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Doğay Kamar1, Nazım Kemal Üre1,2 and Gözde Ünal1,2
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Abstract: In this study, we address the problem of efficient exploration in reinforcement learning. Most common ex-
ploration approaches depend on random action selection, however these approaches do not work well in en-
vironments with sparse or no rewards. We propose Generative Adversarial Network-based Intrinsic Reward
Module that learns the distribution of the observed states and sends an intrinsic reward that is computed as high
for states that are out of distribution, in order to lead agent to unexplored states. We evaluate our approach in
Super Mario Bros for a no reward setting and in Montezuma’s Revenge for a sparse reward setting and show
that our approach is indeed capable of exploring efficiently. We discuss a few weaknesses and conclude by
discussing future works.

1 INTRODUCTION

In reinforcement learning, an agent learns which ac-
tion to take depending on the current state by trying
to maximize the reward signal provided by the envi-
ronment (Sutton and Barto, 2018). The agent is not
given any prior information about the environment
or which action to take, but instead, it learns which
actions return more reward in a trial-and-error man-
ner. To do so, agents are usually incentivized to ex-
plore the state-action space before committing to the
known rewards in order to avoid exploitation of a non-
optimal solution.

Most common approaches to exploration, such as
ε-greedy in Deep-Q-Network (DQN) (Mnih et al.,
2013), adding Ornstein–Uhlenbeck to action in Deep
Deterministic Policy Gradient (DDPG) (Lillicrap
et al., 2016) or maximizing entropy over the ac-
tion space in Asynchronous Advantage Actor-Critic
(A3C) (Mnih et al., 2016), rely on increasing the
probability of a random action. This approach works
fine in an environment with dense reward signals.
However, in sparse or no reward settings, the agent
fails to find a reward signal to guide itself, thus fail-
ing to find a solution.

Related works have focused on providing an ex-
tra intrinsic reward to the agent in addition to the
extrinsic reward, i.e. the reward from the environ-

ment. Prediction-based exploration models estimate
the novelty of an observation by learning the environ-
ment dynamics and assigning higher rewards to the
observation which the future of it can not predict well,
i.e. it makes the agent act ”curiously” (Schmidhuber,
1991; Pathak et al., 2017; Stadie et al., 2015). In an-
other work, environment dynamics is modeled using
variational inference and the novelty of a state is mea-
sured through prediction using this model (Houthooft
et al., 2016). (Pathak et al., 2019) proposed a frame-
work with multiple dynamic models, and the intrinsic
reward is calculated by the disagreement between the
dynamic models.

Another set of methods are based on count-based
exploration, by counting the number of times a state is
visited and encouraging the agent to visit less-visited
states. However, if the state space is high dimen-
sional, it is not feasible to keep track of all the states.
Recent studies proposed density models to approx-
imate how frequently a state is visited (Bellemare
et al., 2016; Ostrovski et al., 2017; Zhao and Tresp,
2019). (Tang et al., 2017) benefited from hashing in
order to shrink the state-space to keep the count of the
visitations to states.

In ”Random Network Distillation (RND)”, fea-
tures of an observation are calculated through a fixed,
randomly initialized network and another network is
trained to predict these features, with the error being
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the intrinsic reward (Burda et al., 2019). ”Never Give
Up” adds on to RND by a memory-based episodic re-
ward module, where they keep the embeddings of the
states observed in the current episode and compare the
new states to the ones in the memory, discouraging the
agent to visit the same states in the episode, while also
using RND for the long-term exploration (Badia et al.,
2020). DORA framework creates an identical MDP to
the task at hand with E-values fixed to 0 instead of Q-
values for every state-action pair, and assigns a bonus
intrinsic reward for how well the framework can pre-
dict the E-value in the current state (Choshen et al.,
2018).

Instead of computing an intrinsic reward, (Ecoffet
et al., 2021) proposes ”Go-Explore”, a method that
focuses on exploring until a solution is found before
starting policy learning. In ”Go-explore”, a memory
is maintained to keep the visited states, which are en-
coded into lower-sized cells, and periodically, a state
is selected from the memory to go back to and ex-
plore from. Selection of the state is probabilistic,
however, the probabilities are assigned using a heuris-
tic, which tries to assign higher probabilities to ”in-
teresting” states, i.e. states that have better chances
to lead to a good exploration. Once a solution is
found through exploration, the agent goes through a
robustification phase using imitation learning. A sim-
ilar idea named ”Diverse Trajectory-conditioned Self-
Imitation Learning (DTSIL)” is proposed by (Guo
et al., 2019), where they train a policy using Self-
Imitation Learning (Oh et al., 2018) to follow trajec-
tories stored in a memory, which lead agent to less-
frequently-visited states, in order to learn a policy for
exploring the environment.

This study follows the trend of providing an in-
trinsic reward to the agent by using Generative Ad-
versarial Networks (GAN) (Goodfellow et al., 2014).
GANs consist of two networks: a generator G tasked
with generating synthetic data similar to real data, and
a discriminator D tasked with measuring the proba-
bility of the input being real to discriminate real and
generated data. Both G and D have tasks adversarial
to each other as G tries to fool D that the data it gen-
erates is real, and D tries to successfully detect data
generated by G. The convergence of GAN happens
when G is able to generate data indistinguishable to
D, and D has 50% accuracy of detecting fake data,
meaning D starts to randomly guess. G’s ability to
generate new data comes from its learning and fitting
to the distribution of the real data, therefore, in the-
ory, with the right input, G should be able to generate
exactly the same sample from the original data distri-
bution. This idea is realized in the anomaly detection
task in (Schlegl et al., 2017) and (Schlegl et al., 2019),

in which, after the training of GAN, G is forced to
generate the query sample and an anomaly score is
assigned by measuring the difference between gener-
ated and query sample. A high anomaly score means
the query sample is an out-of-distribution sample. In-
spired by this work (Schlegl et al., 2019), we propose
a GAN-based exploration method for reinforcement
learning, where a GAN is trained using the visited
state observations. The trained G is used to assign an
intrinsic reward to the agent, and unobserved novel
states are assigned higher rewards due to them not be-
ing in the distribution of the observed states used in
GAN’s training.

A recent study has also utilized GANs for the task
of exploration (Hong et al., 2019) by using D to dis-
tinguish between visited and novel states. However,
their approach trains G less frequently so that D does
not lose the ability to distinguish between fake and
real data. This approach has two weaknesses: (a)
G needs to train just good enough to incentivize D
to improve itself, but not good enough so that GAN
does not reach convergence, and with the right hy-
perparameter setup, the task of keeping this balance
is hard to accomplish; and (b) D is trained to sepa-
rate real data from what G generates, however, there
is no guarantee on how D will act on an unseen in-
stance, resulting in unreliable feedback. In our pro-
posed method, the GAN is trained to convergence so
that G is able to generate data similar to real states,
and an encoder E is trained to map a newly observed
state to the latent noise space, to then be regenerated
by G. The difference between the observed state and
the generated state is then fed as the intrinsic reward
to the learning agent. We chose to use GANs for this
task because (a) with this approach, learning the dy-
namics of the environment is not required, we are only
interested in learning the distribution of the observed
states, and (b) GANs are very widely studied and its
use-cases have expanded to many areas. We believe
that GANs can be integrated into reinforcement learn-
ing and showcasing a successful application will open
the gates for the future studies.

We evaluate our proposed method on Mon-
tezuma’s Revenge, an Atari game that is notoriously
hard to explore due to rewards being very sparse and
difficult to reach from the initial position by random
exploration (Bellemare et al., 2016). In addition to the
sparse reward setting, we also evaluate our method
in a no-reward setting in the game of Super Mario
Bros. (Kauten, 2018). We show by that using only
the intrinsic reward, the agent is capable of exploring
the environment. We discuss how the method can be
further improved and invite readers to build upon the
proposed method.
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Figure 1: A general reinforcement learning framework with our proposed GAN-based Intrinsic Reward Module (GIRM).
At each time step t, agent observes a state st from the environment MDP M , chooses an action depending on its policy π,
and receives an extrinsic reward re

t from the environment and an intrinsic reward ri
t from GIRM. In GIRM, the encoder E

maps st to the input noise space of the generator G and outputs E(st). G generates a synthetic state G(E(st)) and the error
measured between st and G(E(st)) is then sent to the agent as an intrinsic reward. Operation − in the GIRM module is not
necessarily subtraction, but could be any function that computes the residual between st and G(E(st)). LD is used for training
the Encoder.

2 PRELIMINARIES

Generative Adversarial Networks. Proposed by
(Goodfellow et al., 2014), Generative Adversarial
Networks (GAN) is a framework that consists of two
neural networks, called generator and discriminator,
competing against each other in order to train the gen-
erator to be able to generate synthetic data similar to
real data. Discriminator D is optimized to detect if the
input sample is real or generated, and the generator G
tries to fool the discriminator by generating data sim-
ilar to the real data x from an input noise z sampled
from a distribution pz. D outputs the probability of
the input being real data, and is originally optimized
to maximize logD(x)+ log(1−D(G(z))) while G is
optimized to minimize log(1−D(G(z))). In an opti-
mal training, G is able to learn the distribution of the
real data and can sample new synthetic data from the
same distribution.
Reinforcement Learning. In reinforcement learning,
environments are modeled by a Markov Decision Pro-
cess (MDP), defined as M = (S ,A ,R ,P ,ρ0), where
S is the set of states, A the set of actions, R the reward
function, P the state transition probability distribution
and ρ0 the distribution of the initial state. Given a
state st in tth time step, the agent takes an action at
according to its policy π(st), receives a reward rt and
observes the next state st+1. The aim is to find a pol-
icy π∗ that maximizes the expected total discounted
reward,

π
∗ = argmax

π
Eπ(st ),P

[
∑

t
γ

trt

]
(1)

where γ ∈ [0,1) is the discount factor that determines

the weight of rewards in the distant future compared
to present.
Exploration in Reinforcement Learning. One of
the longstanding problems of reinforcement learning
is to explore the environment efficiently before agent
exploits a sub-optimal but positive reward it receives.
The most common approaches for exploration depend
on diversifying action selection, meaning that agent
ideally performs a random action in a state it did not
previously observe, rather than sticking to a single ac-
tion. These approaches do not necessarily guide agent
to unvisited states, but occasionally lets the agent take
a random action that might guide it to a better reward.
However, if the reward signals in an environment are
sparse or nonexistent, the policy π’s behaviour will be
random at any state as the agent does not encounter a
reward signal to guide itself. In such problems, an
efficient exploration method is necessary to discover
unvisited states in order to find the sparse rewards to
learn the π∗.

3 EXPLORATION GUIDED BY
GAN-BASED INTRINSIC
REWARD MODULE

Influenced by the anomaly detection framework of
(Schlegl et al., 2019), we propose a ”GAN-based In-
trinsic Reward Module (GIRM)” in order to incen-
tivize the policy learning agent to explore unvisited
states. To do so, at every time-step, in addition to
the extrinsic reward received from the environment
re

t , GIRM will also feed the agent with an intrinsic
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reward ri
t , which will be higher for the unexplored

states. Policy of the agent is then updated to maximize
the total reward, rt = re

t + ri
t . Providing an intrinsic

reward is especially important for the environments
with sparse or no rewards, because in such environ-
ments, the agent usually fails to find the states with
rewards and it needs reinforcement to find the set of
actions that will maximize the total reward received.
With the intrinsic reward, the agent will now be re-
inforced into exploring the environment to find the
extrinsic rewards. Figure 1 illustrates the proposed
GIRM-enhanced reinforcement learning framework.

The first goal of GIRM is to learn the distribution
of the visited states. To that end, we train a GAN with
the visited states as the train data, using the improved
WGAN architecture (Gulrajani et al., 2017). Since
the generator G is trained to minimize the divergence
between G’s sample distribution and the distribution
of the training data, G is trained to fit to the distribu-
tion of the visited states, i.e. G learns the mapping
z→G(z) where G(z) is a synthetic state similar to the
visited states.

After training of the GAN is complete, an encoder
E is trained to learn the mapping st → z, i.e. E maps
the state st to the input noise distribution of G. The
aim is to find the z that is mapped to a G(z) which is
the most similar synthetic state in the distribution of
G, to the input state st . To that aim, first, we define
an MSE loss to minimize the difference between the
input st and the recreated image G(z) = G(E(st)):

min
E

L (st) =
1
n
‖st −G(E(st))‖2 (2)

where n is the number of dimensions in the state
space (if states are images, n represent the number
of pixels). As pointed in (Schlegl et al., 2017) and
(Schlegl et al., 2019), the discriminator D is able
to learn the feature representations of the inputs in
an intermediate layer, and in addition to the loss in
Eq. 2, minimizing the difference between the fea-
ture encodings of the training data and the recreated
data improves the training of E. Therefore, we adapt
the loss of feature encodings of st and G(E(st) as
LD (st) =

λ

nd
‖ f (st)− f (G(E(st)))‖2 and finalize the

loss function for E as:

min
E

L (st)+LD (st) =
1
n
‖st −G(E(st))‖2+

λ

nd
‖ f (st)− f (G(E(st)))‖2

(3)

where f is the output of an intermediate layer in D,
nd number of the dimensions in the feature represen-
tations, and λ is a hyperparameter scaling the feature
representation loss. After E is trained, as illustrated

in Fig. 1, for an observed state by the agent st , the
intrinsic reward is computed as:

ri
t =

1
n
‖st −G(E(st))‖2, (4)

which is the MSE between st and G(E(st). If st is a
frequently visited state, it will belong to the distribu-
tion learned by G, therefore it can be recreated and
ri

t will be low. On the contrary, if st is an unvisited
state, the difference between st and G(E(st) will be
significant and ri

t will be high, reinforcing the agent
to explore towards st . Notice that, we do not mul-
tiply ri

t with a constant scalar to scale it. It is true
that in different environments, the scale of the intrin-
sic rewards will be different, however as the distri-
bution of the visited states change, so will the scale
of intrinsic rewards. Therefore, instead of a constant
scalar, we calculate the exponentially weighted mov-
ing average(EMA) and variance(EMV ) of the rewards
as:

EMA =

{
ri

1, if t = 1
α∗ ri

t +(1−α)∗EMA, otherwise
(5)

EMV =


0, if t = 1
α∗ (ri

t −EMA)2+

(1−α)∗EMV
, otherwise

(6)

and then, standardize the intrinsic reward:

ri
t =

ri
t −EMA√

EMV
. (7)

In this study, we used α = 0.01. The standard-
ization ensures that the distribution of the rewards
will have the same mean and variance throughout the
training and in different environments. In Eq. 7, the
intrinsic reward is standardized to have a mean of 0
and a variance of 1, and in this study, we used this
equation for standardization, however the equation
can be modified to have different mean and variance if
needed. With the standardization of ri

t , the optimiza-
tion problem in Eq. 1 becomes:

π
∗ = argmax

π
Eπ(st ),P

[
∑

t
γ

t(re
t + ri

t)

]
. (8)

GIRM is trained periodically during the policy
learning. To do so, the states observed by the agent
are stored in a memory M = s0,s1, ...,sN with a pre-
defined capacity N. As soon as M reaches full ca-
pacity, we stop policy learning of the agent, and train
GIRM with the data stored in M using stochastic gra-
dient descent. After training of the GIRM is finished,
M’s content is cleared and the policy learning, as well
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Figure 2: A full view of the first level in the game Super Mario Bros. Player starts at the left side of the level and only perceives
the surroundings of the character it is controlling, while the camera is always centered at the character in the horizontal-axis.
To complete the level, the player needs to reach the castle at the far right of the level. With no reward given, a reinforcement
learning agent only depends on exploration to find the end of the level.

Figure 3: First room in the game Montezuma’s Revenge.
The player starts the game in this room and needs to col-
lect the key first, and then go to one of the doors to escape
from the room. Only rewards are received when a key is
grabbed or a door is unlocked. The player needs to com-
plete a complex set of actions to reach the key, as it needs
to climb down two stairs, jump to a rope, avoid an enemy,
and then climb up a stair while avoiding death. The camera
is static, the player has the full view of the room and it only
changes when the player goes to another room.

as storing observed states to M, restarts. Every time
M reaches full capacity, the GIRM is trained with the
new data as the distribution of visited states keeps
changing during the policy learning. Since GIRM
consists of only random networks before the first time
M is full, GIRM does not provide an intrinsic reward
until the first training phase, and the agent only re-
ceives the extrinsic rewards from the environment.
Until the first training phase of GIRM is finished, we
use exploration by randomly selected actions. More-
over, the first time M is full, GIRM is trained for larger
number of epochs to train it until convergence. After-
wards, GIRM is fine-tuned with the newly observed
data for a lesser number of epochs.

4 EXPERIMENTS

4.1 Experimental Setup

As the baseline reinforcement learning algorithm, we
used Advantage Actor-Critic (A2C), a synchronous
version of A3C (Mnih et al., 2016) in the experi-
ments. The main difference between A2C and A3C
is, while in A3C, there are a number of workers with

their own network weights asynchronously working
and updating a global network, in A2C, workers send
transition synchronously, and share one global net-
work. In our experiments, we used sixteen workers
synchronously running their own environments. For
both A2C and GIRM, observed state visuals are con-
verted to grayscale from RGB and resized to 84×84.
The actor-critic network has 3 convolutional layers,
followed by a fully connected layer. First convolu-
tional layer has 32 filters of 8×8 kernel size with
stride 4, second convolutional layer has 64 filters of
4×4 kernel size with stride 2, the third convolutional
layer has 64 filters of kernel size 3×3 with stride 1
and finally, the fully connected layer has 512 hidden
units. Each layer has Leaky ReLU as its activation
function with a negative slope of 0.01. The output of
the fully connected layer is then sent to two separate
fully connected layers, one of them selecting the ac-
tion(actor) and the other predicting the value of the
state(critic).

As depicted in Figure 1, the GIRM consists of 3
networks: generator G, discriminator D and encoder
E. The size of the input noise is 128 for G, and it
is created as a 2D input, with the size 1× 1 and 128
channels. G consists of 5 transposed convolutional
layers, with 64 filters in the first 4 layers and 1 filter in
the last layer, each filter having a kernel size of 4×4.
D consists of 6 convolutional layers with 64 filters in
the first 5 layers and 1 filter in the last, with kernel
sizes of 4, 5, 5, 3, 1, and 5, respectively. The output of
the first 5 layers of D is also used as the intermediate
feature representation for the training of E. Finally, E
is formed with 5 convolutional layers with 64 filters
in the first 4 layers and 128 filters in the last, which is
the size of the input noise. Kernel Sizes are 4, 5, 5,
3, and 5, respectively. All three networks use Batch
Normalization (Ioffe and Szegedy, 2015) at the end of
each layer except the final ones. Hidden layers in D
and E are activated with Leaky ReLU with a negative
slope of 0.2, and hidden layers of G uses ReLU as the
activation function, except the final layer which uses
tanh as its activation function.

For all the networks, we used ADAM optimizer
(Kingma and Ba, 2014) to update the weights. For
training the actor-critic network, learning rate is 2.5∗
10−4 and for the networks in GIRM module, learn-
ing rate is 10−4. β1 = 0.9 and β2 = 0.999 for all the
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Table 1: Comparison of agents in Super Mario Bros. in terms of furthest point they explored and percentage of the states that
are further from certain point out of all of the states they visited in horizontal axis.

Method # of Frames Furthest Visited visited > 500 visited > 1000 visited > 1500
A2C 32M 1673 41.3% 2.3% 0.1%

A2C+GIRM 8M 3150 (End of level) 60.3% 21.5% 4.1%

networks.
To evaluate our proposed module, we set up two

environments, one of which has sparse reward signals
and the other has no reward signal other than the one
in the goal state. We evaluate our module by running
an agent with and without the module and compare
the results. Later on, we compare our results with the
other studies in the field.

First of the environments is the game Super Mario
Bros. (Kauten, 2018). Fig. 2 shows the full layout of
the first level, which is the level our agent is trained
in. The agent can only partially observe the environ-
ment, as the states include only the surroundings of
the character it’s controlling. The initial position is at
the far left side of the level and the goal position is the
flag next to the castle at the far right side. In this en-
vironment, we disable all the extrinsic rewards other
than the one given for reaching the goal state. With-
out an extrinsic reward, the agent depends only on its
exploration strategy, and with random exploration, it
is a significantly hard task to go past the first few ob-
stacles, let alone reach the goal state.

The second environment is the game Mon-
tezuma’s Revenge, which is notoriously hard to solve
for an AI agent due to its sparse rewards. Fig. 3
shows the room the player starts in. In order to re-
ceive the first extrinsic reward signal, the player needs
to navigate to the key. However, the agent needs to
select a specific set of actions in order to reach the
key, as a fall from any height results in death, so the
agent needs to navigate the character to jump to the
middle platform, climb down the stairs, jump to the
rope and to the platform on right, climb down the sec-
ond stairs, avoid the enemy and finally climb up the
stairs. Producing an action set randomly to carry out
all these tasks is especially hard. Differing from Su-
per Mario Bros, the observed environment does not
change with the movement of the agent and the back-
ground stays static until the agent moves to a differ-
ent room. This provides a different challenge to the
GIRM, as the generated image by the generator G
will have the same background whether the state is
visited or not, until a new room is explored, and ri

t
calculated in Eq. 4 will only have small differences
between states. Standardization in Eq. 7 is especially
important in this type of environments to make the
ri

t computed for visited and unvisited states have a
meaningful difference.

4.2 Results and Discussion

Super Mario Bros. Table 1 compares the agents
trained with A2C with and without GIRM module,
by the distance they covered in horizontal axis in the
first level of the game Super Mario Bros. With no re-
ward signal received, the agent only depends on its
exploration strategy to find the goal state of the envi-
ronment. In the case of no GIRM module, a strategy
to maximize the entropy of the actions is used (Mnih
et al., 2016). Results show that when GIRM is in-
troduced, the agent can find the goal state, whereas
without it, the agent can only reach nearly half point
of the level and it can only visit there once.

In Mario, as shown in Fig. 2, in order to explore
the environment, the agent needs to go right consis-
tently. When there is no extrinsic reward, exploration
depends only on the observation of new environmen-
tal elements and vertical movement does not provide
new information and is only useful for overcoming
obstacles. Since the intrinsic rewards from the GIRM
are higher in the unobserved states that are on the
right side of the level, the agent eventually needs to
learn to go right in order to explore efficiently. As
shown in Table 1, the visited states by the agent with
GIRM that are further from half point of the level
amounts to 4.1% of all visited states. Through the
observed rewards from GIRM in the first part of the
level, the agent learns to go right as it receives higher
rewards from the states on the right side of the map
and through this learnt policy, the agent manages to
find the end of the level without roaming around in
the second half of the level. Even though there is no
extrinsic reward, through the rewards from the GIRM,
our agent learns to explore the environment by learn-
ing to move right until the end of the episode, show-
ing that it is capable of efficient exploration. This is
an important trait for the agent to have, as, through the
usage of the GIRM, we show that the agent can learn
how to explore efficiently in the specific environment
setting it is in.
Montezuma’s Revenge. An exceptionally hard-to-
solve environment, it is very crucial to explore effi-
ciently and find the rewards in Montezuma’s Revenge.
Our agent trained with the GIRM has shown capable
of doing so, guided to rewards and achieved better
scores than the baseline A2C agent, as shown in Fig.
4. Agent trained without the GIRM was capable of
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Figure 4: Mean scores during the training of A2C and A2C
+ GIRM in Montezuma’s Revenge.

Table 2: Comparison of our results in Montezuma’s Re-
venge against DQN-GAEX (Hong et al., 2019), Go-explore
(Ecoffet et al., 2021), NGU (Badia et al., 2020), RND
(Burda et al., 2019) and DTSIL (Guo et al., 2019). Scores
are reported by the authors of the methods, except the base-
line result from A2C and our method, GIRM. Bold indicates
the best result.

Method # of Frames Mean Score
A2C 20M 0

A2C+GIRM 20M 3,594
DQN-GAEX 200M 420
Go-explore 12B 43,791

NGU 35B 10,400
RND 16B 10,070

DTSIL 3.2B 22,616

finding the reward for grabbing key in the first room
very few times, and in those cases, it could not find
its way out of the room to receive further rewards.
Agent trained with the GIRM has shown its capabil-
ity to further explore the environment, finding rewards
in the other rooms as well. However, it should be
noted that an early convergence happens as the agent
could not break out of the score of 3600. We observed
that the agent found a 3000 reward for killing an en-
emy and started to exploit that big reward rather than
exploring. This shows that even though our GIRM
guides the agent into exploration, exploiting extrinsic
rewards when the difference between intrinsic and ex-
trinsic rewards is high could not be avoided. Results
in Table 2 further shows that our method is capable
of exploring and matching the results of some of the
works in the literature but could not beat the perfor-
mances of the state-of-the-art.

Another factor affecting the performance of the
GIRM is the static background observation in the
rooms, resulting in small differences between the ob-
served state and the regenerated state by the generator
G(even if the observed state is novel) as long as the
agent stays in the same room, because the only differ-
ence between state observations is the position of the

character. We addressed this problem by introducing
exponentially weighted moving average (EMA) and
variance (EMV ) in Section 3 to make even very small
differences into meaningful intrinsic rewards. How-
ever, when the agent manages to find new rooms in
the level, the difference for calculating intrinsic re-
ward grows bigger, which also increases EMA and
EMV . This results in small differences being not sig-
nificant enough anymore, hindering the exploration in
an already observed room. Nevertheless, as shown
by the results in both Super Mario Bros. and Mon-
tezuma’s Revenge, we can conclude that our pro-
posed GIRM is capable of incentivizing the agent into
exploring, heavily outperforming the random explo-
ration approaches that are most commonly used in
the literature, however, we also identified a few afore-
mentioned weaknesses as well.
Sample Efficiency of GIRM. As explained, GIRM
is trained when the memory M that stores observed
states is full and the first training phase of GIRM oc-
curs for a larger number of epochs in order to train
it until convergence. This leads to optimized net-
works in the GIRM even after the first training phase
and GIRM becomes capable of computing accurate
intrinsic rewards, i.e. rewards that are higher for
unobserved states. Because of this, to start leading
the agent into exploring the environment efficiently,
GIRM needs only the amount of data M initially
stored. Our reported results in Table 1 and Table 2
uses only 8 million and 20 million of frames for each
respective environment. Especially in Montezuma’s
Revenge, as also shown in Table 2, recent studies have
benefited from billions of frames even for efficient ex-
ploration. Our method proves to be sample efficient,
as it successfully provides the necessary intrinsic rein-
forcement for the agent with significantly less amount
of data.

5 CONCLUSION AND FUTURE
WORK

Common exploration strategies work well when re-
ward signals are dense, however an additional incen-
tive is needed in environments with sparse or no re-
wards. In this work, we proposed the ”GAN-based
Intrinsic Reward Module (GIRM)” to compute an in-
trinsic reward for a reinforcement learning agent, in
order to incentivize the agent to explore the environ-
ment it is in. GIRM is trained so that the intrinsic re-
ward is higher for the novel or less-frequently-visited
states to guide the agent into exploring the environ-
ment. The memory mechanism that we employ in
the training of GIRM provides an adaptation to the
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changing distribution in the observed environment.
Since GIRM is an extension module, it can be ap-
plied to any reinforcement learning algorithm. In this
work, we used Asynchronous Actor-Critic (A2C) as
the baseline algorithm, comparing agents trained with
and without GIRM.

We show GIRM’s capability of exploration in a
sparse reward and a no reward setting. We used Super
Mario Bros. (Kauten, 2018) for the no reward set-
ting and show that the agent trained with GIRM pro-
vides the necessary intrinsic reward so that the agent
explores and completes the level and outperforms the
agent without GIRM. Our agent does so by learning
the pattern of going right in order to find unexplored
states. For the sparse reward setting, we evaluated
our agent in Montezuma’s Revenge, an atari game
that’s been recently used for benchmarking in rein-
forcement learning, due to its difficulty. While the
agent trained without GIRM is not capable of escap-
ing the initial room, with the addition of GIRM, our
agent explores multiple rooms throughout the envi-
ronment, achieving a mean score of 3954. On the
one hand, we show that GIRM provides a more ef-
ficient exploration strategy, but on the other hand, we
observe that our agent converges early, beginning to
exploit the high rewards from the environment.

We also identify another weakness of GIRM
through Montezuma’s Revenge: standardizing re-
wards through the usage of EMA and EMV turns
small differences between the observed novel state
and regenerated state into meaningful intrinsic re-
wards, however, as the agent begins to explore new
rooms, the already high difference between regener-
ated and novel states gets higher, which also increases
the distribution EMA and EMV represents, there-
fore GIRM loses the capability of assigning meaning-
ful rewards to novel states in the frequently visited
rooms. In the future, we would like to address this
problem. A potential solution could be leaving out
the very high or very low intrinsic reward when up-
dating EMA and EMV , treating them as an anomaly.
Furthermore, a more efficient reward scaling method
could be investigated.

Another future direction is to make use of GANs
to train a model to learn the dynamics of the envi-
ronment, instead of the distribution of observations.
Since the dynamics throughout the environment do
not change drastically, a model that learns the dy-
namics might have a better generalization property
throughout the environment. This idea is not a direct
improvement to GIRM, but instead, we recommend
an idea to utilize GANs in the efficient exploration
problem in reinforcement learning with a different ap-
proach.
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