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Abstract: Realistic representation of building walls from images is an important aspect of scene understanding and
has many applications. Often, images of buildings are the only input for texturing 3D models, and these
images may be occluded by vegetation. One task of image inpainting is to remove these clutter objects. Since
the disturbing objects can also be of a larger scale, modern deep learning techniques should be applied to
replace them as realistically and context-aware as possible. To support an inpainting network, it is useful
to include a-priori information. An example of a network that considers edge images is the two-stage GAN
model denoted as EdgeConnect. This idea is taken up in this work and further developed to a three-stage
GAN (3GAN) model for façade images by additionally incorporating semantic label images. By inpainting
the label images, not only a clear geometric structure but also class information, like position and shape of
windows and their typical color distribution, are provided to the model. This model is compared qualitatively
and quantitatively with the conventional version of EdgeConnect and another well-known deep-learning-based
approach on inpainting which is based on partial convolutions. This latter approach was outperformed by both
GAN-based methods, both qualitatively and quantitatively. While the quantitative evaluation showed that
the conventional EdgeConnect method performs minimally best, the proposed method yields a slightly better
representation of specific façade elements.

1 INTRODUCTION

Images are probably the most widespread source of
information nowadays. However, images cannot al-
ways be captured in the way the desired scene ap-
pears without irrelevant objects. Image inpainting is
a discipline dedicated to removing these objects; the
applications of image inpainting extend from restor-
ing images (e.g. images contaminated with noise or
scratches) via filling missing image parts (e.g. gaps
resulting from text removal or object removal) to fill-
ing of image regions (e.g. areas resulting from image
cropping or masking), see (Elharrouss et al., 2019). In
particular, realistic representations of 3D city scenes,
especially building walls from texture images, possi-
bly combined with reconstruction results of different
sensor data, are an essential aspect of scene under-
standing and have many applications (Shalunts et al.,
2011; Bulatov et al., 2014; Zhang et al., 2020). Often
it happens that the images of building façades are the
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only input for texturing. As a consequence, proper
occlusion analysis cannot be accomplished. This has
the disadvantage that the façade images are often con-
taminated, especially by trees standing in front of the
buildings. Clearly, these objects can be arbitrarily
large, and the only feasible way to replace them in the
image is to learn the backgrounds from a high number
of training examples. In this paper, we wish to investi-
gate to what extent the modern generative techniques
of deep learning are capable of replacing such large
occluding objects as realistically and context-aware
as possible and, at the same time, of maintaining the
distinction between rectangular façade objects and the
background. The main innovation lies in combining
a-priori information, allowing to support an inpaint-
ing network operating on such a complex and texture-
rich entity as a façade with explicit semantic or geo-
metrical descriptions of its elements. Inspired by the
EdgeConnect approach (Nazeri et al., 2019) based on
two generative adversarial networks (GANs), we pro-
pose a method that successively reconstructs an edge
image, a label image, and a texture image using three
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GANs (see Figure 1, top). This method will be de-
noted 3GAN approach throughout this paper.

We provide a literature review on image inpainting
in Section 2 and identify at the end of this section the
most promising method which relies on two GANs.
In Section 3, we extend this method by yet another
GAN that utilizes two-dimensional context informa-
tion stored in a semantic segmentation image, expect-
ing additional stability from this intermediate input.
In Section 4, we present the results of the proposed
method and compare them with those yielded by the
predecessor and another algorithm. Finally, Section
5 summarizes the main findings of our work and out-
lines a few directions for future research.

2 RELATED WORK

Image inpainting is an under-determined inverse
problem that does not have a single well-defined so-
lution because anything can theoretically appear be-
hind the occluding object. Therefore, in order to
address this problem, it is necessary to introduce a-
priori information. Contrary to the early methods,
these assumptions were formulated explicitly. Van-
ishing gradients, for example, allowed to formulate
the (structural) inpainting problem as a partial dif-
ferential equation (Chan and Shen, 2001). Assum-
ing that the image patch to be inpainted has ap-
peared somewhere else in the images incubates the
so-called texture-based inpainting approaches (Crim-
inisi et al., 2004). The machine learning and, in par-
ticular, deep-learning-based methods offer a system-
atic framework of considering many training exam-
ples to compute the network parameters and include
the a-priori information in an implicit way. Accord-
ing to e.g. (Elharrouss et al., 2019), where more de-
tails and sources can be found, inpainting methods
based on deep learning can be roughly subdivided into
two groups: based on GANs (Isola et al., 2017; Yang
et al., 2017; Nazeri et al., 2019; Shao et al., 2020)
and on pixel-filling predictions (Pathak et al., 2016;
Liu et al., 2018; Yu et al., 2019; Li et al., 2020; Pyo
et al., 2020). Diving deeper into details, the Context-
encoder method of (Pathak et al., 2016) is probably
the earliest GAN-based method on inpainting and is
based on an encoder-decoder architecture. Because
of multiple pooling layers, fine details can hardly be
reconstructed. To cope with high-resolution images,
(Iizuka et al., 2017) adds dilation convolutional lay-
ers. Still, there are some noise patterns that have to
be smoothed away by a post-processing routine, such
as Poison blending. The work of (Yu et al., 2019)
replaces partial convolutions (those affecting the in-

painting region only) with the so-called gated con-
volutions, where the gating parameters are learnable
for each image channel and, optionally, for a user-
provided sparse sketch of edges. Recently, the Edge-
Connect method was developed (Nazeri et al., 2019),
which aims to reconstruct such a good edges sketch
automatically. There are two GANs, whereby the first
GAN learns to complete the edge image of an RGB
image. The edges serve as a-priori information for
the second GAN, supposed to reconstruct the color
image. Thus, the image structure in the edge im-
age is captured with the first GAN, while the second
GAN focuses on details of color image inpainting,
such as the homogeneous color content of the regions
enclosed by edges.

Finally, several works relying on semantic seg-
mentation can be mentioned (Kottler et al., 2016; Kot-
tler et al., 2020; Song et al., 2018; Liao et al., 2020;
Huang et al., 2021). In the first two contributions,
the semantic segmentation result is undamaged since
it stems from an external source. The work of (Song
et al., 2018) is a two-GANs-based network. The first
GAN, called Segmentation Prediction, accomplishes
inpainting of the segmentation image as an intermedi-
ate step. The second, called Segmentation Guidance,
reconstructs the texture image. In this method, the
segmentation result is a product of data processing
and lacks the typical man-made features, such as rect-
angular structures, which can be observed in the re-
sults. In the work of (Liao et al., 2020), the corrupted
image is initially completed in the feature space. In-
painting of segmentation and the texture image takes
place alternately.

3 METHODOLOGY

3.1 Preliminaries: From EdgeConnect
to 3GAN Approach

Edge images of color pictures often do not show
a good balance between actual changes in structure
and noise. More importantly, the binary edge im-
ages serving as input and output of the first GAN
of EdgeConnect bear only a one-dimensional mani-
fold on information. The reason is that the raster-
ized result of an edge detection algorithm is a bi-
nary image, where edge pixels have a thickness of
one, and thus, the overwhelming majority of pixels
in the images do not benefit from this information. If
the binary image has formed a closed contour, for in-
stance, around a window, then the second GAN will
have learned that the pixels within this contour must
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Figure 1: Top: Schematic overview of the proposed 3GAN approach. Bottom: Graphical overview. While the step from (1)
to (2) is the result of semantic segmentation and from (2) to (3), foreground class selection, is trivial, we concentrate in this
work on automatic inpainting of (2) resulting in (4), followed by inpainting of (1) resulting in (5) using GANs.

have an approximately homogeneous color represen-
tation at least locally, since otherwise there would
have been further edges detected. However, to know
these most representative colors, we should be able
to copy the color information from one window to
another. In other words, we must know which pix-
els of the image correspond to windows. There are
two implications of this line of thoughts. The first
implication is the relevance of the semantic segmen-
tation result as additional input. It is a label image
on the more abstracted level than the textured façade
picture. It allows the GAN to learn typical representa-
tions of different classes, which would be trained sep-
arately within the same image or between the different
images. Fortunately, there are many freely available
datasets with labeled façade elements (Gadde et al.,
2016) and many pipelines on semantic segmentation
using both model-driven (Wenzel, 2016; Wenzel and
Förstner, 2016) and example-driven (Fathalla and Vo-
giatzis, 2017; Schmitz and Mayer, 2016) methods.
Using grammar-driven methods, sometimes even oc-

cluded windows can be recovered within incomplete
grids of façade elements. We will assume the avail-
ability of accurate semantic segmentation for a fair
number of façades in our dataset since they can be
obtained either with one of these methods or interac-
tively. The second implication is that the label im-
age may be contaminated by the foreground objects
as well. Inpainting such an image is expected to be
easy because of a reduced value range to guess (for
instance, 1 for wall, 2 for roof, 3 for window, 4 for
door, and so on). Therefore, the proposed method
will strive at inpainting the labeled image using the
standard EdgeConnect method. Besides a small value
range, the advantage of inpainting label images is that
only sensible edges will be inpainted in the first step
of the EdgeConnect algorithm and not those resulting
from the data noise. Finally, the label image is used
to refill the missed values in the original image.

Summarizing, we suppose in this work that the
ground-based, high-resolution digital image of a
façade is provided together with the binary mask of
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the same size where pixels labeled as zeros and ones
correspond to the background and occluding objects,
respectively. The image itself is supposed to be a stan-
dard RGB pixel grid with integer values. Our last in-
put is the semantic segmentation map which has, of
course, the same size as the image, and a predefined
labeling map for available semantic classes. The im-
ages, rasterized (Canny) edge maps, semantic labels,
and masks are denoted, respectively, by capital letters
J,C,S and M, if not specified differently. We refer to
Subsection 4.1 of the results section for more infor-
mation on available data, in particular, for training.

3.2 3GAN Approach

According to our findings from the previous section,
the workflow of our method is illustrated in Figure 1,
top. In the following three subsections, each of the
three involved GANs will be presented.

3.2.1 Inpainting of the Edge Image

The first GAN resembles the one proposed by (Nazeri
et al., 2019). The edges of the label image S are gen-
erated with the Canny edge detector (Canny, 1986),
resulting in the edge image C. In order to complete
C to Ĉ, the generator G1 obtains as input C, S, and
M whereby S is parsed as the element-wise product
S ◦ (1−M) in order to suppress those regions of la-
bel images where the mask is true. The discrimina-
tor D1 estimates whether an input edge image C is an
original (training label 1) or an artificially generated
(training label 0) one. Thus, the loss function

min
G1

max
D1

LG1 = min
G1

(
max

D1
(La)+λ f L f

)
(1)

is used to estimate the parameters of G1 and D1.
Hereby, La and L f are the adversarial and feature loss
(see below), while λ f = 10 is a regularization param-
eter whose value was chosen according to (Nazeri
et al., 2019). The adversarial loss La is defined ac-
cording to (Goodfellow et al., 2014):

La = EC,S [logD1(C,S)]+ES log
[
1−D1(Ĉ,S)

]
. (2)

In this equation, E is the expectation value collected
over all training data pairs (C,S). A good discrimina-
tor D1 outputs values for D1(C,S) close to 1 and val-
ues D1(Ĉ,S) close to zero, because Ĉ = G1(C,S,M)
is an artificial image. Thus D1 maximizes La in (1).
A good generator, contrarily, has to produce Ĉ for
which D1 is close to 1. The logarithm of 1−D1 would
yield a large negative number and decrease La in (1)
strongly. At the beginning of the training process,
when G1 is not good enough to fool D1, the second

term in the sum of equation (2) penalizes La while
with advancing training, the first term is supposed to
avoid overfitting since it does not depend on G1. The
feature matching loss

L f (C,Ĉ) = E

[
T

∑
i=1

1
Ni

∥∥∥D(i)
1 (C)−D(i)

1 (Ĉ)
∥∥∥

1

]
(3)

compares the activation maps in the middle layers of
the discriminator. Doing so stabilizes the training pro-
cess by forcing the generator to produce results simi-
lar to real images, as we will explain in more detail in
Section 3.2.3. In (3), T denotes the number of all con-
volutional layers of the discriminator, Ni denotes the
number of elements in the i-th activation layer from
the discriminator, and D(i)

1 denotes the activation in
the i-th layer of the discriminator.

3.2.2 Inpainting of the Label Image

Based on the input edge image C, we substitute only
the occluded parts of it with the generated edges Ĉ in
the masking:

Ĉ =C ◦ (1−M)+Ĉ ◦M. (4)

Within our second GAN, we wish to inpaint the se-
mantic segmentation image S using Ĉ. The second
generator Ŝ = G2(S,Ĉ,M) = G2(S ◦ (1 − M),Ĉ,M)
operates on the set of ground truth images for seman-
tic segmentation and makes predictions to be assessed
by D2. The loss function is formed similarly to that
from (1),

min
G2

max
D2

LG2 = min
G2

(
max

D2
(La)+λ`1L`1

)
, (5)

only that D2(S,C) now assesses S (differently from
D1(C,S) in (2)) and that the second term is the L1 loss
L`1(Ŝ,S). This loss minimizes the sum of absolute
differences between Ŝ and S. For proper scaling, we
normalize this loss by the mask size. Since the gener-
ated label image should be as close as possible to the
original values of the input label image, the L1 loss is
a suitable tool for training the GAN. As proposed in
(Nazeri et al., 2019), the choice for the regularization
parameter is λ`1 = 10.

3.2.3 Inpainting of the Texture Image

Analogously to the previous section and equation (4),
we update S to become

Ŝ = S◦ (1−M)+ Ŝ◦M (6)

and use it to inpaint the texture image Ĵ =
G3(J, Ŝ,M) = G3(J ◦ (1−M), Ŝ,M). The loss func-
tion

LG3 = La,3 +λ`1L`1 +λpercLperc +λstyleLstyle (7)
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has now four terms connected with regularization pa-
rameters λ`1 = 10,λperc = 1 and λstyle = 2500 from
(Nazeri et al., 2019). The first two are defined analo-
gously to those in (1), with J instead of C and Ŝ istead
of S. The perceptual loss Lperc, originally proposed in
(Gatys et al., 2015) and adopted from (Johnson et al.,
2016; Nazeri et al., 2019) penalizes results that are not
perceptually similar to labels by defining a distance
measure between activated features of a pre-trained
network. It resembles feature loss in (3), where D(i)s
are replaced by the activation maps φi from layers
relu1 1, relu2 1,relu3 1, relu4 1 and relu5 1 of
the VGG-19 network pre-trained on the ImageNet
dataset (Russakovsky et al., 2015). The reason not
to use a model pre-trained on such a database in (3) is
that the VGG-19 network has been trained for differ-
ent purposes, and thus, the activation maps are not
supposed to coincide. Finally, the style loss Lstyle
from (Sajjadi et al., 2017) measures the difference be-
tween covariance matrices. The authors of EdgeCon-
nect (Nazeri et al., 2019) have identified it as a help-
ful tool for eliminating checkerboard artifacts usually
produced during the deconvolution and upsampling
process in encoder-decoder networks. Given feature
maps of the size N j ×H j ×Wj, the style loss is com-
puted as follows:

Lstyle = E j

[∥∥∥Gφ

j (Ĵ)−Gφ

j (J)
∥∥∥

1

]
, (8)

Gφ

j is the Gram-matrix of size N j ×N j computed from
activation maps φi from above.

3.3 Implementation Details

The generator of each of the presented GANs con-
sists of an encoder, aiming to compute characteris-
tic features on a reduced resolution, and a decoder,
aiming to transform the features to the original size.
The encoder starts with a convolutional block, con-
cluded with a ReLU-based activation. Two convolu-
tional blocks follow, each one concluded by a pooling
layer. Finally, there are four residual blocks, each one
as in (Johnson et al., 2016). The decoder possesses
a mirror-symmetric structure to the encoder, contain-
ing four residual blocks, two blocks with transpose
convolution and unpooling layer, as well as one con-
volutional block. This last convolutional block has
one output channel for G1 and G2 and three for G3
since the latter aims to restore a color image. The dis-
criminator is based on a 70 × 70 patch GAN (Isola
et al., 2017). It has four blocks of convolution lay-
ers with ReLU activation between them and the soft-
max layer at the end, such that the output of the dis-
criminator is between 0 and 1. The two last layers

are fully connected. All layers in the different net-
works are instance-normalized (Ulyanov et al., 2017).
For optimization, we used the Adam implementation
in PyTorch with parameters β1 = 0, β2 = 0.9, see
(Kingma and Ba, 2014). The network is trained using
256× 256 images with a batch size of eleven, eight,
and five for the edge, label, and texture GAN, respec-
tively. Instance normalization is applied within each
layer. Further important parameters are: learning rate
0.0001 and iteration number 600,000.

4 RESULTS

4.1 Dataset

Several investigations have already dealt with the la-
beling of building façades and provide datasets for
this purpose (Gadde et al., 2016; Tyleček and Šára,
2013). Merging these different datasets is challeng-
ing because not all of them are rectified and also be-
cause they have different labeling requirements re-
garding quality and class selection. We used the data
of the eTRIMS Image Database (Korč and Förstner,
2009), which contains labeled data from different Eu-
ropean cities. The authors have also provided an
annotation tool (Korč and Schneider, 2007), with
which the data could be subsequently edited or new
images annotated. After these steps, we have five
building-induced classes (wall, roof, door, window,
and railing) and three background classes (vegetation,
sky, and a particular non-building class that includes
roads, signs, cars, pedestrians, etc.). Due to mislabel-
ing, classes may still be incorrectly assigned in indi-
vidual images, since only the class labels of the orig-
inal dataset were combined, but not every image was
checked. Also, due to poor perspective and conse-
quent excessive distortion during rectification, not all
images can be used. In addition, there are few pix-
els that do not belong to any of these classes. They
were therefore assigned to the corresponding neigh-
bor classes using a nearest-neighbor algorithm.

Finally, we have to remove the typical clutter ob-
jects which are located in front of façades. Vegetation
takes the largest part in this process and thus, it makes
sense that the AI learns inpainting with vegetation-
like masks. LabelMe (Russell et al., 2008) is a free
online annotation tool that makes it easy to label im-
ages and make them available to the public. Also,
many images from cities and streets are stored in their
database. We searched the dataset for images with
vegetation-like classes and parsed them for mask cre-
ation. Six uniformly sized 10% intervals are formed
between 0 and 60 percentage points. The total number
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of images was 903 while subdivision into 75, 15, and
10 percents was used for training, validation, and test-
ing, respectively. The usual data augmentation mod-
ule containing rescaling, flipping along the vertical di-
rection, contrast, and brightness adjustment has been
performed as well, aiming at a better generalization
of the model.

4.2 Quantitative Evaluation

Using data presented in Section 4.1, we compared
the proposed approach with the EdgeConnect (Nazeri
et al., 2019), since we wish to assess to what extent
these maps may improve the results. Moreover, an
implementation of the method of (Liu et al., 2018),
developed by Nvidia and available online, has been
modified for our purposes and trained on our data.
Using the same evaluation metrics as the authors of
(Nazeri et al., 2019), namely SSIM (structural simi-
larity index), FID (Fréchet inception distance (Heusel
et al., 2017)), PSNR (peak signal-to-noise ratio), and
the absolute differences of the pixel values from the
original and generated image (MAE), we guarantee
the fairness of the comparison.

The metrics are calculated and recorded in Ta-
ble 1 for the six mask size intervals individually and
over all mask sizes (0-60%). The numbers marked in
bold represent the best results of the respective row.
For the majority of configurations, the EdgeConnect
method performs best. Our 3GAN approach provides
minimally better results for SSIM with larger masks
and equal or slightly worse results in almost all other
cases. On the positive side, we note that both GAN-
based approaches outperform the one based on partial
convolutions by far. Searching for the main reasons
explaining a mostly better performance of the Edge-
Connect method, we must state that the insufficien-
cies in the semantic segmentation may negatively af-
fect the inpainting results. Very occasionally, the test
images exhibit a small, inexplicable black spot, which
slightly worsens the values of all metrics.

4.3 Qualitative Evaluations

In Figures 2, 3, and also 1, bottom, we show examples
of façade image inpainting with the 3GAN approach
and competing methods. It becomes evident that our
method can close even big gaps plausibly. Without
using any kind of grammar, a semantic segmenta-
tion image can be filled. From there, texture portions
are generated class-wise without overfitting since the
forms and colors of e.g. windows are not the same as
in other entities of the same image. Since the entities
are not “plagiarized”, the observer usually does not

Table 1: Quantitative comparison of three different ap-
proaches. By P.C. and E.C., we denote the Partial Convo-
lution and EdgeConnect methods as proposed in (Liu et al.,
2018) and (Nazeri et al., 2019), respectively.

Metric Mask P.C. E.C. Ours

l1

0-10% 0.03 0.02 0.02
10-20% 0.05 0.02 0.03
20-30% 0.06 0.03 0.04
30-40% 0.09 0.04 0.05
40-50% 0.11 0.06 0.06
50-60% 0.14 0.08 0.08
0-60% 0.08 0.04 0.05

SSIM

0-10% 0.95 0.99 0.98
10-20% 0.87 0.95 0.95
20-30% 0.81 0.90 0.91
30-40% 0.70 0.83 0.84
40-50% 0.56 0.74 0.76
50-60% 0.47 0.66 0.67
0-60% 0.73 0.85 0.85

PSNR

0-10% 25.50 31.08 30.20
10-20% 20.76 25.64 25.07
20-30% 18.99 23.09 22.87
30-40% 16.67 21.71 21.20
40-50% 14.95 18.58 18.39
50-60% 13.83 17.77 17.31
0-60% 18.45 22.98 22.51

FID

0-10% 24.09 5.75 8.09
10-20% 47.66 16.66 20.28
20-30% 68.29 28.95 30.31
30-40% 109.64 49.76 51.89
40-50% 144.67 66.86 68.20
50-60% 170.90 82.02 74.93
0-60% 50.86 20.42 22.70

immediately notice that the images are fake but prob-
ably needs a more profound second glance. We show
both the complete image Ĵ processed by our method
and also the one in which only the inpainted part has
been replaced, to explore the effect of “vanilla” con-
volutions (Yu et al., 2019) on Ĵ. It turned out that for
a negligibly small percentage of analyzed images, J
and Ĵ indeed looked slightly different.

While comparing the results to those achieved by
EdgeConnect, we notice that the label image for the
proposed 3GAN approach describes a clearer struc-
ture of the image. Thus, objects appear clearer than
in EdgeConnect, where some texture artifacts are no-
ticeable, probably, resulting from a noisy edge image.
The CNN-based approach based on partial convolu-
tions gives simple results with a rather random setting
of windows. The network cannot distinguish between
different classes. A reasonably good color gradient
is generated; however, a strong blue cast negatively
affects the results. For all three methods, a morpho-
logical dilation around the foreground pixels allows
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Figure 2: Inpainting example 1: Top row: RGB façade im-
age (left) and mask specified by white color (right). Second
row: result of the proposed 3GAN approach, direct output
on the left and inpainted mask parsed into the original im-
age on the right. Note the classical window design in the
ground floor. Bottom row: Inpainting with EdgeConnect
(left) and CNN-based approach (Liu et al., 2018) (right).

excluding the most disturbing shadows. The parts of
the façade that shine through the foliage are very nec-
essary for patch-based methods, like that of (Crimin-
isi et al., 2004), but can be omitted for all CNN-based
methods. To remove larger shadows, shadow class
computation would be required, analogously to trees,
but for example, the shadow course in the inpainted
image of Figure 1, middle row, does not disturb.

5 CONCLUSION AND OUTLOOK

We presented a new method for inpainting of fore-
ground objects, such as trees and road signs, in façade
images. The approach is oriented on the Edge-
Connect method but based on three GANs: the first
for the inpainting of edge images, the second for the
inpainting of (semantic) segmentation images, coded
as label maps, and the third for the inpainting of tex-

Figure 3: Inpainting example 2; ordering of images accord-
ing to Figure 2.

ture images.
Comparison of the proposed method with Edge-

Connect yields a symbolic draw: qualitatively slightly
more advantageous and quantitatively slightly infe-
rior. Objects such as windows are set in a qualitatively
better, more accurate, and geometrically correct way.
The conceptual advantage of EdgeConnect over the
proposed method is that it does not need a label im-
age. The sequence of three GANs is responsible for
error propagation, and since a GAN is based on Deep
Learning and thus represents a blackbox, it is very
difficult to correct those errors in the inpainted label
image that from the semantic segmentation or manual
annotation This is a problem because the third GAN is
based on this image. Still, the two GAN-based meth-
ods are far superior to the CNN-based method both
quantitatively and qualitatively, which shows the im-
portance of the information provided by edges and
classes in the reconstruction of façades. In addition
to edges, façade elements contain many other prop-
erties that are useful for automatic methods: rectan-
gular structures, symmetries, etc. If in the past these
properties were exploited using production networks
(Michaelsen et al., 2012), in the future, they can also
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be learned in upcoming modifications of the Edge-
Connect and 3GAN approach. Our further intentions
for future work include the implementation of seman-
tic segmentation of façades to provide a complete
pipeline from sensor data to cleaned façades, as well
as generalization of the 3GAN approach to a wider
class of problems.
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Pathak, D., Krähenbühl, P., Donahue, J., Darrell, T., and
Efros, A. A. (2016). Context encoders: Feature learn-
ing by inpainting. In Proc. IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 2536–
2544.

Pyo, J., Rocha, Y. G., Ghosh, A., Lee, K., In, G., and Kuc,
T. (2020). Object removal and inpainting from image
using combined GANs. In Proc. 20th International
Conference on Control, Automation and Systems (IC-
CAS), pages 1116–1119.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bern-
stein, M., et al. (2015). Imagenet large scale visual
recognition challenge. International Journal of Com-
puter Vision, 115(3):211–252.

Russell, B. C., Torralba, A., Murphy, K. P., and Freeman,
W. T. (2008). Labelme: a database and web-based
tool for image annotation. International Journal of
Computer Vision, 77(1-3):157–173.

Sajjadi, M. S., Schölkopf, B., and Hirsch, M. (2017). En-
hancenet: Single image super-resolution through au-
tomated texture synthesis. In Proc. International
Conference on Computer Vision (ICCV), pages 4491–
4500.

Schmitz, M. and Mayer, H. (2016). A convolutional net-
work for semantic facade segmentation and interpre-
tation. The International Archives of Photogramme-
try, Remote Sensing and Spatial Information Sciences,
41:709–716.

Shalunts, G., Haxhimusa, Y., and Sablatnig, R. (2011). Ar-
chitectural style classification of building facade win-
dows. In International Symposium on Visual Comput-
ing, pages 280–289. Springer.

Shao, H., Wang, Y., Fu, Y., and Yin, Z. (2020). Generative
image inpainting via edge structure and color aware
fusion. Signal Processing: Image Communication,
87-115929:1–9.

Song, Y., Yang, C., Shen, Y., Wang, P., Huang, Q., and
Kuo, C.-C. J. (2018). Spg-net: Segmentation predic-
tion and guidance network for image inpainting. In
Proc. British Machine Vision Conference, volume 97,
pages 1–14.
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