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Abstract: In this paper, we contribute to the existing body of knowledge of video indexing technology by presenting a 
novel approach for recognition of tennis strokes from consumer-grade video cameras. To classify four 
categories with three strokes of interest (forehand, backhand, serve, no-stroke), we extract features as a time 
series from stick figure overlays generated using OpenPose library. To process spatiotemporal feature space, 
we experimented with three variations of LSTM-based classifier models. From a selection of publicly 
available videos, trained models achieved an average accuracy of between 97%–100%. To demonstrate 
transferability of our approach, future work will include other individual and team sports, while maintaining 
focus on feature extraction techniques with minimal reliance on domain expertise. 

1 INTRODUCTION 

Automated video indexing of recognised motion 
patterns and human motion activity have broad 
application. For example, in the last decade, we have 
seen enhancements in augmented video broadcasting 
with real-time game statistics. Overlaid statistics can 
help commentators to share strategic information 
which often only competitive-level athletes, coaches 
and domain experts would intuitively consider. 
Quantifying motion events has also become pervasive 
in other contexts such as augmented video coaching, 
surveillance, elderly care, activity monitoring and 
various mobile and smartwatch apps development. 

1.1 Vision and Motivation 

In the authors’ view, identifying task-specific motion 
events will enable further advancements in areas such 
as rehabilitation, smart cities, and to improve privacy, 
safety and usability of spaces where human activity 
occurs. To illustrate the demand for quantifying 
events as part of strategic video analysis, an online 
search will return numerous examples of commercial  
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software (e.g. LongoMatch, Coach Logic, Nacsport, 
Metrica Sports, and Sports Code). 

LongoMatch, as one of the earliest open source 
coaching software, was originally designed for video 
replay analysis of team sports with customisable and 
manual event indexing (during live video capture or 
in post-match analysis) with rudimentary overlay 
capabilities (Bačić & Hume, 2012). Today, it is a 
high-end annual-subscription licensed commercial 
product, reflecting the opportunities in this area.  

Thanks to recent advancements in computer 
vision, deep learning, recurrent neural networks and 
human pose estimation, the underlying development 
of automated indexing of human motion events and 
sport-specific movement patterns has become less 
labour intensive and less dependent on expertise-
driven feature extraction techniques than in the past. 

To quantify aspects of the game relying on 
Computer Vision and Artificial Intelligence (AI), the 
research questions associated with our work are: 

1. Can we develop recognition of sport-specific 
movement patterns such as tennis strokes? 

2. Can we reduce dependence on expert-driven 
feature engineering and produce simplified 
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feature extraction techniques relying on 
common-sense visual observation? 

3. If so, can we develop a multi-stage video 
processing and modelling framework that is 
transferable to other sports? 

1.2 Background and Prior Work  

Advancements in motion pattern indexing can not 
only be evaluated by improving classification 
performance for a specific task, low-cost real-time 
computing and extending the number of labelled 
events of interest, but also on their universal 
applicability to various sources such as 3D motion 
data (Bačić & Hume, 2018), video (Bloom & 
Bradley, 2003; D. Connaghan, Conaire, Kelly, & 
Connor, 2010; Martin, Benois-Pineau, Peteri, & 
Morlier, 2018; Ramasinghe, Chathuramali, & 
Rodrigo, 2014; Shah, Chockalingam, Paluri, Pradeep, 
& Raman, 2007), and sensor signal processing 
(Anand, Sharma, Srivastava, Kaligounder, & 
Prakash, 2017; Damien Connaghan et al., 2011; Kos, 
Ženko, Vlaj, & Kramberger, 2016; Taghavi, Davari, 
Tabatabaee Malazi, & Abin, 2019; Xia et al., 2020). 

To our knowledge, tennis shots or strokes action 
recognition relying on computer vision started in 
2001, by combining computer vision and hidden 
Markov model (HMM) approaches, before HD TV-
broadcast resolution became available (Petkovic, 
Jonker, & Zivkovic, 2001).  After Sepp Hochreiter 
and Jürgen Schmidhuber invented Long Short Term 
Memory (LSTM) in 1997, LSTMs have been used in 
action recognition (Cai & Tang, 2018; Liu, 
Shahroudy, Xu, Kot, & Wang, 2018; Zhao, Yang, 
Chevalier, Xu, & Zhang, 2018).  In 2017, inertial 
sensors with Convolutional Neural Networks (CNN) 
and bi-directional LSTM networks were used to 
recognise actions in multiple sports (Anand et al., 
2017). In 2018, an LSTM with Inception v3 was used 
to recognise actions in tennis videos achieving 74% 
classification accuracy (Cai & Tang, 2018). 

For prototyping explainable AI in next-generation 
augmented coaching software, which is expected to 
capture expert’s assessment and continue to provide 
comprehensive coaching diagnostic feedback (Bačić 
& Hume, 2018), we can rely on multiple data sources 
including those operating beyond human vision.  

Prior work on 3D motion data is categorised as: 
(1) traditional feature-based swing indexing based on 
sliding window and thresholding (Bacic, 2004) and 
expert-driven algorithmic approach in tennis shots 
and stance classification (Bačić, 2016c); (2) 
featureless approach for accurate swing indexing 
using Echo State Network (ESN) (Bačić, 2016b) and 

(3) further sub-event processing i.e., phasing analysis 
via produced ensemble of ESN (Bačić, 2016a).  

Prior work on video analysis applied Histograms 
of Oriented Gradients (HOG), Local Binary Pattern 
(LBP) and Scale Invariant Local Ternary Pattern 
(SILTP) for human activity recognition (HAR) in 
surveillance (Lu, Shen, Yan, & Bačić, 2018). A pilot 
case study on cricket batting balance (Bandara & 
Bačić, 2020) used recurrent neural networks (RNN) 
and pose estimation to generate classification of 
batting balance (from rear or front foot). This prior 
work on privacy-preservation filtering is aligned with 
privacy-preserving elderly care monitoring systems 
and with extracting diagnostic information for 
silhouette-based augmented coaching (Bačić, Meng, 
& Chan, 2017; Chan & Bačić, 2018). It is also 
generally applicable to usability and safety of spaces 
where human activity occurs such as smart cities, 
future environments and traffic safety (Bačić, Rathee, 
& Pears, 2021). 

2 METHODOLOGY 

Considering past research, our objective is to produce 
a relatively simple and generalised initial solution and 
a human motion modelling (HMMA) framework for 
video indexing applicable to tennis. The tennis 
dataset was created from both amateur and 
professional players’ videos. It is also expected that 
the produced framework may be easily transferable to 
other sport disciplines and related contexts such as 
rehabilitation and improving safety and usability of 
spaces where human movement occurs. As part of 
movement pattern analysis, we focused on expressing 
features as spatiotemporal human movement patterns 
from faster moving segments (e.g., dominant hand 
holding a racquet) relative to the more static trunk 
segment. 

2.1 Stick Figure Overlays as Initial 
Data Preprocessing 

To retrieve player’s motion-based data from video, 
we generated stick figure overlays using OpenPose 
(https://github.com/CMU-Perceptual-Computing-
Lab/openpose) and 25 key point estimator 
COCO+Foot (Figure 1 and Figure 2).  

Figure 2 shows an example of data format 
representing the key points coordinate of a player in 
each video frame recorded as multi time series data. 
As video overlays, animated stick figure topology of 
generated key points (Figure 3) represents a way of 
extracting information from video to facilitate human 
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motion modelling and analysis (HMMA) and assist in 
the feature extraction process. 

 

Figure 1: Stick figure overlay topology: 25 key points 
COCO+Foot model. Reproduced from (Bandara & Bačić, 
2020), copyright permission (IEEE No. 5170730636786). 

2.2 Data Collection and Analysis 

Data collection for experimental work was carried on 
Google cloud platform using publicly available 
videos of tennis practice matches, also available via 
YouTube (12kgp-Tennis, 2019; Back of the line 
tennis, 2018; Page, 2020; Tenfitmen Tennis Impulse, 
2020; Tennis Legend TV, 2019; Top Tennis Training 
- Pro Tennis Lessons, 2014; TV Tennis Pro, 2020).  

 

Figure 2: Example of 25 key points extracted from stick 
figure overlay in a single frame in JSON format. Each key 
point consists of three variables (x,y,confidence). 

The dataset included a balanced distribution of 150 
extracted tennis strokes (30 forehands, 30 backhands 
and 30 serves, 60 no stroke play), which were labelled 
manually into their corresponding output classes. All 
videos were of the same framerate (30fps) and of 
duration between 0.8 – 1.0 seconds (28-31 frames). 

2.3 Feature Extraction Technique 

Our approach to Feature Extraction Technique (FET) 
is based on visual analysis between faster and slower 
moving body segments (Figure 4 and Table 1). 

 

Figure 3: A mosaic of stick figure overlays generated 
during the serve, forehand and backhand strokes as 
intermediate computer vision processing steps. 

 

Figure 4:  Human motion data processing, analysis and 
modelling framework for video indexing. Adapted from the 
initial concept (Bandara & Bačić, 2020). 

In Table 1, a function 𝑑൫P, P൯ represents Euclidean 
distance measure (1) between the key points P and 
P of overlaid stick figure calculated for each video 
frame. 
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𝑑൫P, P൯ ൌ ට൫𝑥 െ 𝑥൯
ଶ

 ൫𝑦 െ 𝑦൯
ଶ
 (1) 

Pixel coordinates of a stick figure’s key point Pn 
are denoted as: ሺ𝑥, 𝑦ሻ ∈ P;   1  𝑛  25. 

2.4 Feature Space: Visualisation 
Remarks 

Based on visual movement pattern analysis, we 
identified nine distance-based features that 
collectively produce the best results (Table 1). As 
such, the 25 key-points time series data representing 
the human body were further reduced to 36% 
representing the feature space. 

 

Figure 5: Data snippet showing produced feature space and 
output class (in last column) based on calculated distances. 

Figure 5 shows feature space as the distance dataset 
and Figure 6 indicates characteristic spatiotemporal 

patterns as the distance values variations during a 
serve, forehand, a backhand stroke and a no stroke 
play. 
    From Figure 6, it can be clearly observed that the 
feature values sub plot of the backhand is similar to 
the forehand. However, the directions of the forehand 
values and backhand values are different so the 
approach is also robust to e.g., inside-out forehands 
(executed from the player’s backhand side of the 
court).  Plots of features like hand-to-hand distance 
are almost identical in both forehand and backhand 
stroke plots. The serve is always a one-handed stroke 
and the dominant hand reaches above the head during 
a serve. Therefore, in the feature value variation plot 
of the serve (Figure 6), the dominant hand to 
dominant leg pixel distance value increases before 
contact with the ball and decreases after contact with 
the ball.  
    Regarding multi-class classification problem 
investigated here, there are four output classes 
representing three common stroke categories, and no 
stroke players’ activity (e.g., walking or running). 
Hence, there is no visible distinctive pattern that we 
could immediately associate with no stroke output 
class. Another example of no stroke activity is during 
the game breaks, where players can be taking 
courtside rest. 

Table 1: Feature space description and design rationale. 

 Distance Definition Distance 
Measure 

Design Rationale  

1. Dominant hand to chest d(P4,P1) 
To improve separation of serves from forehand and 
backhand 

2. Non-dominant hand to chest  d(P7,P1) To improve separation of forehand and backhand strokes 

3. Dominant hand to dominant 
side foot d(P4,P11) 

To improve separation of serves and strokes starting from 
dominant hand side 

4. Non-dominant hand to  
non-dominant hand side foot  d(P7,P14) 

To identify strokes starting from the non-dominant side 

5. Hand to hand d(P4,P7) To identify one-handed strokes and serves 

6. Dominant hand to non-
dominant side hip d(P4,P12) 

To identify the circular motion around the hip in ground 
strokes and to identify strokes starting from the dominant 
side 

7. Non-Dominant hand to 
dominant side hip d(P7,P9) 

To identify strokes starting from the non-dominant side or 
circular motion around the hip in ground strokes (forehand 
and backhand) 

8. Body to dominant hand  
x-axis distance P4(x) - P8(x) To identify strokes starting from the dominant side over 

body’s vertical (symmetrical) axis 

9. Body to non-dominant hand  
x-axis distance P7(x) - P8(x) To identify strokes starting from the non-dominant side over 

body’s vertical axis. 
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Figure 6: Spatiotemporal multi plot depicting output class 
patterns from feature value variations. Top-to-bottom 
subfigures: A serve, forehand and backhand patterns (x-
axis: Frames, y-axis: Distance values. Nine colour-coded 
timeseries in legend are arranged by Table 1 row order. 

3 CLASSIFIER MODELLING 
AND RESULTS 

As part of data filtering process, visual inspection of 
collected videos, revealed that one video footage had 
to be removed from the dataset due to being recorded 
from a substantially different camera position and 
where the majority of the frames did not show visible 
player’s figure.  

The dataset was randomly divided into a training 
dataset and testing portion. 119 strokes (approx. 80%) 
were considered as the training dataset (24 serves, 24 
forehands, 24 backhands and 47 no stroke play), and 
30 strokes (approx. 20%) were considered as a testing 
dataset (6 serves, 6 forehands, 6 backhands, 12 no 
stroke play). Next, the created time series training 
dataset was classified by experimenting with three 
different LSTM networks (LSTM, Bidirectional 
LSTM and CNN+LSTM network). Table 2. provides 
the summary of produced LSTM model variations 
used in our experiments. 

Table 2: Model and parameter summaries. 

Classifier Layer Output Shape Parameters

LSTM  

LSTM (None,100) 44.000
Dropout (None,100) 0
Dense (None,100) 10.100
Dense (None,4) 404

Total 
params.

  54.504 

Bidirectional 
LSTM 

Bidirectional 
LSTM (None,27,200) 88.000
Bidirectional 
LSTM (None,200) 240.800
Dropout (None,200) 0
Dense (None,100) 20.100
Dropout (None,100) 0

Dense (None,4) 404
Total 
params.

  349.304 

CNN + 
LSTM 

Time Distributed 
Conv 1D (None,3,23,64) 1.024
Time Distributed 
Conv 1D (None,3,19,64) 20.544
Time Distributed 
Dropout (None,3,19,64) 0
Time Distributed 
Max Pooling 1D (None,3,9,64) 0
Time Distributed 
Flatten (None,3,576) 0
LSTM (None,200) 621.600
Dropout (None,200 0
Dense (None,4) 804

Total 
params.

  643.972 

Table 3 shows the classification results with the 
LSTM, Bidirectional LSTM and CNN+LSTM 
networks. CNN+LSTM network consists of both 
CNN layers and LSTM layers. 

Table 3: Classification performance. 

Classifier Output class Precision Recall F1-score

LSTM 

Backhand 0,83 1,00 0,93
Forehand 1,00 1,00 1,00
Serve 1,00 1,00 1,00
No Stroke 1,00 0,92 0,96

F1 MCS   0,97

Bidirectional 
LSTM 

Backhand 1,00 1,00 1,00
Forehand 1,00 1,00 1,00
Serve 1,00 1,00 1,00
No Stroke 1,00 1,00 1,00

F1 MCS   1,00

CNN+ 
LSTM 

Backhand 1,00 1,00 1,00
Forehand 1,00 0,83 0,91
Serve 1,00 1,00 1,00
No Stroke 0,92 1,00 0,96

F1 MCS   0,97
Note: F1 multi-class score (F1 MCS). For reader’s convenience, all 
values are rounded to two decimal points. Achieved classification 
performance for both LSTM and CNN+LSTM networks reached 
96,67%, which were rounded to 97% (shown as 0,97), while 
Bidirectional LSTM network performance reached 100% for the 
validation dataset.  
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The above-expected experimental results suggest that 
the improved solution would include modelling and 
analysis of additional output classes (e.g., volleys, 
drop shots, serve variations) requiring (sub)phasing 
movement analysis. Similar to prior work on 3D 
kinematic data (Bačić, 2016a), the ensemble 
orchestration control would not only rely on a 
weighted probabilistic equation but also on expert’s 
knowledge captured in a state automata machine. 
Such approach allows ensemble modelling on small 
and large dataset, where parameter optimisation and 
human-labelling efforts can be further reduced by 
transfer learning and adaptive system design. 

4 IMPLEMENTATION FOR 
VIDEO STREAMING  

Trained model can be used to classify strokes in and 
display overlaid text for video streaming. Model input 
is a spatiotemporal dataset of nine features (Table 1).  

Spatiotemporal dataset subsample should be 
imputed to a classifier as a block of experimentally 
determined size of 27 frames (Figure 7). Buffering of 
27 frames (of approx. 1 second) represents rolling 
window concept in time-series analysis, in which key 
points from 2D pose estimation skeleton overlay were 
converted into the 9 distance-based features 
generating a 9x27 size buffered data block. 

Therefore, after 27 frames of data were buffered, 
a trained model (i.e. classifier) was used to detect a 
stroke and to classify the stroke.  If a stroke is not 
 

 

Figure 7: Strokes classification and overlay annotation as 
video processing workflow concept. 

detected, the next rolling-window of 27 frames are 
buffered and supplied to the classifier. If a stroke is 
detected, the overlay with the identified stroke will be 
displayed over the next 27 frames (which are skipped 
from feature processing, considering minimum times 
between shots e.g., for the opposing player’s stroke). 

5 DISCUSSION 

For a prototype, the classification performance results 
exceeded expectations for the collected dataset (with 
approx. 80:20% split used for model training and 
testing). We expect that expanding the dataset may 
reduce classification performance, justifying a 
follow-up investigation into achieving an improved 
solution that will generalise well on future data. 
Another limitation is that occasionally, OpenPose 
fails to generate the correct stick figure, warranting 
further investigations to improve overall robustness 
and accuracy. Further improvement is intended by 
using additional videos taken from other vantage 
points e.g. in front of the player. Considering the 
computational performance of pose estimation, we 
will look at implementation on lower cost platforms, 
including tablets and mobiles. In coaching scenarios, 
the intended platform would also process video feeds 
from fixed camera positions akin to the dataset used 
in this paper. Unlike carrying and managing inertial 
sensors, video is considered: (1) an unobtrusive data 
source not interfering with the player’s feel; and (2) 
to minimise the possibility of motion data 
interpretation being contested. 

During match situations, players may move closer 
to the net. When players are close to the net, they will 
perform stroke exchange in higher frequency than 
compared to producing strokes behind the baseline. 
Therefore, time between strokes may be sometimes 
less than a second. For the scope of this research and 
the proof-of-concept, one second (or longer time) 
splits between the strokes in video have been 
considered as sufficient for stroke identification and 
classification. Future work will involve modelling of 
increased number of output classes including faster 
strokes exchange (e.g., containing further information 
such as: direction, depth, drop shot and lob volleys). 

6 CONCLUSION 

This paper contributes to video indexing and human 
activity recognition by applying a multidisciplinary 
combination of computer vision, pose estimation and 
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recurrent neural networks. Related contributions to 
sport analytics, broadcasting and general information 
retrieval from low-cost video were also motivated by 
prior work in golf and tennis relying on sensors and 
3D kinematic data. Aligned with prior work, the 
presented tennis stroke recognition from monocular 
video is also aimed at contributing to how machines 
can quantify, assess and diagnose aspects of human 
movement and provide comprehensive feedback – all 
contributing to the area of interpretable AI.  

The presented video processing and modelling 
framework, using selected publicly available tennis 
videos, was implemented in Python on Google cloud 
platform. The framework uses generated trajectories 
of key points (represented as human stick figure video 
overlays) which were further transformed into the 
spatiotemporal feature space. Multi time data series 
from the feature space were processed using three 
variations of LSTM classifiers. As a multi-class 
classifier, the developed tennis shots recognition 
system exceeded expected performance (96,67% – 
100%), and did not rely on specialist expertise or 
insights for developed feature extraction techniques. 

Using video-based feature extraction techniques 
to provide diagnostic information without redundant 
data: (1) minimises reliance on domain expertise; (2) 
enables interaction with and visualisation of 
intermediate preprocessing operations (via animated 
stick figure overlays), which is also important for 
initially small dataset modelling, and transparent and 
comprehensive feature engineering process; and (3) 
maximises the role of AI, computer vision and pose 
estimation for human motion modelling and analysis 
(HMMA), and for advancements of sport science.  

Our multi-class approach is transferable to signal 
processing and has been evaluated in prior work on 
indexing and analysis of two-class classification in 
cricket. Future work will include application to other 
sports, alongside broader contexts involving privacy-
preserving filtering and data fusion from wearable 
and equipment-attached sensors.  
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