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Abstract: Video restoration techniques aim to remove artifacts, such as noise, blur, and compression, introduced at vari-
ous levels within and outside the camera imaging pipeline during video acquisition. Although excellent results
can be achieved by considering one artifact at a time, in real applications a given video sequence can be affected
by multiple artifacts, whose appearance is mutually influenced. In this paper, we present Multi-distorted Video
Restoration Network (MdVRNet), a deep neural network specifically designed to handle multiple distortions
simultaneously. Our model includes an original Distortion Parameter Estimation sub-Network (DPEN) to au-
tomatically infer the intensity of various types of distortions affecting the input sequence, novel Multi-scale
Restoration Blocks (MRB) to extract complementary features at different scales using two parallel streams,
and implements a two-stage restoration process to focus on different levels of detail. We document the ac-
curacy of the DPEN module in estimating the intensity of multiple distortions, and present an ablation study
that quantifies the impact of the DPEN and MRB modules. Finally, we show the advantages of the proposed
MdVRNet in a direct comparison with another existing state-of-the-art approach for video restoration. The
code is available at https://github.com/claudiom4sir/MdVRNet.

1 INTRODUCTION

During the last decade, the number of multimedia
contents produced every day has considerably in-
creased due to the growing diffusion of digital de-
vices, such as digital cameras and smartphones. Al-
though modern cameras are able to capture high-
quality videos, there are some situations in which the
quality of these contents is significantly reduced. For
example, when videos are captured in poor light con-
ditions or they are compressed to reduce memory oc-
cupation, their quality is reduced because of artifacts
damaging their contents, causing problems to both
user experience and machine vision applications.

Due to the remarkable results that Convolutional
Neural Networks (CNNs) have shown in many vision
tasks, several deep learning approaches to restore the
quality of degraded videos have been introduced in
the literature under the name of deep video restora-
tion methods. Based on the degradation operators af-
fecting the sequence, different video restoration tasks
are usually addressed, such as video denoising, video
deblurring and video compression artifact reduction.

Despite many methods to restore videos affected

a https://orcid.org/0000-0002-6086-9838
b https://orcid.org/0000-0003-1138-3345

by different artifacts have been proposed in the liter-
ature, the vast majority of them are designed to deal
with a specific distortion type. Such methods produce
excellent results on videos affected by the considered
artifacts, but they might fail in the restoration process
when multiple artifacts are present. Therefore, having
a single framework able to restore videos even when
they are simultaneously corrupted by multiple arti-
facts can be very useful, finding applications in many
domains ranging from videoconferencing software to
surveillance cameras.

In this paper, we present a framework to re-
store multi-distorted videos, that is, videos simul-
taneously corrupted by multiple degradation opera-
tors. The proposed approach, named Multi-distorted
Video Restoration Network (MdVRNet) and visual-
ized in Figure 1, is a two-stage restoration architec-
ture that progressively aligns adjacent frames, allow-
ing to extract both spatial and temporal information
from the target frame and its adjacent ones. MdVR-
Net includes an original Distortion Parameter Esti-
mation sub-Network (DPEN) specifically devised to
obtain information about degradation operators af-
fecting the video sequence, and make the restoration
process more robust. The proposed framework uses
novel Multi-scale Restoration Blocks (MRB) to ex-
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Figure 1: Architecture of Multi-distorted Video Restoration Network (MdVRNet) proposed to restore videos simultaneously
affected by multiple distortions, using a custom Distortion Parameter Estimation sub-Network (DPEN), several Multi-scale
Restoration Blocks (MRB), and implementing a two-stage restoration process.

tract features at different scales using two parallel
streams, one for detail reconstruction and the other
to take the semantics into account.

We carried out an extensive experimentation with
different purposes, including but not limited to as-
sessing the effectiveness of the proposed MdVRNet
in restoring videos simultaneously affected by multi-
ple distortions, noise and compression artifacts.

Our contributions can be summarized as follows:

• We present a novel deep learning approach to re-
store videos simultaneously corrupted by multiple
distortions, named Multi-distorted Video Restora-
tion Network (MdVRNet).

• We demonstrate that the main components of Md-
VRNet are all essential to obtain the best restora-
tion performance.

• We show the effectiveness of MdVRNet in
restoring multi-distorted videos by comparing it
with another existing state-of-the-art approach for
video restoration, using a benchmark datasets.

2 RELATED WORK

Video restoration is an active area of research, and
many methods have been proposed in the literature to
address different restoration tasks.

TOFlow (Xue et al., 2019) is a framework de-
signed to deal with four independent restoration tasks:
temporal frame interpolation, super resolution, de-
noising and compression artifact removal. DeBlur-
Net (Su et al., 2017) was proposed to address blur
produced by camera shaking. Unlike TOFlow, De-
BlurNet is able to exploit spatial and temporal infor-
mation coming from multiple frames to restore the
target one without using specific modules for explicit
motion estimation and compensation.

VESPCN (Caballero et al., 2017) combines the ef-
ficiency of sub-pixel convolutions (Shi et al., 2016)

with the performance of spatial transformer net-
works (Jaderberg et al., 2015) to obtain a fast and
accurate framework for video super resolution. An-
other contribution to video super resolution was given
by DUF (Jo et al., 2018), which implicitly uses mo-
tion information between consecutive frames to gen-
erate dynamic upscaling filters to upsample the target
frame.

EDVR (Wang et al., 2019) won all the four in-
dependent tracks of the NTIRE19 video restoration
and enhancement challenge (Nah et al., 2019), i.e.
video super resolution, deblurring and compression
artifact removal. The cores of the network are the
alignment module, known as PCD (Pyramid, Cas-
cading and Deformable convolutions), and the fusion
module, known as TSA (Temporal and Spatial Atten-
tion). EDVR achieves excellent performance in dif-
ferent restoration tasks, but its main limitation is rep-
resented by its high computational complexity. In-
stead, EVRNet (Mehta et al., 2021) is a method pro-
posed for real-time video restoration, using a very
lightweight network able to deal with various tasks,
such as denoising and super resolution.

STDF (Deng et al., 2020) was proposed to remove
compression artifacts from videos using a new spatio-
temporal deformable fusion schema based on the idea
of deforming the spatio-temporal sampling positions
of standard convolutions, making them able to cap-
ture more relevant information. MFQE2.0 (Guan
et al., 2019) is another solution to restore compressed
videos, based on the idea of exploiting quality fluc-
tuation among adjacent frames and using only high
quality frames to restore the target one.

DVDNet (Tassano et al., 2019) is a framework
for video denoising composed of three explicit steps:
single image denoising, pixel motion estimation and
warping, and multiple image denoising. More re-
cently, the authors proposed an improved version,
called FastDVDNet (Tassano et al., 2020), which per-
forms implicit motion estimation and compensation
between frames to avoid artifacts caused by wrong
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motion estimation, also increasing its efficiency. Sim-
ilarly to DVDNet, FastDVDNet uses the noise map of
the target frame to obtain information related to the
level of noise, and removes noise from videos in two
steps. Despite the method is effective in removing
noise from videos, it has two main limitations: the
noise map used to help the denoising process must
be provided with the true noise information, which
is hardly available at inference time, and the use of
a simple encoder-decoder architecture for denoising
makes it difficult to reconstruct finer details when
noise is strong.

3 PROPOSED METHOD

Multi-distorted Video Restoration Network (MdVR-
Net) is a two-step cascaded architecture taking five
consecutive frames as input, plus a degradation map
that encodes the intensity of the artifacts and thus
provides the necessary information to treat a specific
level of distortion. Inspired by FastDVDNet (Tassano
et al., 2020), our method overcomes its main limita-
tions by internally estimating the distortion intensity
and by better handling the information extracted from
frames.

An overview of the proposed MdVRNet is shown
in Figure 1. It includes an original Distortion Parame-
ter Estimation sub-Network (DPEN) properly devised
to automatically infer the characteristics of multiple
degradation operators affecting video sequences, and
a novel Multi-scale Restoration Block (MRB) charac-
terized by the following properties: a full-resolution
branch, used to extract features without decreasing
the spatial resolution to learn fine pixel dependencies
and accurately reconstruct details, a low-resolution
branch, used to extract semantic features and learn
coarse pixel dependencies, and a channel attention
mechanism, used to weight the features extracted by
the two feature branches according to the importance
they have in reconstructing the target frame. Overall,
the MdVRNet framework contains about 3M param-
eters.

It is worth noting that, in contrast to other meth-
ods that can only deal with a specific distortion level
at a time, such as STDF (Deng et al., 2020) and
MFQE2.0 (Guan et al., 2019), our MdVRNet can han-
dle different levels of distortion using a single model.

3.1 Distortion Parameter Estimation

Degradation operators commonly considered by
restoration methods include additive white Gaussian
noise (AWGN) and JPEG compression (Yu et al.,

2018). Each of these operators is characterized by
some parameters: AWGN is defined by the standard
deviation σN (since the mean is usually considered as
zero), whereas JPEG compression requires to spec-
ify the quality factor q. Estimating such parameters
is equivalent to estimating the intensity of the arti-
facts because there is a correlation between them: the
higher the value of σN , the higher the intensity of
noise; the lower the value of q, the higher the intensity
of the blocking artifacts.

Although different methods to estimate the param-
eters of different degradation operators exist, they can
accurately estimate the parameters of the considered
distortion and they may produce inaccurate estima-
tions when multiple distortions are present. There-
fore, we devised a new CNN called Distortion Pa-
rameter Estimation sub-Network (DPEN) and we in-
tegrated it into the MdVRNet framework.

DPEN is a feedforward neural network consisting
of five convolutional blocks and three fully connected
blocks, as shown in Figure 2. It is a very shallow net-

Figure 2: Distortion Parameter Estimation sub-Network
(DPEN) devised to estimate the intensity of artifacts affect-
ing the input sequence and integrated into the MdVRNet
framework. N represents the number of kernels for convolu-
tional layers and the number of neurons for fully connected
layers.

work, as it has just about 53K parameters, hence it
can be integrated into MdVRNet introducing very lit-
tle overhead. The parameter values inferred by DPEN
are expanded as feature maps so that they can be eas-
ily used by each MRB.

3.2 Multi-scale Restoration Block

The effectiveness of MdVRNet in restoring multi-
distorted videos lies on the Multi-scale Restoration
Block, which is a two-stream network that allows
to extract spatial and temporal features at different
scales, weight them according to their importance us-
ing an attention mechanism and fuse them to obtain
a map, containing the artifacts detected, that is finally
removed from the degraded target frame to restore it.

The detailed representation of the Multi-scale
Restoration Block is shown in Figure 3. A stack of
three consecutive frames, along with the degradation
map estimated by DPEN, are used as input. After a
set of two convolutions, each followed by batch nor-
malization (Ioffe and Szegedy, 2015) and ReLU (Nair
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Figure 3: Multi-scale restoration block (MRB) used by Md-
VRNet to restore multi-distorted videos. The values in con-
volutional layers represent the number of kernels.

and Hinton, 2010), the computation is broken into two
parallel branches working at different resolutions.

The first branch works at full resolution to extract
fine pixel dependencies, capturing spatially accurate
details. This branch is important to obtain detail-rich
features, which allow to restore the target frame ac-
curately reconstructing high-frequency components,
such as edges. The first convolutional layer is used
to increase the number of feature maps from 32 to
64. Then, a set of three residual blocks are applied to
detect the artifacts at full resolution, paying more at-
tention to finer details. Finally, the number of feature
maps is reduced from 64 back to 32 using a convo-
lutional layer. The full-resolution branch contains a
total of 8 convolutional layers, which allow to extract
useful information without excessively increasing the
computational cost.

The second branch allows to extract coarse pixel
dependencies in local areas to obtain semantically-
rich features using an encoder-decoder architecture
working at low resolution. As the input passes
through this branch, a set of convolutional layers,
batch normalization and ReLU decreases the spa-
tial resolution while increasing the number of feature
maps. Skip connections forward the output of each
encoder layer directly to the input of the correspond-
ing decoder layer using pixel-wise addition to ease
and speed up the training process. Downsampling is
performed using strided convolutions, each one halv-
ing the spatial dimension. There are a total of two
downscaling operations so that, at the bottleneck, the
spatial dimension corresponds to a quarter of the in-
put spatial dimension, and the receptive field is large
enough to capture semantic contents. Upsampling is
performed using Pixel Shuffle layers (Shi et al., 2016)
to reduce gridding artifacts.

The features extracted by the two branches are
then concatenated and passed through a Squeeze-
Excitation block (Hu et al., 2018), which performs
channel attention to weight each feature map ac-
cording to its importance in reconstructing the target

frame. The weighted feature maps are then fused to-
gether using a final set of convolutional layers, batch
normalization and ReLU, to obtain the map contain-
ing the artifacts detected, considering both spatial de-
tails and semantics of the objects in the scene, that is
finally subtracted from the degraded target frame to
restore it.

Motion handling is a crucial aspect that character-
izes all video restoration approaches. When multiple
artifacts are present in a video sequence, the correla-
tion among the values of the same pixel in adjacent
frames may be broken, making the motion estimation
process very challenging. For this reason, a MRB also
has the burden of implicitly estimating pixel motion
and aligning adjacent frames to properly extract tem-
poral information, fundamental to avoid flickering ar-
tifacts.

3.3 Two-stage Restoration

Splitting the restoration process into two steps is a
known strategy to make the most of the temporal in-
formation coming from adjacent frames and produce
temporally stable results (Tassano et al., 2020). We
adopted a two-stage restoration process both to im-
prove temporal consistency and to allow MdVRNet
to focus on different levels of detail, since our method
deals with multiple distortions simultaneously.

Ideally, the first restoration stage should pay more
attention to single pixel restoration, removing the ar-
tifacts introduced by punctual degradation operators,
and the second restoration stage should pay more at-
tention to restoring local areas, removing the artifacts
introduced by local degradation operators to produce
the final result. To provide evidence of this, we re-
ported in Figure 4 an example of maps generated by
each stage when the network restores frames affected
by noise and compression artifacts.

Figure 4: Maps containing the artifacts detected by the first
and the second restoration stage of MdVRNet on a frame
affected by additive white Gaussian noise and JPEG com-
pression artifacts. Left: output of the first stage. Right:
output of the second stage.

It is clear that the distortions contained in the map
generated by the first restoration stage (on the left)
are related to artifacts introduced at pixel level, which
correspond to noise. Instead, the distortions contained
in the map produced by the second restoration stage
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(on the right) are different, and they are related to
coarser artifacts introduced by the compression algo-
rithm, as the presence of visible blocks suggests.

The first restoration stage is composed of three
Multi-scale Restoration Blocks placed in parallel, as
shown in Figure 1, each of which processes a stack of
three adjacent frames with the purpose of improving
the quality of the central one. Note that the weights
of the three MRBs in the first stage are shared, hence
they perform the same identical operations, also al-
lowing to reduce the overall number of parameters.
The second restoration stage is composed of just a sin-
gle MRB, which further processes the three improved
frames coming from the first stage to produce a clear
and temporally consistent version of the target frame.

4 EXPERIMENTS

4.1 Experimental Setup

We used the Densely-Annotated VIdeo Segmentation
2017 dataset (Pont-Tuset et al., 2017), containing 120
480p video sequences (90 for training and 30 for test-
ing), for all the experiments.

We generated synthetic samples using two differ-
ent degradation operators commonly used to assess
the performance of restoration methods (Yu et al.,
2018): additive white Gaussian noise (AWGN) and
JPEG compression. We obtained multi-distorted
frames by adding AWGN to the clean frames and then
applying the JPEG compression. More in detail, we
used the following parameters to degrade the input
frames: σN ∈ [5,55] for AWGN and q ∈ [15,35] for
JPEG compression. To speed up the training process
and increase the number of training samples, we used
patches of size 64×64 randomly cropped, for a total
of 256000 samples.

We trained all the DPEN models for 500 epochs,
using a learning rate initially set to 1e-4, L1 as loss
function and Adam (Kingma and Ba, 2014) as opti-
mizer. We reduced the learning rate by a factor of
10 whenever the loss function did not decrease for 20
consecutive epochs. We carried out all the MdVRNet
experiments using models trained until convergence
for a maximum of 64000 steps, using a batch size set
to 32. We set the learning rate to 1e-3 for the first five
epochs, and to 1e-4 for the remaining ones. We fixed
the temporal neighborhood to five frames (two previ-
ous and two successive). We optimized our models
using Adam as optimizer and MSE as loss function.

The results have been quantitatively assessed in
terms of peak signal-to-noise ratio (PSNR) and struc-
tural similarity index (SSIM) (Wang et al., 2004).

4.2 Distortion Parameter Estimation

We conducted a set of experiments to evaluate the ac-
curacy of DPEN in predicting the intensity of the ar-
tifacts affecting the video sequences, both in the case
of single and multiple distortions.

Table 1: Mean absolute error (MAE) of two different DPEN
models in estimating the distortion parameters of additive
white Gaussian noise (AWGN) and JPEG compression. The
lower the better.

AWGN σN 10 20 30 40 50
MAE 0.70 0.82 0.94 1.10 1.24

JPEG q 15 20 25 30 35
MAE 1.89 1.87 2.18 2.26 3.75

Table 1 shows the performance, in terms of mean
absolute error (MAE), achieved by two different
DPEN models trained and evaluated in predicting the
distortion parameters of the considered degradation
operators in the case of single distortions. As shown,
DPEN is able to infer quite accurate values of the σN
parameter for AWGN, and the error increases as the
noise intensity increases. Concerning the quality fac-
tor q used by the JPEG compression algorithm, DPEN
infers values with an error of about 2. Moreover, the
error increases as the value of q increases. This is due
to the fact that, when the quality factor is quite high,
the blocking artifacts are not as pronounced as they
are when the value is low.

To evaluate the effectiveness of DPEN in pre-
dicting distortion parameters in the case of multiple
distortions, we trained and evaluated a single DPEN
model considering the artifacts introduced by AWGN
and JPEG compression simultaneously. The perfor-
mance measured in MAE obtained by DPEN in pre-
dicting the distortion parameters of the considered
distortion combination is reported in Table 2. It is

Table 2: Mean absolute error (MAE) of DPEN in estimating
the distortion parameters on videos simultaneously affected
by additive white Gaussian noise (AWGN) and JPEG com-
pression artifacts. The lower the better.

MAE for σN (AWGN) / MAE for q (JPEG)
σN q = 15 q = 20 q = 25 q = 30 q = 35
10 4.57/3.02 4.12/1.84 3.75/2.18 3.50/2.67 3.47/4.28
20 4.13/1.80 3.61/1.57 3.29/1.94 3.10/2.07 3.12/3.01
30 3.74/1.41 3.37/1.25 3.06/1.64 2.90/1.77 2.90/2.31
40 3.57/1.27 3.28/1.25 3.10/1.62 2.78/1.60 2.88/2.14
50 3.99/1.32 2.89/1.16 2.70/1.63 2.45/1.55 2.46/1.71

possible to notice that the error made in estimating
the σN value is higher than the error made when the
frame is corrupted just by noise, as reported in Ta-
ble 1. Indeed, the maximum error increased from 1.24
to 4.57. Interestingly, while in the previous case the
error made increases as the degradation intensity in-
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creases, here the opposite happens, i.e. the stronger
the noise level, the lower the error made by DPEN.
In addition, the error decreases as the quality factor q
increases. The estimated q related to JPEG artifacts
is quite precise, especially in the presence of strong
noise, and the MAE is very similar to the MAE re-
ported in Table 1. This means that DPEN is not sen-
sitive to noise when inferring the distortion parame-
ter related to compression artifacts. In addition, as
it happens for single distortions, the higher the com-
pression, the lower the error made in predicting the q
parameter.

Additional experiments pointed out that using
frames of different size from the one used during
training increases the error. To solve this problem,
we decompose the target frame into non-overlapping
patches, estimating the distortion parameters on each
patch and finally averaging the obtained estimations.

4.3 Comparison with State-of-the-Art
FastDVDNet

In order to evaluate the effectiveness of MdVRNet
in restoring videos simultaneously affected by mul-
tiple distortions, we performed a direct comparison
with FastDVDNet (Tassano et al., 2020), considered
a state-of-the-art solution for video restoration with
applications to denoising. We compared the capa-
bility of the models to remove artifacts introduced
by additive white Gaussian noise and JPEG compres-
sion, considering three degradation intensities, on the
DAVIS 2017 testset and on the Set8 dataset, as de-
scribed within the FastDVDNet experimental setup.

Experimental results measured in PSNR and
SSIM are reported in Table 3. As shown, MdVRNet

Table 3: Quantitative comparison between MdVRNet and
baseline FastDVDNet in restoring multi-distorted videos,
considering three distortion levels: Low (σN = 10, q = 35),
Medium (σN = 30, q = 25) and High (σN = 50, q = 15).
The higher the better.

Metric Method DAVIS 2017 testset Set8 dataset
Low Med. High Low Med. High

PSNR FastDVDNet 33.90 31.50 29.37 29.71 28.52 26.82
MdVRNet 34.48 32.05 29.78 31.69 29.40 27.51

SSIM FastDVDNet 0.908 0.857 0.802 0.824 0.791 0.735
MdVRNet 0.924 0.874 0.816 0.895 0.830 0.784

outperforms FastDVDNet both in PSNR and SSIM,
regardless of the intensity of the artifacts. More in
detail, MdVRNet is able to restore multi-distorted
videos with a lower reconstruction error than Fast-
DVDNet, as the difference in PSNR is about 0.51
dB on DAVIS 2017 and 1.18 dB on Set8. The same
consideration is also valid considering the perceptual
similarity, as the difference in SSIM is about 0.02 on
DAVIS 2017 and 0.05 on Set8.

Examples of qualitative comparison between the
proposed MdVRNet and FastDVDNet are presented
in Figure 5, which shows different video frames si-
multaneously corrupted by noise and compression ar-
tifacts (first column), restored by FastDVDNet (sec-
ond column), restored by MdVRNet (third column)
and the ground truth frames (fourth column). MdVR-
Net produces better results than FastDVDNet, whose
outputs still contain visible artifacts. By looking at the
cropped patches, it is possible to see that MdVRNet
is able to remove the vast majority of artifacts from
the distorted frames and to better reconstruct details.
In addition, MdVRNet turns out to be more effective
than FastDVDNet also in removing artifacts from flat
regions (the sky in the first and second example and
the wall in the third one).

These outcomes suggest that the novel Multi-
scale Restoration Block used by MdVRNet, provided
with information about distortion intensity inferred by
DPEN, is effectively able to increase the quality of re-
stored frames.

5 ABLATION STUDY

In this ablation study, we quantify the contributions
of the main components of MdVRNet by alternatively
removing one of them, demonstrating that they are all
essential to achieve the best restoration performance.
The results of the different experiments are reported
in Table 4.

Table 4: Ablation study on the components of MdVR-
Net. Results on videos simultaneously affected by addi-
tive white Gaussian noise (with standard deviation σN ) and
JPEG compression artifacts (with quality factor q), reported
as PSNR (left) and SSIM (right). The higher the better.
First row: Simplified MdVRNet (experiment A). Second
row: Blind MdVRNet (experiment B). Third row: One-
stage MdVRNet (experiment C). Fourth row: MdVRNet.

PSNR
σN q = 15 q = 25 q = 35

10

31.67 33.10 34.22
31.77 33.52 34.37
31.50 33.21 34.12
31.86 33.59 34.48

30

30.71 31.64 32.00
30.88 31.78 32.10
30.82 31.76 32.09
31.08 32.05 32.43

50

29.46 30.04 30.20
29.56 30.00 30.16
29.56 30.05 30.19
29.78 30.29 30.50

SSIM
σN q = 15 q = 25 q = 35

10

0.876 0.899 0.915
0.874 0.904 0.916
0.870 0.895 0.911
0.881 0.912 0.924

30

0.848 0.863 0.869
0.852 0.866 0.873
0.849 0.866 0.872
0.857 0.874 0.881

50

0.808 0.820 0.823
0.810 0.820 0.824
0.808 0.817 0.819
0.816 0.826 0.831

We measured the contribution of the Multi-scale
Restoration Block (experiment A) by comparing Md-
VRNet with the model that uses a simplified version
of the MRBs, consisting of a simple encoder-decoder
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Figure 5: Qualitative comparison between MdVRNet and baseline FastDVDNet in restoring videos simultaneously affected
by additive white Gaussian noise (σN = 50) and JPEG compression artifacts (q = 15). First column: distorted frames. Second
column: FastDVDNet results. Third column: MdVRNet results. Fourth column: ground truth.

architecture obtained by removing the full-resolution
branch and the Squeeze-Excitation block (Hu et al.,
2018) from each MRB. We called this model Simpli-
fied MdVRNet. Both the models use the degradation
map generated by the same DPEN model, thus pre-
venting the difference in performance to be attributed
to errors in predicting the intensity of artifacts. As
shown in Table 4, the novel design of the MRB allows
MdVRNet to improve the restoration performance by
about 0.35 dB and 0.01 in terms of PSNR and SSIM,
respectively, with respect to using a simple encoder-
decoder architecture. This improvement is quite con-
stant for all the values of σN and q tested.

To assess the contribution of the information pro-
vided by DPEN (experiment B), we compared Md-
VRNet with the blind model using the degradation
map filled with zeros (both at training and test time),
so that no information about degradation operators
is available. We called this model Blind MdVRNet.
As shown in Table 4, using DPEN to provide Md-
VRNet with information about the distortion inten-
sity improves the performance. Indeed, PSNR im-
proves by about 0.2 dB and SSIM by about 0.01 on
average. More in detail, the improvement in PSNR
is higher when the artifacts are stronger, since in this
case the average improvement is about 0.3 dB. This
means that the use of DPEN is particularly useful to
reduce reconstruction errors when the distortions are
severe. Concerning SSIM, the performance improve-
ment is constant for all the tested values of σN and q,
representing the distortion intensity.

Finally, to evaluate the impact of the two-stage
restoration process (experiment C) of MdVRNet

when dealing with multi-distorted videos, we com-
pared MdVRNet with a single-step architecture, that
we called One-stage MdVRNet, obtained by remov-
ing one stage and modifying the Multi-scale Restora-
tion Block to receive five frames as input instead of
three, so that the temporal dimension of the input
does not change. As reported in Table 4, MdVRNet
outperforms One-stage MdVRNet in restoring multi-
distorted videos at any level of distortion, demonstrat-
ing that the two-stage restoration process of MdVR-
Net is more effective than the single-stage restoration
process of One-stage MdVRNet. On average, the dif-
ference in PSNR and SSIM is about 0.3 dB and 0.01,
respectively.

In all our experiments, MdVRNet obtained better
restoration performance with respect to its variants,
confirming that each of the main components of our
method has an important contribution in improving
the effectiveness of the restoration process.

6 CONCLUSIONS

In this paper, we presented Multi-distorted Video
Restoration Network (MdVRNet), a novel approach
to restore multi-distorted videos, that is, videos simul-
taneously corrupted by multiple artifacts.

MdVRNet is a two-step cascaded architecture that
includes an original Distortion Parameter Estima-
tion sub-Network to increase the robustness of the
restoration process and several Multi-scale Restora-
tion Blocks to properly reconstruct finer details even
when the artifacts are very strong.
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We demonstrated that DPEN is able to accurately
infer the intensity of the distortions affecting the in-
put sequences, and compared MdVRNet with another
existing state-of-the-art method for video restoration,
showing both quantitatively and qualitatively the su-
periority of the proposed approach in restoring multi-
distorted videos. Additionally, we provided an abla-
tion study in which we demonstrated that the DPEN
and MRB modules, as well as the two-stage restora-
tion process of MdVRNet, are all essential to obtain
the best restoration performance.

As future developments, we plan to investigate
other types of degradation operators, such as blur
caused by motion, and to improve the model via neu-
ral architecture search (Bianco et al., 2020).
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