the 
values 𝜎 ൌ 1  and 𝜎 ൌ 0 , respectively. The 
probability distribution for this binary value 𝜎 is the 
Bernoulli one: 

 

𝑃ሺ𝜎|�⃗�ሻ ൌ ൜
𝛼𝑇𝐼ሺ�⃗�ሻ𝑑𝑠,               𝜎 ൌ 1 
1 െ 𝛼𝑇𝐼ሺ�⃗�ሻ𝑑𝑠, 𝜎 ൌ 0 

 (1)
 

It follows from the distribution (1) that the 
average number of counts 𝜎ത at the point �⃗� is given by 
the formula 𝛼𝑇𝐼ሺ�⃗�ሻ𝑑𝑠, from where we get the value 
for the integral that determines the average number of 
all counts generated on the surface 𝛺 during time 𝑇: 
𝑛ത ൌ 𝛼𝑇 ∬ 𝐼ሺ�⃗�ሻ𝑑𝑠

ఆ
.  

Using (1), it is possible to determine the joint 
distribution of random variables �⃗� and 𝜎. To do this, 
let us randomly select any point detector from the 
array of 𝑁 imaging device detectors (with probability 
𝑄ሺ�⃗�ሻ ൌ 𝑁ିଵ). Let it has coordinates �⃗�. Then, bearing 
in mind (1), we get 
 

𝑃ሺ𝜎, �⃗�ሻ ൌ 𝑃ሺ𝜎|�⃗�ሻ𝑄ሺ�⃗�ሻ ൌ

ൌ

⎩
⎨

⎧
𝛼𝑇𝐼ሺ�⃗�ሻ𝑑𝑠

𝑁
,         𝜎 ൌ 1

1 െ 𝛼𝑇𝐼ሺ�⃗�ሻ𝑑𝑠
𝑁

, 𝜎 ൌ 0 

 (2)

 

To obtain the marginal distribution of 𝜎, which 
determines the frequency of the appearance or 
absence of a count in any place, we sum up the 
distribution (2) over the entire number of 𝑁  point 
detectors: 

 

𝑃ሺ𝜎ሻ ൌ

⎩
⎪
⎨

⎪
⎧𝛼𝑇

𝑁
ඵ 𝐼ሺ�⃗�ሻ𝑑𝑠

ఆ
ൌ

𝑛ത
𝑁

,       𝜎 ൌ 1 

1 െ
𝛼𝑇
𝑁

ඵ 𝐼ሺ�⃗�ሻ𝑑𝑠
ఆ

, 𝜎 ൌ 0 
, (3)

 

Now, to obtain a conditional probability of finding 
a photocount with the coordinates �⃗� in 𝛺, it is enough 
to divide the probabilities 𝑃ሺ𝜎, �⃗�ሻ  (2) by the 
corresponding probabilities  𝑃ሺ𝜎ሻ  (3), for the case 
𝜎 ൌ 1: 

 

𝑃ሺ�⃗�|𝜎 ൌ 1ሻ ൌ
ሺఙୀଵ,௫⃗ሻ

ሺఙୀଵሻ
ൌ

ூሺ௫⃗ሻௗ௦

∬ ூሺ௫⃗ሻௗ௦
 . (4)
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Note that the conditional probabilities obtained (4) 
differ in meaning from the conditional probabilities 
for the count with the given coordinates 𝑃ሺ𝜎|�⃗�ሻ (1). 

Moreover, instead of conditional probability (4), 
it would be convenient to use the corresponding 
probability distribution density 𝜌൫�⃗�|𝐼ሺ�⃗�ሻ൯ ൌ
𝑃ሺ�⃗�|𝜎 ൌ 1ሻ 𝑑𝑠⁄ , indicating explicitly the condition 
for the registration of photo count for a given 
radiation intensity 𝐼ሺ�⃗�ሻ. In this case distribution (4) 
takes the form: 

 

𝜌൫�⃗�|𝐼ሺ�⃗�ሻ൯ ൌ
ூሺ௫⃗ሻ

∬ ூሺ௫⃗ሻௗ௦
 , (5)

 

from where it follows, that when the light radiation is 
recorded by the imaging device, the probability 
density of the count corresponds to the normalized 
intensity 𝐼ሺ�⃗�ሻ , incident on the photosensitive area 𝛺. 
Note that expression (5) has a universal character 
since the conditional probability distribution density 
is not dependent either on the radiation period 𝑇 , 
either on the quantum efficiency of the detector 
material 𝜂 , either on the characteristic frequency �̅� 
(radiation spectrum). Moreover, the density does not 
depend on the value of intensity norm, given by the 
total radiation power 𝑊 ൌ ∬ 𝐼ሺ�⃗�ሻ𝑑𝑠

ఆ
, since it is 

determined only by the intensity form  𝐼ሺ�⃗�ሻ 𝑊⁄ . It is 
worth to mention, that the above parameters 
significantly affect other statistical characteristics of 
a counts set, such, for example, as their average 
number 𝑛ത ൌ 𝛼𝑇𝑊 . Therefore, we once again point 
out that the normalized intensity 𝐼ሺ�⃗�ሻ 𝑊⁄  is the only 
sufficient statistic for the probability density 
distribution 𝜌൫�⃗�|𝐼ሺ�⃗�ሻ൯ (5). 

Understanding the concept of an imaging device 
allows us to form a model of an ideal image, for which 
we define an ideal imaging device. The ordered set 
𝑋 ൌ ሺ�⃗�ଵ, … , �⃗�ሻ,  �⃗� ∈ 𝛺  of all 𝑛  random photo 
counts recorded by the photosensitive region 𝛺 of the 
ideal imaging device during a given time 𝑇 will be 
considered an ideal image. An ideal image is 
essentially random object that should be 
distinguished among its possible realizations. It is 
worth noting that such an image is characterized by a 
random number of counts 𝑛 in the set 𝑋, as well as 
random coordinates �⃗� with density distributions (5). 

Given the conditional independence of the counts 
ሼ�⃗�ሽ, we can present a complete statistical description 
of the ideal image in the form of distribution densities 
൛𝜌൫�⃗�ଵ, … , �⃗�, 𝑛|𝐼ሺ�⃗�ሻ൯ൟ,  �⃗� ∈ 𝛺, 𝑛 ൌ 0,1, . .. (note that 
the conditional independence is understood here in 
the sense of the independence of all counting events 
at a given fixed form of the recorded intensity 𝐼ሺ�⃗�ሻ): 

 

𝜌൫�⃗�ଵ, … , �⃗�, 𝑛|𝐼ሺ�⃗�ሻ൯ ൌ

ൌ ∏ 𝜌൫�⃗�|𝐼ሺ�⃗�ሻ൯
ୀଵ ൈ 𝑃൫𝐼ሺ�⃗�ሻ൯ ,

𝑃൫𝐼ሺ�⃗�ሻ൯ ൌ
ത

!
expሺെ𝑛തሻ,

𝑛ത ൌ 𝛼𝑇 ∬ 𝐼ሺ�⃗�ሻ𝑑𝑠
ఆ

 .

 , (6)

 

where, according to (5), the probability density 
𝜌൫�⃗�|𝐼ሺ�⃗�ሻ൯ is determined as the normalized intensity 
𝐼ሺ�⃗�ሻ 𝑊⁄ , 𝑃൫𝐼ሺ�⃗�ሻ൯  is the Poisson probability 
distribution with parameter 𝑛ത.  

It is worth noting the correspondence of the 
statistical description (6) with some two-dimensional 
point inhomogeneous Poisson process (Streit, 2010) 
with intensity 𝜆ሺ�⃗�ሻ ൌ 𝛼𝑇𝐼ሺ�⃗�ሻ. It is known that the 
two-dimensional Bernoulli process ሼሺ�⃗�, 𝜎ሻሽ  is 
successfully approximated by the Poisson point 
process (Gallagher, 2013), which is stated in the 
above result. 

Densities 𝜌൫�⃗�ଵ, … , �⃗�, 𝑛|𝐼ሺ�⃗�ሻ൯  (6), including 𝑃 
and 𝑛ത ൌ 𝛼𝑇𝑊 , partially lose the universality 
property, since they depend now on the parameters 
𝛼, 𝑇, 𝑊 . Despite this, conditional densities 
𝜌൫�⃗�ଵ, … , �⃗�|𝑛, 𝐼ሺ�⃗�ሻ൯  will be independent of these 
parameters if 𝑛  is fixed (Streit, 2010). This fact 
makes sometimes the analysis of ideal images 
simpler, allowing to separate the associated with 𝑛 
"energy" estimates, and "geometric", structural 
estimates associated exclusively with the 
configuration of the set 𝑋 ൌ ሺ�⃗�ଵ, … , �⃗�ሻ,  �⃗� ∈ 𝛺 
(Antsiperov, 2019).  

For theoretical research, it is useful to use an ideal 
image model and its statistical description (6), for 
example, when searching for optimal methods of 
image processing, in particular, in the problems of 
objects identification in the images and artefacts 
recognition (Antsiperov, 2019). Moreover, the 
statistical description (6) can be used quite effectively 
at low intensities of the recorded radiation with not 
large values of 𝑛ത ൌ 𝛼𝑇𝑊 , such as in positron 
emission tomography (PET), fluorescence 
microscopy, single-photon emission computed 
tomography (SPECT), optical and infrared 
astronomy, etc. (Bertero, 2009). 

Unfortunately, the use of the ideal image model 
becomes problematic in cases of normal radiation 
intensity, typical, for example, of daylight. The 
reason for this is the need of enormous resources for 
solving applied problems. As it is known, the light 
flux of the photons from the sun is quite huge under 
normal conditions: on a clear day it is ~ 10ଵହ െ  10ଵ 
photons per section 𝑆 ~ 1 𝑚𝑚ଶ in 1 s (Rodiek, 1998). 
For devices operating in the photon counting mode, 
the number of counts per second will be 𝑛ത ~ 10ଵହ 
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(1000000 Gbit/sec = 1 Pbit/sec), provided that they 
will form one count per  ~10 photons (with quantum 
efficiency 𝜂 ൌ 0.1). Processing such an information 
flow is an unrealistic task, so in this case, it is 
recommended to develop other methods for 
encoding/presenting images. 

Earlier in our work, the following solution was 
proposed to the above-mentioned problem of 
reducing the dimensionality of the ideal image 
representation (Antsiperov, 2021). To begin with, it 
was proposed to fix the size of the working 
representation to an acceptable level 𝑘 ≪ 𝑛ത. In other 
words, considering the ideal representation 𝑋 ൌ ሼ�⃗�ሽ 
of the image as some general population of counts, it 
proposed to select from it a sample in 𝑘  random 
elements 𝑋 ൌ ሼ�⃗�ሽ . According to the approach of 
classical statistical theory, a similar "sampling" 
representation at dimensions 𝑘 ≪ 𝑛ത  will also 
represent in a sense an ideal image. We call such a 
fixed size sample 𝑋  the sampling representation 
(representation by sample of random counts). 
Integrating 𝜌൫�⃗�ଵ, … , �⃗�, 𝑛|𝐼ሺ�⃗�ሻ൯  (6) over the 
coordinates of unselected counts in 𝑋 and summing 
the result over the number 𝑙 ൌ 0, 1, … of unselected 
counts, we obtain a statistical description of the 
sampling representation in the form: 

 

𝜌൫𝑋|𝐼ሺ�⃗�ሻ൯ ൌ ∏ 𝜌 ቀ�⃗�|𝐼ሺ�⃗�ሻቁ
ୀଵ ൈ 𝑃ஹ൫𝐼ሺ�⃗�ሻ൯  (7)

 

where 𝑃ஹ൫𝐼ሺ�⃗�ሻ൯  indicates the probability of 
existing of more than 𝑘  counts in an ideal image. 
Taking into account the asymptotic (for 𝑛ത → ∞ ) 
tendency of Poisson distribution 𝑃 to a Gaussian one 
with the mean 𝑛ത, it can be easily found that in the case 
𝑛ത ≫ 1, the probability 𝑃ழ൫𝐼ሺ�⃗�ሻ൯ will be less than 
𝜀, as soon as the number of selected counts 𝑘  2𝜀𝑛ത 
(𝑘 𝑛ത⁄  𝜀 0.5⁄ ), i.e. the probability 𝑃ஹ൫𝐼ሺ�⃗�ሻ൯ in (7) 
will differ from the unity less than by 𝜀.  

Further, assuming for representations 𝑋  that 
their dimensions satisfy the condition 𝑘 ൏ 2𝜀𝑛ത  for 
small enough 𝜀, so putting 𝑃வ൫𝐼ሺ�⃗�ሻ൯ ≅ 1 we will 
get finally: 

 

𝜌൫𝑋|𝐼ሺ�⃗�ሻ൯ ൌ ∏ 𝜌 ቀ�⃗�|𝐼ሺ�⃗�ሻቁ
ୀଵ   (8)

 

Putting for example 𝜀 ൌ 0.001  and 𝑛ത ~ 10ଵହ , we 
obtain that (8) holds up to 𝑘~2 ൈ  10ଵଶ, however, and 
this estimate is, most likely, strongly underestimated.  

Due to the fixed size of sampling representation 
𝑘 ≪ 𝑛ത , as well as several other circumstances, the 
statistical description (8) for 𝑋 ൌ ሼ�⃗�ଵ, … , �⃗�ሽ seems 
more convenient than a complete statistical 
description of an ideal image. First of all, this is due 
to the fact that it fixes the same conditional 

distribution of all 𝑘 counts ሼ�⃗�ሽ and their conditional 
independence. Further, it is worth noting that the 
densities of distributions of individual counts 
𝜌൫�⃗� |𝐼ሺ�⃗�ሻ൯  in the region 𝛺  depend only on 
normalized intensity 𝐼ሺ�⃗�ሻ , which means that the 
universality property for (8) also holds. In other 
words, there is no dependence on the exposure time 
𝑇, the quantum efficiency of the detector material 𝜂, 
or the characteristic frequency �̅� . The above-
mentioned properties of sampling representation 
distribution (8) make it possible to provide the 
necessary type of input data for many machine 
learning methods, as well as statistical approaches, 
including the naive Bayesian one (Barber, 2012). 

The final note of this section is devoted to the 
following important fact. Since 𝜌൫�⃗� |𝐼ሺ�⃗�ሻ൯ in (8) is 
determined exclusively by the normalized version of 
the intensity 𝐼ሺ�⃗�ሻ ∬ 𝐼ሺ�⃗�ሻ𝑑𝑠

ఆ
ൗ  (see (5)), statistical 

description of the representation (8) also does not 
depend on the physical values of intensity 𝐼ሺ�⃗�ሻ. For 
example, in the case where the detected radiation 
intensity 𝐼ሺ�⃗�ሻ  was recorded by the pixels ሼ𝑛ሽ of 
some raster image, the sampling representation does 
not directly depend on the digital quantization 
parameter 𝑄 ൌ Δ𝐼. It will only depend on the pixel bit 
depth parameter 𝜐 ൌ logଶሺ𝐼௫ Δ𝐼⁄ ሻ , which is a 
standard characteristic of a digital images. In the next 
section some examples of sampling representations 
will be given.  

3 EXPERIMENTS ON DIGITAL 
IMAGE CODING BY SAMPLES 
OF COUNTS 

The made above remark implies the fact that the 
procedure for sampling the given raster image can be 
ultimately reduced to normalizing 𝜋 ൌ 𝑛 ∑ 𝑛⁄  
pixel values (since 𝐼~𝑛 , 𝐼ሺ�⃗�ሻ 𝑊⁄ ~ 𝑛 ∑ 𝑛⁄ ) 
followed by sampling of 𝑘 random counts from the 
related probability distribution 𝜌൫�⃗� |𝐼ሺ�⃗�ሻ൯ ൎ 𝜋. It is 
also worth noting that machine learning provides a 
great number of algorithms and approaches for 
organizing the sampling procedures, which are united 
by a common name Monte Carlo method (Robert, 
2004). Among these methods, we can recall the well-
known Gibbs, Metropolis-Hastings algorithms, 
sampling by significance, acceptance/rejection and 
others. Such a set of methods makes it possible to 
optimize the sampling procedure by evaluating it 
from different angles, for example, from the 
perspective of the specifics of the task, evaluating the 
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effectiveness of its implementation, etc. At the same 
time, it should be understood that some sampling 
methods do not require some preliminary processing, 
and it will be sufficient to provide a condition under 
which all pixels will be bounded from above by the 
value 2జ, where 𝜐 is the pixel bit depth parameter of 
the image. 

Let us illustrate the forming of sampling 
representation for the standard test image “Sailboat 
on the lake”, shown in Figure 4. This image was taken 
from the USC-SIPI Image Database, which is often 
used in image processing publications. The figure 
shows several representations of a random counts of 
an image having the following initial parameters: 
image format - TIFF, dimensions - 512 ൈ 512 pixels, 
a color depth of 𝜐 ൌ 24 bits. First of all, the image 
was converted to GIF format with the same 
dimensions 512 ൈ 512, but in a gray palette with a 
color depth 𝜐 ൌ 8  bits (see Figure 4 (A)), which 
allowed to reduce the overall amount of calculations. 
Figures 4 B-F show samples of sizes 𝑘 = 100 000, 500 
000, 1.000.000, 2.000.000 and 5,000,000, the 
procedure itself was performed using the simplest 
method of rejection sampling (Robert, 2004) with a 
uniform auxiliary distribution 𝑔ሺ�⃗�ሻ ൌ ሺ𝑠 ൈ 𝑠ሻିଵ ൌ
512ିଶ  and a constant upper bound of pixel values 
𝑐 ൌ 2జ ൌ 256. The choice of 𝑔ሺ�⃗�ሻ and boundary 𝑐 
was due to the constraints 𝑛 ൏ 2జ, which in the case 
of the mean 𝑚ഥ ൌ ∑ 𝑛 𝑠ଶ⁄  1 lead to the following 
majorization of the distribution density of the count: 

 

Figure 4: “Sailboat on lake” (USC-SIPI Image DB, 2021) 
image representation by samples of random counts: A 
original image in TIFF format, B – F representations with 
the sample sizes respectively 𝑘  = 100.000, 500.000, 
1.000.000, 2.000.000, and 5.000.000 counts. 

𝜌൫�⃗� |𝐼ሺ�⃗�ሻ൯ ൎ 𝜋 ൌ
ೕ

∑ ೕ
൏ 𝑚ഥ

ೕ

∑ ೕ
ൌ

ൌ
ೕ

௦ൈ௦
൏

ଶഔ

௦ൈ௦
ൌ 𝑐𝑔൫�⃗�൯ .

  (9)

 

As you can see, the algorithmic implementation of 
the sampling method reduces to a random selection of 
vectors �⃗� , uniformly distributed in the area 𝑠 ൈ
𝑠 ሺarea 𝛺ሻ with coordinates - floating-point numbers 
and the inclusion of these vectors in the sample of 
counts 𝑋  when performing the test (9) 𝑢 ൏ 𝑛 , 
where 𝑗 is the index containing the pixel �⃗�, and 𝑢- is 
the realization of a uniformly distributed over 
ሺ0, 𝑐ሻ random variable (see (Robert, 2004)). 
Normalization of pixels 𝑛  is not required for this 
implementation.  

The simplicity of forming fixed size samples of 
random counts 𝑋 ൌ ሼ�⃗�ଵ, … , �⃗�ሽ and the universality 
of the statistical description (8) of the corresponding 
representation will be useful in many image 
processing tasks related to classification, 
identification and analysis of visual data, see 
(Antsiperov, 2021). However, this approach has a 
number of problems in applications related to visual 
perception. This fact can be observed in the fragments 
of Figure 4 - selective representations have a grainier 
texture than conventional images, as a result of which 
problems with the interpretation of images in the 
image are possible. 

At the same time, it is worth remembering that 
traditional digital images are the result of rather 
complex algorithms for processing original images. 
TIFF image “The sailboat on the lake" in Figure 4A 
is one of such images obtained by scanning a 
photographic plate/film, the quality of which is 
increased due to the use of post-processing methods 
of the JPEG technology. Such images quality can be 
obtained also with the help of digital cameras. The 
above facts put us in front of solving another, 
important task of improving the quality of sampling 
representations for the possibility of visual perception 
of graphical data. Despite the fact that this topic goes 
beyond the scope of this work, leaving its solution for 
future research, we will limit ourselves to the results 
of the implementation of the simplest method for 
smoothing noisy images, which is based on the 
Parzen-Rosenblatt window method. 

The smoothing method using the Parzen-
Rosenblatt window is directly related to the 
nonparametric reconstruction of the probability 
density function based on the kernel density 
estimation (KDE) approach (Silverman, 1986). Since 
in the sampling representation 𝑋 ൌ ሼ�⃗�ଵ, … , �⃗�ሽ the 
density of the distribution of independent counts 
𝜌൫�⃗�|𝐼ሺ�⃗�ሻ൯ for our case is a multiple of the intensity 
parameter 𝐼ሺ�⃗�ሻ (5), then the kernel estimate: 

 

𝜌ොሺ�⃗� |𝑋ሻ ൌ
ଵ


∑ 𝐾 ቀ

௫⃗ି௫⃗ೕ


ቁ

ୀଵ   (10)

Image Coding by Samples of Counts as an Imitation of the Light Detection by the Retina

47



reconstructs both the density of distribution of counts 
and, to the accuracy of normalization, the intensity 
𝐼ሺ�⃗�ሻ (intensity form).  

In (10) the kernel 𝐾ሺ�⃗�ሻ is assumed to be a non-
negative, normalized, symmetric function with a unit 
second momentum on a two-dimensional plane with 
coordinates �⃗� ൌ ሺ𝑥ଵ, 𝑥ଶሻ. In other words, the kernel is 
the simplest smoothing window of unit width. The 
parameter Δ  0  is the smoothing parameter, it is 
often also called the window width (Silverman, 
1986). In our experiments, a Gaussian distribution 
was used as the kernel 𝐾ሺ�⃗�ሻ ൌ 𝑁ሺ�⃗� | 0ሬ⃗ , 𝐸ሻ , the 
window width parameter was not used  by default it 
was assumed Δ ൌ 1 . The image dimensions were 
chosen of the same size ൈ 𝑠 , 𝑠 = 512 as those of the 
original image, i.e. it was assumed that the parameter 
Δ of the pixel size was chosen as the scale.  

 

Figure 5: “Sailboat on lake” (USC-SIPI Image DB, 2021) 
image reconstruction using random sampling: A original 
image in TIFF format, B) – F) reconstructed images by 
sample sizes, respectively 𝑘  = 100.000, 500.000, 
1.000.000, 2.000.000, and 5.000.000 counts. 

Figure 5 shows the processed images obtained 
from samples of the corresponding sizes size 𝑘  = 
100.000, 500.000, 1.000.000, 2.000.000, and 
5,000,000 counts (Figure 4). Separately, it is worth 
noting that relatively small samples (𝑘 = 1.000.000) 
generally satisfy the possibility of visual perception 
of objects in the image, regardless of the presence of 
blurriness and noise elements. A further increase in 
the sample up to 𝑘 = 5,000,000 counts allow to get 
even more useful information, such as the clarity of 
the boundaries of individual objects, their relief, and 
even give an assessment of other characteristics. 
However, along with the increase in the sample size, 
there is an increase in the time spent on its 
preprocessing and recovery itself. 

 

4 CONCLUSIONS 

The paper presented a method for coding 
(representing) an image by fixed size samples of 
random counts. The formation of such a sampling 
representation allows not only to reduce the amount 
of input information but also to obtain other, not less 
obvious characteristics. Particular attention is paid to 
the performance of the sampling algorithm. Since 
most often one must work not with the only image, 
but with batches of similar images, an important 
parameter is the time required to fulfil the sampling 
procedure.  

In the current work, attention was also paid to 
estimating the time for generating samples of counts 
of different sizes, which directly depends on the 
number of counts specified for the formation of a 
representation. With small numbers of counts, the 
sampling rate for the “Sailboat on lake” image was 
also small, for 𝑘  = 100,000, the time was 𝑡  = 0.71 
seconds, with an increase in the sample size to 𝑘 = 
1,000,000 (10 times), the time was 𝑡 = 2.68 seconds. 
This difference is extremely important if we are going 
to process, say, a group of 100 images, which will 
take us in the best case from one minute to 4 minutes 
if large sample size is selected. However, to 
determine how many counts to use when coding an 
image, it is necessary to operate with information 
about how the image can be used for further 
processing, as well as whether we can obtain a 
sufficient set of properties that allow us to identify 
objects and events rather accurately in the image. For 
example, the representation of the image with a 
sample of 𝑘 = 1.000.000 counts allow us to visually 
compare the figures in the resulting coded image with 
similar figures in the original one, which seems 
almost impossible for a smaller sample. This allows 
us to conclude that the time spent on forming a 
sampling representation for images that have similar 
characteristics to the “Sailboat on lake” image (size 
512x512 pixels, color, with a color depth of 24 bits) 
will not exceed 4 seconds, but it will take more than 
1-2 seconds to form a visually interpreted image. 

What about the samples of other sizes 𝑘  = 
2.000.000 and 𝑘 = 5.000.000, the sampling time was 
𝑡  = 10.04 seconds and 𝑡  = 20.26 seconds, 
respectively. Note that such representations have 
minor differences from the sample 𝑘 = 1.000.000 if 
we consider the ability to visually perceive objects. 
However, such samples best eliminate noise and 
allow you to see smaller objects.  

In general, reducing the original image with the 
help of samples of counts allows not only to switch to 
a new, simplified representation of the image but also 
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allows to effectively perform further operations on its 
processing. For the samples to be visually interpreted 
even with a small number of counts, the resulting 
image was restored with some degree of accuracy to 
the original one by smoothing methods. The sample 
size, of course, has a significant impact on the 
formation time of the smoothed image, as well as on 
the degree of its smoothness. This method of image 
restoration allows not only to process images with 
poor visual perception more accurately, but also 
simplifies the task of improving the perceptual 
characteristics of images with low quality and 
brightness parameters. Thus, we note that the average 
brightness level of the image has increased, which is 
mainly due to the elimination of dark areas in the 
image that remained between the recorded counts.  

The time parameter spent on the implementation 
of the algorithm for smoothing samples of different 
sizes was also analyzed. Similarly, with the formation 
of the samples themselves, the smoothing algorithm 
showed the best results when working with small 
samples. With the number of counts 𝑘  = 100,000, 
500,000 and 1,000,000, the time was t = 0.52, 1.57 
and 2.88 seconds, respectively. For large samples 𝑘 = 
2.000.000 and 5.000.000 it took on average t = 5.46 
and 13.24 seconds. When working with small 
samples, there was an improvement in image quality 
and the ability to interpret images on it. This indicates 
the possibility of using small samples of counts for 
image processing in the future, regardless of the 
visual perception of the operator. 

All the processes outlined above, aimed at 
forming an ideal image, open a whole range of 
possibilities in the development, improvement, and 
use of various kinds of imaging devices, such as 
single-photon avalanche diodes (SPAD) operating in 
the mode of single photons counting. 

ACKNOWLEDGEMENTS 

The authors express their gratitude to the Ministry of 
Science and Higher Education of Russia for the 
possibility of using the Unique Science Unit 
“Cryointegral” (USU #352529) designed for 
simulation modelling, developed in Project No. 075-
15-2021-667. 

REFERENCES 

Antsiperov, V. (2019) Machine Learning Approach to the 
Synthesis of Identification Procedures for Modern 
Photon-Counting Sensors. Proc. of the 8th International 

Conference on Pattern Recognition Applications and 
Methods V. 1: ICPRAM, P. 814–821. DOI: 
10.5220/0007579208140821 

Antsiperov, V. (2021) Maximum Similarity Method for 
Image Mining. Proceedings of the Pattern Recognition 
ICPR International Workshops and Challenges, Part V. 
Lecture Notes in Computer Science. V. 12665? P. 301–
313. DOI: 10.1007/978-3-030-68821-9_28. 

Aull, B. F., Schuette, D. R., Young, D. J., et al. (2015) A 
study of crosstalk in a 256x256 photon counting imager 
based on silicon Geiger–mode avalanche photodiodes. 
IEEE Sens. J., V. 15(4), P. 2123-2132.  

Barber, D. (2012) Bayesian Reasoning and Machine 
Learning. Cambridge Univ. Press. Cambridge.  

Bertero, M., Boccacci P., et al. (2009) Image deblurring 
with Poisson data: from cells to galaxies. Inverse 
Problems, V. 25(12), IOP Publishing, P. 123006. DOI: 
10.1088/0266-5611/25/12/123006. 

Dutton, N. A. W., Gyongy, I., Parmesan, L., et al. (2016). 
A SPAD–based QVGA image sensor for single–photon 
counting and quanta imaging. IEEE Trans. Electron 
Devices V. 63(1), P. 189-196. 

Fossum, E. R., Teranishi, N., et al. (2017) Photon-Counting 
Image Sensors. MDPI. DOI: 10.3390/books978-3-
03842-375-1. 

Fox, M. (2006) Quantum Optics: An Introduction. U. Press, 
New York. DOI: 10.1063/1.2784691. 

Gabriel, C. G., Perrinet, L., et al. (2015) Biologically 
Inspired Computer Vision: Fundamentals and 
Applications. Wiley-VCH, Weinheim. 

Gallager, R. (2013) Stochastic Processes: Theory for 
Applications. Cambridge University Press, Cambridge. 
DOI: 10.1017/CBO9781139626514. 

Gonzalez, R. C., Woods, R. E. (2007) Digital Image 
Processing 3d edition. Prentice Hall, Inc. 

Goodman, J. W. (2015) Statistical Optics 2nd edition. Wiley, 
New York. 

Holst, G.C. (2011) CMOS/CCD sensors and camera 
systems. SPIE Press. Bellingham. DOI:  
10.1117/3.2524677 

Koch, K., McLean, J., et al. (2006) How much the eye tells 
the brain? Current biology: CB, V.16(14): 1428–1434. 
DOI: 10.1016/j.cub.2006.05.056.  

Morimoto, K., Ardelean, A., et al. (2020) Megapixel time-
gated SPAD image sensor for 2D and 3D imaging 
applications. Optica V. 7, P. 346-354. DOI: 
10.1364/OPTICA.386574.  

Pal, N.R., Pal, S.K. (1991) Image model, poisson 
distribution and object extraction. International Journal 
of Pattern Recognition and Artificial Intelligence, V. 
5(3), P. 459–483. DOI: 10.1142/S0218001491000260. 

Robbins, M. (2011) Electron-Multiplying Charge Coupled 
Devices-EMCCDs. In Single-Photon Imaging, Seitz, P. 
and Theuwissen, A. J. P. (eds.). Springer, Berlin, P. 
103-121.  

Robert, C.P., Casella G. (2004) Monte Carlo Statistical 
Methods (2-nd edition). New York: Springer-Verlag. 
DOI: 10.1007/978-1-4757-4145-2 

Rodieck, R. W. (1998) The First Steps in Seeing. 
Sunderland, MA. Sinauer. 

Image Coding by Samples of Counts as an Imitation of the Light Detection by the Retina

49



Streit, R. L. (2010) Poisson Point Processes. Imaging, 
Tracking and Sensing. Springer, New York. 

Silverman, B.W. (1986) Density Estimation for Statistics 
and Data Analysis. Chapman & Hall/CRC/ London. 
DOI: 10.1007/978-1-4899-3324-9. 

USC-SIPI Image DB [USC-SIPI Image Database]. last 
accessed 2021/09/21. 

 

ICPRAM 2022 - 11th International Conference on Pattern Recognition Applications and Methods

50


